
03/11/04 Lecture 18 1

Connectivity

• A (simple) undirected graph is connected if there
exists a path between every pair of vertices.

• If a graph is not connected, then G’(V’,E’) is a
connected component of the graph G(V,E) if V’ is a
maximal subset of vertices from V that induces a
connected subgraph. (What is the meaning of
maximal?)

• The connected components of a graph correspond
to a partition of the set of the vertices. (What is
the meaning of partition?)

• How to compute all the connected components?
– Use DFS or BFS.

03/11/04 Lecture 18 2

Biconnectivity: Generalizing Connectivity

• A tree is a minimally connected graph.
• Removing a vertex from a connected graph may

make it disconnected.
• A graph is biconnected if removing a single vertex

does not disconnect the graph.
• Alternatively, a graph is biconnected if for every

pair of vertices there exists at least 2 disjoint
paths between them.

• A graph is k-connected if for every pair of
vertices there exists at least k disjoint paths
between them. Alternatively, removal of any k-1
vertices does not disconnect the graph.

03/11/04 Lecture 18 3

Biconnected Components

• If a graph is not biconnected, it can be
decomposed into biconnected components.

• An articulation point is a vertex whose removal
disconnects the graph.

• Claim: If a graph is not biconnected, it must have
an articulation point. Proof?

• A biconnected component of a simple undirected
graph G(V,E) is a maximal set of edges from E that
induces a biconnected subgraph.

03/11/04 Lecture 18 4

Biconnected Components

03/11/04 Lecture 18 5

BCC(G, u) // Compute the biconnected components of G
// starting from vertex u

1. Color[u] ← GRAY
2. Low[u] ← d[u] ← Time ← Time + 1
3. Put u on stack S
4. for each v ∈ Adj[u] do
5. if (v ≠ π[u]) and (color[v] ≠ BLACK) then
6. if (TopOfStack(S) ≠ u) then put u on stack S
7. Put edge (u,v) on stack S
8. if (color[v] = WHITE) then
9. π[v] ← u
10. BCC(G, v)
11. if (Low[v] >= d[u]) then // u is an articul. pt.
12. // Output next biconnected component
13. Pop S until u is reached
14. Push u back on S
15. Low[u] = min { Low[u], Low[v] }
16. else Low[u] = min { Low[u], d[v] } // back edge
17. color[u] ← BLACK
18. F[u] ← Time ← Time + 1

03/11/04 Lecture 18 6

BCC Example

7

5

6

81

324

03/11/04 Lecture 18 7

Minimum Spanning Tree

03/11/04 Lecture 18 8

03/11/04 Lecture 18 9

03/11/04 Lecture 18 10

Minimum Spanning Tree

03/11/04 Lecture 18 11

03/11/04 Lecture 18 12

03/11/04 Lecture 18 13

Proof of Correctness: MST Algorithms

03/11/04 Lecture 18 14

03/11/04 Lecture 18 15

Dijkstra’s Single Source Shortest Path Algorithm

03/11/04 Lecture 18 16

03/11/04 Lecture 18 17

All Pairs Shortest Path Algorithm

• Invoke Dijkstra’s SSSP algorithm n times.
• Or use dynamic programming. How?

03/11/04 Lecture 18 18

03/11/04 Lecture 18 19

Figure 14.33
An activity-node graph

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 20

Figure 14.34
An event-node graph

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 21

Figure 14.35
Earliest completion times

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 22

Figure 14.36
Latest completion times

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 23

Figure 14.37
Earliest completion time, latest completion time, and slack (additional edge
item)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 24

Figure 14.38
Worst-case running times of various graph algorithms

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 25

Amortized Analysis

• In amortized analysis, we are looking for the time
complexity of a sequence of n operations, instead of
the cost of a single operation.

• Cost of a sequence of n operations = n S(n), where
S(n) = worst case cost of each of the n operations

• Amortized Cost = T(n)/n, where T(n) = worst case
total cost of the n operations in the sequence.

• Amortized cost can be small even when some
operations in that sequence are expensive. Often,
the worst case may not occur in every operation.
The cost of expensive operations may be ‘paid for’ by
charging to other less expensive operations.

03/11/04 Lecture 18 26

Problem 1: Stack Operations

• Data Structure: Stack
• Operations:

– Push(s,x) : Push object x into stack s.
• Cost: T(push)= O(1).

– Pop(s) : Pop the top object in stack s.
• Cost: T(pop)=O(1).

– MultiPop(s,k) ; Pop the top k objects in stack s.
• Cost: T(mp) = O(size(s)) worst case

• Assumption: Start with an empty stack
• Simple analysis: For N operations, the maximum size of stack is

N. Since the cost of MultiPop under the worst case is O(N),
which is the largest in all three operations, the total cost of N
operations must be less than N x T(mp) = O(N2).

03/11/04 Lecture 18 27

Amortized analysis: Stack Operations

• Intuition: Worst case cannot happen all the time!
• Idea: pay a dollar for every operation, and then count carefully.
• Suppose we pay 2 dollars for each Push operation, one to pay

for the operation itself, and another for “future use” (we pin it to
the object on the stack).

• When we do Pop or MultiPop operations to pop objects, instead
of paying from our pocket, we pay the operations with the extra
dollar pinned to the objects that are being popped.

• So the total cost of N operations must be less than 2 x N
• Amortized cost = T(N)/N = 2.

03/11/04 Lecture 18 28

Problem 2: Binary Counter

• Data Structure: binary counter b.
• Operations: Inc(b).

– Cost of Inc(b) = number of bits flipped in the operation.
• What’s the total cost of N operations when this counter

counts up to integer N?
• Approach 1: simple analysis

– The size of the counter is log(N). The worst case will be that
every bit is flipped in an operation, so for N operations, the
total cost under the worst case is O(Nlog(N))

03/11/04 Lecture 18 29

Approach 2: Binary Counter

• Intuition: Worst case cannot happen all the time!
000000
000001
000010
000011
000100
000101
000110
000111

Bit 0 flips every time, bit 1 flips every other
time, bit 2 flips every fourth time, etc. We
can conclude that for bit k, it flips every 2k

time.
So the total bits flipped in N operations, when
the counter counts from 1 to N, will be = ?

NNNNT
k

k

N

k
k 2

2
1

2
)(

0

log

0
=<= ∑∑

∞

==

So the amortized cost will be T(N)/N = 2.

03/11/04 Lecture 18 30

Approach 3: Binary Counter

• For k bit counters, the total cost is
t(k) = 2 x t(k-1) + 1

• So for N operations, T(N) = t(log(N)).
• t(k) = ?
• T(N) can be proved to be bounded by 2N.

03/11/04 Lecture 18 31

Amortized Analysis: Potential Method
• For the n operations, the data structure goes through states: D0,

D1, D2, …, Dn with costs c1, c2, …, cn

• Define potential function Φ(Di): represents the potential energy
of data structure after ith operation.

• The amortized cost of the ith operation is defined by:

• The total amortized cost is

() ()1ˆ −Φ−Φ+= iiii DDcc

() ()() () ()

() ()() ∑∑

∑∑∑

==

==
−

=

+Φ−Φ−=

+Φ−Φ=Φ−Φ+=

n

i
in

n

i
i

n

i
in

N

i
iii

n

i
i

cDDc

cDDDDcc

1
0

1

1
0

1
1

1

ˆ

ˆ

03/11/04 Lecture 18 32

Potential Method - Cont’d

• If
then

which then acts as an upper bound for the total cost.
So we need to define a suitable potential function
such that this function is always non-negative.

() ()0DDn Φ≥Φ

∑∑
==

≤
n

i
i

n

i
i cc

11

ˆ

03/11/04 Lecture 18 33

Potential Method: Stack

• Define F(D) = # of items on stack
• F(D0) = 0
• F(Dn) ¥ 0

Ncccccc

kkkcc

cc

cc

pushpopmultipoppush

NN

kmultipopkmultipop

poppop

pushpush

2ˆˆˆˆˆ

0ˆ
01ˆ
21ˆ

)()(

<=++=<

=−=−=

=−=

=+=

∑∑∑∑∑∑

03/11/04 Lecture 18 34

Potential Method: Binary Counter

• Define F(D) = # of 1’s in counter
• F(D0) = 0
• F(Dn) ¥ 0

() ()

Ncc

kkcc
NN

2ˆ

211ˆ

=<

=−++=∆Φ+=

∑∑

	Connectivity
	Biconnectivity: Generalizing Connectivity
	Biconnected Components
	Biconnected Components
	BCC Example
	Minimum Spanning Tree
	Minimum Spanning Tree
	Proof of Correctness: MST Algorithms
	Dijkstra’s Single Source Shortest Path Algorithm
	All Pairs Shortest Path Algorithm
	Amortized Analysis
	Problem 1: Stack Operations
	Amortized analysis: Stack Operations
	Problem 2: Binary Counter
	Approach 2: Binary Counter
	Approach 3: Binary Counter
	Amortized Analysis: Potential Method
	Potential Method - Cont’d
	Potential Method: Stack
	Potential Method: Binary Counter

