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Connectivity

• A (simple) undirected graph is connected if there 
exists a path between every pair of vertices.

• If a graph is not connected, then G’(V’,E’) is a 
connected component of the graph G(V,E) if V’ is a 
maximal subset of vertices from V that induces a 
connected subgraph. (What is the meaning of 
maximal?)

• The connected components of a graph correspond 
to a partition of the set of the vertices. (What is 
the meaning of partition?)

• How to compute all the connected components?
– Use DFS or BFS.
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Biconnectivity: Generalizing Connectivity

• A tree is a minimally connected graph. 
• Removing a vertex from a connected graph may 

make it disconnected.
• A graph is biconnected if removing a single vertex 

does not disconnect the graph.
• Alternatively, a graph is biconnected if for every 

pair of vertices there exists at least 2 disjoint 
paths between them. 

• A graph is k-connected if for every pair of 
vertices there exists at least k disjoint paths 
between them. Alternatively, removal of any k-1
vertices does not disconnect the graph.
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Biconnected Components

• If a graph is not biconnected, it can be 
decomposed into biconnected components.

• An articulation point is a vertex whose removal 
disconnects the graph. 

• Claim: If a graph is not biconnected, it must have 
an articulation point. Proof?

• A biconnected component of a simple undirected 
graph G(V,E) is a maximal set of edges from E that 
induces a biconnected subgraph. 
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Biconnected Components
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BCC(G, u) // Compute the biconnected components of G 
// starting from vertex u

1. Color[u] ← GRAY
2. Low[u] ← d[u] ← Time ← Time + 1
3. Put u on stack S
4. for each v ∈ Adj[u] do
5. if (v ≠ π[u]) and (color[v] ≠ BLACK) then 
6. if (TopOfStack(S) ≠ u) then put u on stack S
7. Put edge (u,v) on stack S
8. if (color[v] = WHITE) then 
9. π[v] ← u
10. BCC(G, v)
11. if (Low[v] >= d[u]) then // u is an articul. pt.
12. // Output next biconnected component
13. Pop S until u is reached
14. Push u back on S
15. Low[u] = min { Low[u], Low[v] }
16. else Low[u] = min { Low[u], d[v] } // back edge
17. color[u] ← BLACK
18. F[u] ← Time ← Time + 1
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BCC Example

7

5

6

81

324



03/11/04 Lecture 18 7

Minimum Spanning Tree
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Minimum Spanning Tree
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Proof of Correctness: MST Algorithms



03/11/04 Lecture 18 14



03/11/04 Lecture 18 15

Dijkstra’s Single Source Shortest Path Algorithm 
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All Pairs Shortest Path Algorithm

• Invoke Dijkstra’s SSSP algorithm n times.
• Or use dynamic programming. How?
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Figure 14.33
An activity-node graph
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Figure 14.34
An event-node graph
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Figure 14.35
Earliest completion times
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Figure 14.36
Latest completion times
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Figure 14.37
Earliest completion time, latest completion time, and slack (additional edge 
item)
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Figure 14.38
Worst-case running times of various graph algorithms
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Amortized Analysis

• In amortized analysis, we are looking for the time 
complexity of a sequence of n operations, instead of 
the cost of a single operation.

• Cost of a sequence of n operations = n S(n), where 
S(n) = worst case cost of each of the n operations

• Amortized Cost = T(n)/n, where T(n) = worst case 
total cost of the n operations in the sequence. 

• Amortized cost can be small even when some 
operations in that sequence are expensive.  Often, 
the worst case may not occur in every operation.  
The cost of expensive operations may be ‘paid for’ by 
charging to other less expensive operations.
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Problem 1: Stack Operations

• Data Structure:  Stack
• Operations: 

– Push(s,x) : Push object x into stack s.
• Cost: T(push)= O(1).

– Pop(s) : Pop the top object in stack s.
• Cost: T(pop)=O(1).

– MultiPop(s,k) ; Pop the top k objects in stack s.
• Cost: T(mp) = O(size(s)) worst case

• Assumption: Start with an empty stack
• Simple analysis: For N operations, the maximum size of stack is 

N.  Since the cost of MultiPop under the worst case is O(N), 
which is the largest in all three operations, the total cost of N
operations must be less than N x T(mp) = O(N2).
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Amortized analysis: Stack Operations

• Intuition: Worst case cannot happen all the time! 
• Idea: pay a dollar for every operation, and then count carefully.
• Suppose we pay 2 dollars for each Push operation, one to pay 

for the operation itself, and another for “future use” (we pin it to 
the object on the stack).

• When we do Pop or MultiPop operations to pop objects, instead 
of paying from our pocket, we pay the operations with the extra 
dollar pinned to the objects that are being popped.

• So the total cost of N operations must be less than 2 x N
• Amortized cost = T(N)/N = 2.  
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Problem 2: Binary Counter

• Data Structure:  binary counter b.
• Operations:  Inc(b).   

– Cost of Inc(b) = number of bits flipped in the operation.
• What’s the total cost of N operations when this counter 

counts up to integer N?
• Approach 1:  simple analysis

– The size of the counter is log(N).  The worst case will be that 
every bit is flipped in an operation, so for N operations, the 
total cost under the worst case is O(Nlog(N))



03/11/04 Lecture 18 29

Approach 2: Binary Counter

• Intuition: Worst case cannot happen all the time! 
000000
000001
000010
000011
000100
000101
000110
000111

Bit 0 flips every time, bit 1 flips every other 
time, bit 2 flips every fourth time, etc.   We 
can conclude that for bit k, it flips every 2k

time. 
So the total bits flipped in  N operations, when 
the counter counts from 1 to N, will be = ?
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So the amortized cost will be T(N)/N = 2.
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Approach 3: Binary Counter

• For k bit counters, the total cost is 
t(k) = 2 x t(k-1) + 1  

• So for N operations, T(N) = t(log(N)).
• t(k) = ?
• T(N) can be proved to be bounded by 2N.
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Amortized Analysis: Potential Method
• For the n operations, the data structure goes through states: D0, 

D1, D2, …, Dn with costs c1, c2, …, cn 

• Define potential function Φ(Di): represents the potential energy
of data structure after ith operation.

• The amortized cost of the ith operation is defined by:

• The total amortized cost is
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Potential Method - Cont’d

• If
then 

which then acts as an upper bound for the total cost.
So we need to define a suitable potential function 
such that this function is always non-negative.
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Potential Method: Stack

• Define F(D) = # of items on stack
• F(D0) = 0 
• F(Dn) ¥ 0
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Potential Method: Binary Counter

• Define F(D) = # of 1’s in counter
• F(D0) = 0 
• F(Dn) ¥ 0
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