Connectivity

* A (simple) undirected graph is connected if there
exists a path between every pair of vertices.

* If agraph is not connected, then G'(V',E’) is a
connected component of the graph G(V,E) if V'isa
maximal subset of vertices from V that induces a
connected subgraph. (What is the meaning of
maximal?)

* The connected components of a graph correspond
to a partition of the set of the vertices. (What is
the meaning of partition?)

* How to compute all the connected components?
- Use DFS or BFS.

03/11/04 Lecture 18

Biconnectivity: Generalizing Connectivity

* A tree is a minimally connected graph.

+ Removing a vertex from a connected graph may
make it disconnected.

* A graph is biconnected if removing a single vertex
does not disconnect the graph.

- Alternatively, a graph is biconnected if for every
pair of vertices there exists at least 2 disjoint
paths between them.

* A graph is k-connected if for every pair of
vertices there exists at least k disjoint paths
between them. Alternatively, removal of any k-1
vertices does not disconnect the graph.

03/11/04 Lecture 18

Biconnected Components

+ If agraph is not biconnected, it can be
decomposed into biconnected components.

» An articulation point is a vertex whose removal
disconnects the graph.

* Claim: If agraph is not biconnected, it must have
an articulation point. Proof?

» A biconnected component of a simple undirected
graph G(V,E) is a maximal set of edges from E that
induces a biconnected subgraph.

03/11/04 Lecture 18 3

Biconnected Components

Figure 22.10 The articulation points, bridges, and biconnected components of a connected, undi-
rected graph for use in Problem 22-2. The articulation points are the heavily shaded vertices, the
bridges are the heavily shaded edges, and the biconnected components are the edges in the shaded
regions, with a bee numbering shown.

03/11/04 Lecture 18

BCC(G, u) // Compute the biconnected components of G
// starting from vertex u

1. Color[u] < GRAY

2. Low[u] <~ d[u] « Time « Time + 1

3. Putuonstack S

4. for each v € Adj[u] do

B. if (v = =[u]) and (color[v] # BLACK) then

6 if (TopOfStack(S) # u) then put u on stack S
7 Put edge (u,v) on stack S
8 if (color[v] = WHITE) then

0. n[v] < u

10. BCC(G, v)

11, if (Low[v]>=d[u]) then // uis an articul. pt.
12. // Output next biconnected component
13. Pop S until u is reached

14, Push u back on S

15. Low[u] = min { Low[u], Low[v] }

16. else Low[u] = min { Low[u], d[v] } // back edge

17. color[u] « BLACK
18. F[u] < Time « Time +1

03/11/04 Lecture 18 6

Minimum Spanning Tree

Figure 23.1 A minimum spanning tree for a connected graph. The weights on edges are shown,
and the edges in a minimum spanning tree are shaded. The total weight of the tree shown is 37. This
minimum spanning tree is not unique: removing the edge (b, ¢) and replacing it with the edge (a. h)
yields another spanning tree with weight 37.

03/11/04 Lecture 18

(e)

(@

Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The edges are considered by the algorithm in sorted order by
weight. An arrow points to the edge under consideration at each step of the algorithm. If the edge
joins two distinct trees in the forest, it is added to the forest, thereby merging the two trees.

03/11/04 Lecture 18

03/11/04 Lecture 18

Minimum Spanning Tree

MST-KRUSKAL(G, w)
A0
for each vertex v € V|G|

do MAKE-SET(v)
sort the edges of £/ by nondecreasing weight w
for each edge (u,v) € E, in order by nondecreasing weigh

do if FIND-SET(u) # FIND-SET(v)

then A +— AU {(u,v)}
UNION(u, v)

e LB S g B0 I 1=

return A

10

03/11/04

(a)

(e)

(® ()

(1

Figure23.5 The execution of Prim’s algorithm on the graph from Figure 23.1, The root vertex is a.
Shaded edges are in the tree being grown, and the vertices in the tree are shown in black. At each
step of the algorithm, the vertices in the tree determine a cut of the graph, and a light edge crossing
the cut is added to the tree. In the second step, for example, the algorithm has a choice of adding
either edge (b, ¢) or edge (a, h) to the tree since both are light edges crossing the cut.

11

03/11/04

MST-KRUSKAL(G, w)

A
2
3
4.
5.
6
&
8
9

A+—10
for each vertex v € V[G]

do MAKE-SET(v)
sort the edges of E by nondecreasing weight w
for each edge (u,v) € E, in order by nondecreasing weigh

do if FIND-SET(u) # FIND-SET(v)

then A — AU {{u,v)}
UNION(u, v)

return A

MST-PrIM(G, w, 1)

= o Ll e ol Ll e

— O

Q — V(o]
for each v € ()
do keylu] — oo

keylr] «+ 0O
mr] «— NIL
while Q # 0

do u +— EXTRACT-MIN(Q)

for each v € Adj|u]
do if v € Q) and w(u,v) < key|v]
then 7[v] — u
key[v] «— w(u,v)

12

Proof of Correctness: MST Algorithms

03/11/04

(a)

Figure 23.2 Two ways of viewing a cut (S, V — S) of the graph from Figure 23.1. (a) The vertices
in the set S are shown in black, and those in V — § are shown in white. The edges crossing the cut are
those connecting white vertices with black vertices. The edge (d, c) is the unique light edge crossing
the cut. A subset A of the edges is shaded; note that the cut (S, V — §) respects A, since no edge
of A crosses the cut. (b) The same graph with the vertices in the set S on the left and the vertices in
the set V — § on the right. An edge crosses the cut if it connects a vertex on the left with a vertex on

the right.

Lecture 18

13

03/11/04

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates are shown within the vertices, and shaded edges indicate predecessor val-
ues. Black vertices are in the set §, and white vertices are in the min-priority queue Q@ = V — §.
(a) The situation just before the first iteration of the while loop of lines 4-8. The shaded vertex has
the minimum d value and is chosen as vertex u in line 5. (b)=(f) The situation after each successive
iteration of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next
iteration. The d and 7 values shown in part (f) are the final values.

Lecture 18 14

Dijkstra’s Single Source Shortest Path Algorithm

DIJKSTRA(G, w, s)

L.

cali s WLl Sl ol

// INITIALIZE-SINGLE-SOURCE(G, 3)
for each vertex v € V|G
do d|v| —
7|v] «— NIL
ds] «— 0
S— 0
Q — V|G
while Q) #£ 0
do u +— EXTRACT-MIN(Q)
S — SU{u}
for each v € Adjlu
do // RELAX(u,v,w)
if djv] > dlu] + w(u, v)
then d|v| «+ d|u| + w(u,v)
| — u 15

03/11/04

DIIKSTRA(G, w, 8)
1. // INITIALIZE-SINGLE-SOURCE(G, 3)
for each vertex v € V|G|
do dv| +— oo
m|v] < NIL

dls] 0
2. S+ 10
3. Q< V|G
4. while Q £ 0
5, do u — EXTRACT-MIN(Q)
6. S— SuU{u}
T. for each v € Adj|u|
8. do // RELAX(u, v, w)

if djv] > dju| + w(u,v)
then d{[v}] — dlu] + wlu,v)

MST-PrRIM(G, w,7)
Q — V[G]
for each w € @
do keyu] — oo

keylr] +— 0
7[r] «— NIL
while Q@ £ 0

do u «— EXTRACT-MIN({Q)

for each v € Adj[u]
do if v € @ and w(u,v) < keylv]
then 7[v] «— u
heyle] — wu,v) 16

P e T A O SO R R B

— O

All Pairs Shortest Path Algorithm

* Invoke Dijkstra’'s SSSP algorithm n times.
» Or use dynamic programming. How?

03/11/04 Lecture 18

17

0 3 8 o —4\ NIL 1 1 N 1 \
’ oo 0 o0 1 7 NIL NIL NIL 2
DO=] o0 4 0 o0 oo| NO=fNL 3 NL NL NL
2 oo -5 0 o 4 NIL 4 NIL NIL
© o0 oo 6 0) NIL NIL NIL 5 NI/
(0 3 8 oo —4) (NIL 1 1 NI 1)
o 0 oo 1 7 NIL. NIL NIL 2 2
DW=] oo 4 0 o0 oo M=) nNL 3 NL NL NL
2 5 -5 0 -2 4 1 4 N 1
\oo o0 o0 6 0) \NIL NIL NIL 5 NIL)
f 0 3 8 4 —4 (NIL 1 1 2 1 \
oo 0 o0 1 7 NIL NIL NIL 2 2
DPD=]oo 4 0 5 1 n®=| N 3 NL 2 2
2 5 -5 0 -2 4 1 4 NIL 1
\occ © o 6 0 k NIL NIL NIL 5 NIL)
(0 3 8 4 —4 - (NL 1 1 2 1)
oo 0 o0 1 7 NIL NIL NIL 2 2
DP=loo. 4 05 1 n®=| o 3 N 2 2
2 -1 -5 0 -2 4 3 4 NIL 1
\oo o© o0 6 O ~ k NIL NIL NIL 5 NIL
([0 3 -1 4 —4) NIL 1T 4 2 1)
3 0 -4 1 -1 . 4 NIL 4 2 1
DW=|7 4 05 3 n=] 4 3 NL 2 1
2 -1 -5 0 -2 4 3 4 NIL 1
\8 5 16 0) 4 3 4 5 NIL)
(0 1 -3 2 —4\ NIL 3 4 5 1 \
‘ 3 0 -4 1 -t 4 NL 4 2 1
D=7 4 o0 5 3 n¥=} 4 3 N 2 1
2 -1 -5 0 -2 4 3 4 NIL 1
\8 5 16 0 4 3 4 5 NL)
03/11/04 Figure 25.4 The sequence of matrices D® and T® computed by the Floyd-Warshall algorithm

for the graph in Figure 25.1.

Figure 14.33
An activity-node graph

el

03/11/04 Lecture 18 19

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.34
An event-node graph

03/11/04 Lecture 18 20

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.35
Earliest completion times

3

5 C3
0

0 3
(e e

0

a E 1

03/11/04

G 6 E
Oas-COinaO
0 0

L g
Oy CanaOans Cana O
0

3

5

T

—e(s)"

Lecture 18

10

21

Data Structures & Problem Solving using JAVA/2E

Mark Allen Weiss © 2002 Addison Wesley

Figure 14.36
Latest completion times

03/11/04 Lecture 18 22

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.37

Earliest completion time, latest completion time, and slack (additional edge
item)

03/11/04 Lecture 18 23

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.38

Worst-case running times of various graph algorithms

TYPE OF GRAPH PROBLEM RUNNING TIME COMMENTS

Unweighted O(|E)) Breadth-first search
Weighted, no negative edges O(|E|log|V]) Dijkstra's algorithm
Weighted, negative edges O(E| - V] Bellman—Ford algorithm
Weighted, acydlic O(|E)) Uses topological sort
03/11/04 Lecture 18 24

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Amortized Analysis

In amortized analysis, we are looking for the time
complexity of a seqguence of n operations, instead of
the cost of a single operation.

Cost of a sequence of n operations = n S(n), where
S(n) = worst case cost of each of the n operations

Amortized Cost = T(n)/n, where T(n) = worst case
total cost of the n operations in the sequence.

Amortized cost can be small even when some
operations Iin that sequence are expensive. Often,
the worst case may not occur in_every operation.
The cost of expensive operations may be ‘paid for’ by
charging to other less expensive operations.

03/11/04 Lecture 18 25

Problem 1: Stack Operations

Data Structure: Stack

Operations:
— Push(s,x) : Push object x into stack s.
 Cost: T(push)=O(1).
— Pop(s) : Pop the top object in stack s.
« Cost: T(pop)=0(1).
— MultiPop(s,k) ; Pop the top k objects in stack s.
» Cost: T(mp) = O(size(s)) worst case
Assumption: Start with an empty stack

Simple analysis: For N operations, the maximum size of stack is
N. Since the cost of MultiPop under the worst case is O(N),
which is the largest in all three operations, the total cost of N
operations must be less than N x T(mp) = O(N?).

03/11/04 Lecture 18 26

Amortized analysis: Stack Operations

e Intuition: Worst case cannot happen all the time!
 |dea: pay a dollar for every operation, and then count carefully.

« Suppose we pay 2 dollars for each Push operation, one to pay
for the operation itself, and another for “future use” (we pin it to
the object on the stack).

« When we do Pop or MultiPop operations to pop objects, instead
of paying from our pocket, we pay the operations with the extra
dollar pinned to the objects that are being popped.

 So the total cost of N operations must be less than 2 x N
« Amortized cost = T(N)/N = 2.

03/11/04 Lecture 18 27

Problem 2: Binary Counter

« Data Structure: binary counter b.
« QOperations: Inc(b).
— Cost of Inc(b) = number of bits flipped in the operation.

« What's the total cost of N operations when this counter
counts up to integer N?

« Approach 1: simple analysis

— The size of the counter is log(N). The worst case will be that
every bit is flipped in an operation, so for N operations, the
total cost under the worst case is O(Nlog(N))

03/11/04 Lecture 18 28

Approach 2: Binary Counter

* Intuition: Worst case cannot happen all the time!

000000
000001 Bit O flips every time, bit 1 flips every other
000010 time, bit 2 flips every fourth time, etc. We

e)
000011 ;fnnef:onclude that for bit k, it flips every 2
000100 So the total bits flipped in N operations, when
000101 the counter counts from 1 to N, will be =?
000110 N N = 1
000111 |[T(N)= Z—k Z_k

o k=

So the amortized cost will be T(N)/N = 2.

03/11/04 Lecture 18 29

Approach 3: Binary Counter

For k bit counters, the total cost is
t(k) =2 xt(k-1) +1
So for N operations, T(N) = t(log(N)).
t(k) = ?
T(N) can be proved to be bounded by 2N.

03/11/04 Lecture 18

30

Amortized Analysis: Potential Method

e For the n operations, the data structure goes through states: D,
D,, D,, ..., D with costs c,, C,, ..., C,

» Define potential function ®(D): represents the potential energy
of data structure after i, operation.

» The amortized cost of the iy, operation is defined by:

C, =C, _|_cD(Di)—CI)(Di_1)

 The total amortized cost is

03/11/04 Lecture 18 31

Potential Method - Cont’d

e |f ®(D,)>o(D,)

then ici Ve

which then acts as an upper bound for the total cost.

So we need to define a suitable potential function
such that this function is always non-negative.

03/11/04 Lecture 18 32

Potential Method: Stack

- Define ®(D) = # of items on stack
¢ (I)(Do) =0

- ¢(D,)=0

Coush = Cpuen +1=2

=Cpyp —1=0

=C

push

(qp)

Pop

—k=k-k=0

O

multipop (k) multipop (k)

N N
ZC < Zé — Zépush +Zémultipop +Zépop — Zépush < 2N

03/11/04 Lecture 18 33

Potential Method: Binary Counter

- Define ®(D) = # of 1's in counter
¢ (I)(Do) - O
- ¢(D,)=0

C=C+AD=(k+1)+(1-k)=2

ZN:C<ZN:6:2N

03/11/04 Lecture 18

	Connectivity
	Biconnectivity: Generalizing Connectivity
	Biconnected Components
	Biconnected Components
	BCC Example
	Minimum Spanning Tree
	Minimum Spanning Tree
	Proof of Correctness: MST Algorithms
	Dijkstra’s Single Source Shortest Path Algorithm
	All Pairs Shortest Path Algorithm
	Amortized Analysis
	Problem 1: Stack Operations
	Amortized analysis: Stack Operations
	Problem 2: Binary Counter
	Approach 2: Binary Counter
	Approach 3: Binary Counter
	Amortized Analysis: Potential Method
	Potential Method - Cont’d
	Potential Method: Stack
	Potential Method: Binary Counter

