
Data Structures for Mobile Data 

Julien Basch Leonidas J. Guibas John Hershberger 
Computer Science Department Mentor Graphics Corp. 

Stanford University 1001 Ridder Park Drive 
Stanford, CA 94305, USA San Jose, CA 95131, USA 

{jbasch,guibas}@cs.stanford.edu john-hershberger@mentorg.com 

1 Introduction 

We present a set of novel data structures for the efficient 
maintenance of various attributes of mobile data. For ex- 
ample, given n points continuously moving in the plane, 
we give methods for maintaining their convex hull or 
their closest pair. We cal these attributes configuration 
functions of the mobile data. Since motion is common 
with objects in the physical world, the examples we dis- 
cuss in this paper come primarily from computational 
geometry and are motivated by problems like collision 
detection in robotics or animation, visibility determina- 
tion in computer graphics, etc. Our techniques, how- 
ever, are more generally applicable to the processing of 
discrete events associated with any kind of continuously 
changing data. We call our data structures kinetic, to 
distinguish them from their more classical static or dy- 
namic (in the other sense, as we explain below) counter- 
parts, and we abbreviate the term “kinetic data struc- 
ture” to KDS for short. We will call kinetization the 
process of transforming an algorithm on static data into 
a data structure that is valid for continuously changing 
data. 

The problems of convex hull and closest pair mainte- 
nance have been exhaustively studied in computational 
geometry [5, 6, 10, 13, 14, 17, 191, but almost exclusively 
in the context of static objects with operations like inser- 
tion and deletion. Our emphasis instead is on the main- 
tenance of such configuration functions under continu- 
ous motions of the given objects. Though in principle 
the continuous motion of a single object can be approx- 
imated, after a discrete sampling of time, by deleting it 
and reinserting it at a new position at each time step, 
this method is clearly ill-adapted to our purposes and 
wasteful of computation. The aim of our technique is 
to take full advantage of the coherence present in con- 
tinuous motions so as to process a minimal number of 

combinatorial events. In this respect, the way of analyz- 
ing our data structures is akin to the dynamic compu- 
tational geomety framework introduced by Atallah [4] 
in order to study the number of combinatorially distinct 
configurations of a given kind (e.g., convex hull or closest 
pair) that arise during the continuous motion of geomet- 
ric objects. Unlike Atallah’s scheme, however, our data 
structures do not require us to know the full motion of 
the objects in advance. Thus they are better suited to 
real-world situations in which objects can change their 
motion on-line because of interactions with each other, 
external impulses, etc. 

We assume that each moving object has a posted 
flight plan that gives full or partial information about its 
current motion. As mentioned above, flight plans can 
change. A flight plan update can occur because of in- 
teractions between our object and other moving objects, 
the environment, etc. For example, a collision between 
two moving objects will in general result in updates to 
the flight plans of both objects. The interface between 
our kinetic data structures and the object motions is 
through a global event queue. Thus our techniques most 
closely resemble sweep-line and -plane methods in com- 
putational geometry, except that in our case the dimen- 
sion being swept over is time. A key aspect of our data 
structures is that we have a “narrow interface” to the 
motion. What we mean by this is that the kinds of events 
we have in our event queue correspond to possible com- 
binatorial changes involving a constant (and typically 
small) number of objects each. For example, in the case 
of 2-D convex hull maintenance, one type of event we will 
use is “the points A, B, C become collinear” or, equiv- 
alently, “the triangle ABC reverses sign (orientation)“. 
Indeed, it will turn out that the correctness of whatever 
configuration function we maintain can be guaranteed 
with a conjunction of such low-degree algebraic sign con- 
ditions involving a bounded number of objects each-we 

747 



748 

will call these conditions the certificates of the KDS. 

At any one time, our event queue will contain sev- 
eral KDS events corresponding to times when certificates 
might change sign. The times for these events are calcu- 
lated using the posted flight plans of the objects involved. 
If, because of other events, the flight plan of an object is 
updated, then all certificates involving that object must 
be located and have their ‘sign change’ time recalculated 
according to the new plan. In this way the event queue 
adapts to the evolving motions of the objects. We can 
deal in the same way with objects whose flight plan is 
only partially known. In our “sign of the triangle ABC” 
example above, given some partial bounds on the posi- 
tions and velocities of the points A, B, C, we can easily 
calculate a time interval & during which we can be sure 
that the sign of ABC does not change. Thus we can 
schedule an event to occur after at time units, and at 
that point we can recheck the sign of ABC and proceed 
similarly (after updating our knowledge of the motions of 
the participating points). In general our philosophy will 
be that each moving object needs to be aware of all the 
events in the event queue that involve it and the validity 
assumptions about its motion on which these events are 
based. If the motion of the object changes so that any 
of these assumptions is no longer valid, then it is the re- 
sponsibility of the object to take the steps necessary to 
have these events rescheduled at the times appropriate 
for its new motion. 

We will analyze and evaluate a kinetic data struc- 
ture by counting the worst-case number of combinatorial 
events that need to be processed when the object mo- 
tions are fully known and parameterizable by what we 
call pseudo-algebraic functions of time. These are func- 
tions with the property that each of the elementary pred- 
icates involved in the kinetization changes sign at most 
a bounded number of times-very much in the spirit of 
situations in which Davenport-Schinzel sequences have 
been used [22]. We will call this number the cost of the 
KDS. We make a distinction between external events, 
i.e., those affecting the configuration function we are 
maintaining (e.g., convex hull or closest pair), and inter- 
nal events, i.e., those processed by our structure because 
of its internal needs, but not affecting the desired config- 
uration function. Our aim will be to develop kinetic data 
structures for which the total number of events processed 
by the structure in the worst case is asymptotically of the 
same order as, or only slightly larger than, the number 
of external events in the worst case. This is reasonable, 
as the number of external events is a lower bound on the 
cost, of any algorithm for maintaining the desired con- 
figuration. A KDS meeting this condition will be called 
eficient. We define the size of a KDS to be the maxi- 
mum number of events it needs to schedule in the event 
queue at any one time. We call a structure compact, if its 
size is roughly linear in the number of moving objects. 

Finally, we define the degree of a KDS as the maximum 
number of events in the event queue that depend a single 
object, and call a KDS local when that number is poly- 
logarithmic in the number of moving objects involved. 
This property is crucial for fast handling of flight plan 
updates. 

To summarize, our kinetic data structures are differ- 
ent from classical dynamic data structures: though we 
can (and often want to) accommodate insertions and 
deletions, our focus is on continuous motions and not 
modifications. We can use Atallah’s framework of dy- 
namic computational geometry to get lower bounds on 
the amount of work we have to do. But our structures are 
on-line and can be used to implement correct simulations 
even when the object flight plans change because of in- 
teractions between the objects themselves or the objects 
and the environment, or even when only partial infor- 
mation about the motions is available. Furthermore, we 
provide some general tools for the kinetization of static 
algorithms that lead to KDSs that are easy to analyze 
and perform well. 

1.1 An illustrative example 

To make the issues above more concrete, let us consider 
the following simple 1-D situation. Given a set of points 
moving continuously along the y-axis, we are interested 
in knowing at all times which is the topmost point (the 
largest, if we think of the points as numbers). If two 
points collide, we allow them to pass each other with- 
out interaction. Suppose further that we know that the 
points are moving with constant velocities (but possibly 
a different one each), starting from an arbitrary initial 
configuration. 

If we draw the trajectories of the points in the ty- 
plane (where the t axis is horizontal and denotes time), 
then our problem is nothing but computing the upper 
envelope of a bunch of straight lines in the plane (or 
at least the part of it that is after the initial time to). 
This upper envelope computation can be trivially done 
in O(n log n) time with a divide and conquer algorithm 
(this bound holds even if points can appear and disap- 
pear at arbitrary times, but then it is not trivial [12)). In 
the worst case, the number of times during the motion 
that the topmost point changes is O(n). Thus we have a 
method for computing the configuration function of in- 
terest in time that is is only a logarithmic factor higher 
than the maximum number of changes in the configura- 
tion function itself. 

For our purposes, however, this solution is unsatisfac- 
tory, because it is really based on knowing in advance 
the full motions of the points. What we seek is a strat- 
egy that works on-line and can accommodate flight plan 
updates. So suppose instead that we try to maintain the 



749 

sorted order of our points along the y-axis, on-line. For 
every pair of points that are currently consecutive along 
the y-axis we schedule an event that is the first time 
when these points cross (or if, as above, our knowledge 
of the motions is incomplete, we schedule an event based 
on our estimate of how long we can be sure that the rel- 
ative order of the points does not change). In a manner 
entirely reminiscent of sweep-line algorithms, when two 
adjacent points pass through each other, this destroys 
two old adjacencies and creates two new ones along the 
sorted list. Thus we de-schedule (up to) two events and 
schedule (up to) two new events. In this process we al- 
ways maintain the sorted list of points, and in particular 
we always know the topmost one as well. Unfortunately, 
although the kinetic data structure obtained is local, it 
may have to process @(n”) events even when the points 
have the simple motion described above (imagine that 
half the points are stationary, and the other half pass 
over them). Thus the number of internal events here is 
an order of magnitude greater than those affecting the 
configuration function we are interested in-this solution 
is not efficient. 

A third structure, and one that lets us meet all our 
objectives, is to maintain the moving points in a heap, 
with the root being the topmost (maximal) element. The 
kinetization of the heap is as follows. As the points move, 
each of the links in the heap may generate an event in 
the event queue corresponding to when the two points 
involved change their order. Notice that, if we assume 
that no two pairs of points meet at the same time (non- 
degeneracy), then when a parent and a child point in the 
heap change their order, we can just interchange their 
locations in the heap and still have a valid heap on all 
the data-all the other heap inequalities are still valid, 
and so are the ones involving the crossing points, because 
at the moment they cross their y-coordinates are the 
same (here we are making strong use of the continuity of 
the motions). As in the sweep-line-like argument above, 
when a swap of two elements happens in the heap, up to 
four adjacency (parent/child) relationships can change in 
the heap, so we may have to de-schedule four events and 
reschedule four more. This describes our kinetic heap, 
which maintains the topmost element at all times. 

But how many events does the kinetic heap have to 
process in the worst case, when the points move with 
constant velocities? This question turns out to be sur- 
prisingly non-trivial; we can show by a potential argu- 
ment that the kinetic heap under linear point motions 
processes O(n log2 n) events, and thus is a data structure 
meeting our requirements (the proof is omitted from this 
version of the paper). 

To prepare ourselves for the solutions to the other 
problems we will present below, let us also consider 
the following fourth solution to the kinetic maximum 

maintenance problem. Consider first an algorithm that 
computes the maximum of n (static) numbers. The al- 
gorithm computes the maximum recursively, by parti- 
tioning the numbers into two approximately equal-sized 
groups (arbitrarily), computing the maximum of each 
subgroup, and then comparing the two winners to select 
the final true maximum. If viewed from the bottom up, 
this is exactly a tournament for computing the global 
leader. In the end this algorithm has performed O(n) 
comparisons that prove that the maximum it computed 
is indeed the true maximum. Now imagine that our num- 
bers start varying-our points can move. As long as each 
of the comparisons the algorithm made stays valid, the 
identity of the maximum element cannot change. 

A general kinetization strategy we will use consists of 
taking the certificates of correctness in the computation 
performed by our static algorithm-the comparisons in 
this case-and associating with each of them an event in 
the global queue that describes when that certificate will 
(may) be violated in the future. When a violation hap- 
pens, we hope that there will be a simple and efficient 
way to update the output of the algorithm and the set of 
certificates to be maintained. In our example, suppose 
that a particular comparison involved in the maximum 
computation flips. This comparison is between the lead- 
ers of two subgroups at a certain level of the tournament 
tree. If the winner changes, then this winner has to be 
percolated up the tournament tree, till it is either de- 
feated or declared the overall maximum. But because a 
tournament tree is balanced, this computation takes only 
O(logn) time and can affect also at most O(logn) exist- 
ing certificates (a constant number of de-schedulings and 
new schedulings per level). We call this fourth structure 
a kinetic tournament. 

If our points move with constant velocities, how many 
events will our kinetic tournament have to process? 
The key insight to answering this question is to realize 
that the kinetic tournament is implementing a divide- 
and-conquer algorithm for the computation of the up- 
per envelope of n straight ‘lines in the ty-plane (the 
point trajectories). For example, the comparisons per- 
formed over time at the top level for declaring the fi- 
nal leader are exactly those needed to merge the upper 
envelopes of the two subgroups of the lines. The over- 
all cost of the merge is easily seen to be O(n). Thus 
this divide-and-conquer way of implementing the upper 
envelope computation has a worst case cost satisfying 
the recurrence C(n) = 2C(n/2) + O(n), which solves to 
C(n) = O(nlogn). The number of kinetic tournament 
events (reschedulings, etc.) is proportional to the num- 
ber of times the identity of one of the contestants at a 
node of the tournament tree changes. Each such iden- 
tity change corresponds to an intersection in one of the 
sub-envelopes computed by the divide-and-conquer al- 
gorithm, and hence is counted by the O(n log n) bound 



750 

on C(n). Therefore the kinetic tournament accomplishes 
our goal of maintaining on-line the maximum of a set of 
moving points, and it is an efficient, compact, and local 
KDS. If we use a priority queue to store the relevant 
events and perform a discrete-time simulation, then the 
event counts for all the structures described here can be 
made into run-times with an extra O(logn) factor (the 
priority queue cost). 

1.2 Previous results and summary of the 
work 

A number of works in the early eighties [4, 8, 161 consid- 
ered the problem of computing a configuration function 
of moving points. In all cases, the motion was consid- 
ered fully known, and the problem was typically cast 
and solved in one dimension higher. The method of 
Edelsbrunner and Welzl [8] for computing the k-th order 
statistic of a set of points moving at constant, speed along 
the z-axis (introduced as a motivation for computing the 
k-level of an arrangement of lines) is most similar to a 
KDS. 

More recently, questions concerning the maintenance 
of the Voronoi diagram of moving points (or its dual, 
the Delaunay triangulation) have received extensive at- 
tention [7, 9, 11, 201. The significance of our work is 
best understood in comparison. The Delaunay triangu- 
lation contains a proof of its correctness involving only 
four-point certificates for each of the edges of the tri- 
angulation. In that sense, it is what we might call a 
self-certifying structure. As such, its kinetization is im- 
mediate: we need only maintain a certificate for each 
of the edges. Whenever any certificate changes sign, we 
know that we can update the triangulation (and the cor- 
responding certificate structure) by an edge-flip on the 
failing edge. The structure has no internal events, hence 
the issue of efficiency does not arise. It is also well known 
that the Delaunay triangulation can be used to compute 
both the convex hull and the closest pair, so that we 
readily have a common kinetic data structure to main- 
tain these configuration functions (closest pair mainte- 
nance requires in addition a kinetic tournament on the 
edge lengths), but this solution has two drawbacks: it is 
not local (a point can be a vertex of linearly many trian- 
gles), nor known to be efficient (the tightest upper bound 
known on the number of changes to the Delaunay trian- 
gulation of points in algebraic motion is roughly cubic in 
the number of points [ll], whereas the convex hull and 
the closest pair can change roughly a quadratic num- 
ber of times). In general, one can view the process of 
kinetization as ‘sufficiently augmenting a configuration 
function to make it self-certifying.’ 

Algorithms for collision detection in robotics by Lin 
and Canny [E] and Ponamgi et al. [18] exploit temporal 

coherence to maintain the minimum distance between all 
pairs of moving objects, but their approach retests the 
validity of separating planes at every step, and recalcu- 
lates these separators from scratch when the old ones 
fail. 

We have applied the methodology described above to 
a number of problems in 2-D computational geometry. 
In this paper, we present in some detail efficient, com- 
pact, and local kinetic data structures for two important 
and common configuration functions, giving representa- 
tive examples of the kinetization process. Convex hull 
maintenance (Section 2) calls upon some deep theorems 
of combinatorial geometry to prove the efficiency of the 
structures we develop. Closest pair maintenance (Sec- 
tion 3) requires the development of a novel static algo- 
rithm, and specialized data structures to handle events 
efficiently. In Section 4, we take up some further issues 
generated by this framework for mobile data and present 
plans for further work. 

Due to lack of space, we omit some proofs and al- 
gorithmic details, which will appear in the full paper. 
Other kinetizations will also be presented in the full 
paper, including vertical cell decomposition of moving 
shapes, smallest vertical distance between axis-aligned 
moving rectangles, and other configuration functions for 
moving points. 

2 2-D convex hull 

In this section, we present an efficient kinetic data struc- 
ture to maintain the convex hull of a set of moving points 
in the plane. Following our general strategy for kinetiza- 
tion, we first describe a static algorithm and its certifi- 
cate structure, simplify these certificates to attain cer- 
tain desirable properties, and then show how to maintain 
the certificate structure once the points start moving. 

Before we proceed, we dualize the problem, as the al- 
gorithm is a bit more natural to describe in the dual 
setting. We focus here on computing the upper convex 
hull, and dualize each point @, q) to the line y = pa + q. 
In the dual, the goal is to maintain the upper envelope 
of a family of lines whose parameters change in a con- 
tinuous, predictable fashion. We will perform the kine- 
tization of the O(n log n) divide and conquer algorithm 
mentioned in Section 1.1 for the analysis of the kinetic 
tournament: we divide the set of n lines into two subsets 
of roughly equal size, compute their upper envelopes re- 
cursively, and then merge the two envelopes. To focus 
on the merge step, we first study how to maintain the 
upper envelope of two convex piecewise linear univariate 
functions. 



751 

2.1 Upper envelope of convex functions 

Consider two convex piecewise linear univariate func- 
tions, one red and one blue, each given by a linked list of 
vertices and edges ordered from left to right. As the sup- 
porting lines are the primary elements in our problem, 
we denote by ab the vertex at the intersection of lines 
a and b along one of the functions. For such a vertex, 
there is an edge in the other envelope that is either below 
or above it, which we call its contender edge and denote 
ce(ab). The computation of the joint upper envelope 
consists of sweeping the two functions from left to right, 
and outputting in sequence each vertex that is above 
its contender edge, and each red-blue intersection (eas- 
ily discovered in the process). We assume the presence 
of sentinel vertical lines at infinity to avoid special cases 
for the extremes. We denote by x(. . .) the color (red or 
blue) of a vertex or edge, and assume that the merged list 
of red and blue vertices is maintained as a doubly linked 
list ordered by x-coordinates, with the fields ab.next and 
ab.prev to navigate this list. 

Hence, the comparisons done by the sweep are of two 
types: x-certificates proving the horizontal ordering of 
vertices, denoted by c2, and y-certificates proving the 
vertical position of a vertex with respect to an edge, de- 
noted by <Y. Unfortunately, if we were to keep all these 
comparisons as certificates, the kinetic data structure 
thus obtained would not be local, as a given edge could 
be the contender of linearly many vertices from the other 
envelope. We thus build an alternative list of certificates 
that also involves comparisons between line slopes, de- 
noted by <s. The following table gives this modified list 
of certificates for a given configuration. The first column 
contains the name of a certificate, the second column 
contains the comparison that this certificate guarantees, 
and the third column contains additional conditions for 
this certificate to be present in the KDS. 

I Cert. Comvarison Condition(sl 

slt[ab] a <s ce(&) 
srt[ab] ce(ab) <s b 
sl[ab] b cS ce(ab) 

sr [ab] ce(ab) <S a 

ce(ab) -iy ab 

b G ce(ab) 
ab cy ce(ab) 
ce(ab) <S a 
ab <y ce(ab) 

The certificates have the following meaning: (1) 
The exact x-ordering of vertices is recorded with x[e..] 
certificates. (2) Each intersection is surrounded by 
yli[v . m] and yri[* . a] certificates (“y left/right intersec- 
tion”). (3) If an edge is not part of the upper enve- 

lope, some certificates remember its slope relative to 
the edges that cover it, with three “tangent” certificates 
(yt[. . *I, slt[. * *I, srt[* . *I) or one proving there is no tan- 
gent (sl[. . -1 or its symmetric sr[. . +I). Illustrations of 
the certificates appear in Figure 1. 

Liz&/?&y .,\db 

I 

*____----e 

x14 

, \w, 
Figure 1: Illustration of the certificate definitions. 

Lemma 2.1 Consider a configuration of two convex 
piecewise linear functions and the certificate list for their 
upper envelope as defined above. This upper envelope has 
the same combinatorial description in any other configu- 
ration in which all these certificates have the same signs. 

Proof: Omitted from this version of the paper. 0 

Hence, the certificate list described above is sufficient 
to maintain the upper envelope. As in the case of any 
kinetic data structure, all these certificates are placed in 
a global event queue, where each certificate is stamped 
with the time at which it is scheduled to change outcome. 
When the first event of the queue changes outcome, this 
requires the modification of some certificates; it can be 
checked that any such event requires only the modifica- 
tion of O(1) certificates (see Figure 2 for a partial list of 
cases). 

When a y-certificate changes outcome, this modifies 
the output: either two neighbor vertices merge into one, 
or the reverse. Hence, for the purpose of the recursive 
construction, it is necessary to be able to handle such lo- 
cal structural changes in the input, and it can be checked 
that this also changes O(1) certificates. 

2.2 Divide and conquer upper envelope 

To kinetize the divide and conquer algorithm, we keep 
a record of the entire computation in a balanced binary 
tree. A node in this tree is in charge of maintaining the 
upper envelope of the two upper envelopes computed by 
its two children. If an event triggers a change in the 
output of a node, this node passes on the event to its 
parent, as a local structural change in the input, and 



752 

a 

fv) 

1 

Figure 2: A partial list of events. The certificate that be- 
comes invalid is indicated for each transition. There are 
three additional cases not shown: (i) and (iii) in mirror 
image, and the event corresponding to the invalidation 
of an x-certificate. 

so on to upper levels of the computation tree while this 
change remains visible. 

As in the case of the one-dimensional kinetic tour- 
nament data structure for known motion, we analyze 
efficiency by considering time as an additional static di- 
mension and charging each event to a feature of a three- 
dimensional structure with known worst case complex- 
ity. The primal version of the problem is ill-suited for 
such an analysis, as the static structure described by the 
convex hull over time is not the convex hull of the tra- 
jectories of the underlying points. On the other hand, 
in the dual, the structure described by the upper enve- 
lope over time is exactly the upper envelope of the set 
of pseudo-algebraic surfaces described by the underlying 
lines. We can thus use results proving near-quadratic 
complexity for the upper envelope of pseudo-algebraic 
surfaces [21]. We also make use of the recent result of 
Agarwal, Schwarzkopf, and Sharir [l] about the near- 
quadratic complexity of the overlay of the projections 
of two upper-envelopes, to obtain sharp bounds on the 
number of events due to s-certificates. 

Theorem 2.2 The KDS for maintaining the convex 
hull is efficient, compact, and local. 

Proof: We first focus on the events attached to a spe- 

tal of n red and blue lines. Consider time as a static 
third dimension: a line describes a pseudo-algebraic sur- 
face. The blue (red) family of lines is now a family of 
bivariate pseudo-algebraic functions. Looking at the up- 
per envelopes of the blue and red families, and at their 
joint upper envelope in turn, we observe that a red-blue 
vertex on this surface corresponds to a change of sign 
of a y-certificate (a “y-event”) in the kinetic interpre- 
tation. A monochromatic vertex corresponds to the ap- 
pearance/disappearance of an edge triggered by some de- 
scendant in the computation tree. As our functions are 
pseudo-algebraic and satisfy Davenport-Schinzel type 
conditions, their upper envelope has complexity O(n2+‘) 
for any E > 0 [21], and therefore the number of events due 
to y-certificate sign changes is bounded by this quantity. 

Consider now the events corresponding to the x re- 
ordering of two vertices of different colors (called “z- 
events”). In the S-dimensional setting, a blue envelope 
vertex becomes an edge of the blue surface upper en- 
velope. Hence, an z-event corresponds to a point (z, t) 
above which there is an edge in both the blue and the 
red upper envelopes. In other words, each x-event is as- 
sociated with a bichromatic vertex in the overlay of the 
projections of the red and blue upper envelopes on the 
&-plane (y = 0). If there are n bivariate surfaces in to- 
tal, the complexity of this overlay is also O(n2+‘) for any 
e > 0 [l]. Hence, there are at most that many z-events. 

Finally, each pair of lines becomes parallel a constant 
number of times, so there are O(n2) slope events at- 
tached to the node we have been focusing on up to now. 

Getting back to the full computation tree, we con- 
clude that the total number of events C(n) satisfies the 
recurrence C(n) = 2C(n/2) + O(D~+~), and therefore 
C(n) = O(n2+‘). In th e worst case, the convex hull of n 
points in algebraic motion changes a(n2) times. Hence 
our KDS is efficient. A straightforward counting argu- 
ment proves compactness and locality. cl 

3 Closest pair in 2-D 

In this section we describe a kinetic data structure for 
maintaining the closest pair in a set S of moving points 
in the plane. The static algorithm on which the kinetic 
data structure is based is a sweep-line algorithm, aug- 
mented to record its history in a combinatorial structure. 
As the points move, the kinetic algorithm updates this 
combinatorial structure so that it always reflects what 
the sweep-line algorithm would do if applied to the cur- 

cific node of the computation tree that involves a to- rent configuration of points. 



3.1 The sweep-line algorithm 

The static closest-pair algorithm is based on the idea of 
dividing the space around each point into six 60” wedges. 
It is a trivial observation that the nearest neighbor of 
each point is the closest of the nearest neighbors in the 
six wedges. We show that a relaxed definition of nearest 
neighbor in each wedge (using one dimension of separa- 
tion instead of two) is still sufficient to find the closest 
pair. The relaxed definition lets us compute neighbors 
efficiently, and aids in the kinetization of the algorithm. 

We define the dominance wedge of a point p, call it 
Dam(p), to be the right-extending wedge bounded by 
the lines through p that make f30’ angles with the X- 
axis. The dominance wedge is defined to be open on the 
bottom and closed on top (it includes its upper bound- 
ary, but not its lower boundary). We define Circ(p,r) 
to be the circle with radius r centered on point p. The 
distance between two points p and q is simply denoted 

P9. 

Our algorithm uses all three right-extending wedges 
bounded by the vertical line through p and by the 9~30’ 
lines, but we frame our arguments in terms of the single 
dominance wedge that contains the point (oo,O). The 
same arguments apply to the other wedges by rotation. 

Let the closest pair of points in S be (a, b), with a 
to the left of b (or below b, if their z-coordinates are 
equal). For notational convenience, we write this as a 4 
b. Without loss of generality, assume that b E Do&a); 
if this is not the case, then consider the f60’ rotated 
plane that puts b in Dam(a). Figure 3 illustrates the 
proof ideas behind the following lemmas. 

a 

(6) 

Figure 3: If (a, b) is the closest pair and b E Dam(a), 
then: (a) there is no point p to the right of a that dom- 
inates b, as such p would lie in the shaded region and 
be closer to a than b is; (b) point b is also the leftmost 
point in Dam(a)-any point b’ left of b would be closer 
to b than a is. 

Lemma 3.1 Point b is not contained in Dam(p) for any 
third point p with a + p. 

Lemma 3.2 The leftmost point of S in Dam(a) is b. 

753 

For any point p, let Maxima(p) consist of the points 
of S on the boundary of 

U Dom(d. 

We define the set of candidates associated with p, 
Cands(p), to be the set Matima(p) II Dam(p). We de- 
note the leftmost of these by lcand(p). See Figure 4. By 
Lemmas 3.1 and 3.2, we have b = Zcand(a) for the closest 
pair (a, b). 

Cands(p) 
Maxima(p) 

Figure 4: The sets of points Ma&ma(p) and Cands(p), 
and the leftmost candidate lcand (p). 

The sweep-line algorithm performs the following steps 
three times, once on the untransformed points of S, once 
on S rotated around the origin by +60”, and once on S 
rotated by -60”. Each of these rotations brings one 
of the three families of right-extending wedges into the 
central position, bounded by f30” lines. 

1. Initialize a y-ordered list of points Maxima to 0. 
2. For each point p E S from right to left, 

(a) Set Cands(p) = Maxima rl Dam(p). 
(b) Set Icand(p) to be the leftmost element of 

Cands@). 

(c) Delete the points of Cands(p) from Maxima. 
(d) Insert p into Ma&ma at its proper place in y- 

order. 

At the end of this procedure, repeated for all three 
directions, one of the three sets of (p, Icand(p)) pairs it 
produces contains the closest pair (a, b). The algorithm 
can be implemented to run in O(n log n) time, as the full 
paper will show. 

3.2 Kinetization 

To make the sweep-line algorithm kinetic, we need to 
transform it into a static data structure that represents 
the action of the sweep-line algorithm. We also need a 
set of certificates to show that the data structure is valid 
for the current set of points. 



754 

We define the maxima diagram to be the union, over 
all points p, of the boundary of the part of &m(p) that 
lies outside ~~~~~~~~~~~~ Dam(q). Each point of S is the 
left endpoint of two segments in the maxima diagram 
that extend from p to the boundaries of Dam(q) and 
Dom(q’), for two points q and q’ in Maxima(p). We say 
that q and q’ are the targets of p in the maxima diagram. 

We use as certificates three sorted orders: the projec- 
tions of the points in S on the z-axis and on the lines 
that make an angle of f60” with the z-axis. Each point 
belongs to up to six certificates, involving its two neigh- 
bors in each of the three sorted orders. We also use 
certificates for a kinetic tournament, described below. 

Lemma 3.3 If two configurations of S have all three 
orders equivalent, then for each p, Maxima(p), Cands(p) 
and lcand(p) are the same in the two configurations. 

Proof: By induction from right to left. Cl 

The maxima diagram can undergo a linear number of 
changes when a pair of points swaps in one of the three 
linear orders. However, the changes to the maxima di- 
agram can be represented in an implicit data structure 
that requires only O(logn) updates per swap. For this 
purpose, we keep two auxiliary data structures, repre- 
senting two separate one-to-many relations. 

For each p E S, we keep Cands(p), the intersection of 
Maxima(p) with Dam(p) , as a sequence of points ordered 
by y coordinate. This sequence is stored in a balanced 
binary tree and supports the usual searching and update 
operations. In addition, each node of the tree has a 
pointer to its parent in the tree, and the root of the tree 
for Cands(p) points to p. Thus each point of q E S can 
find the point p E 5’ whose candidate it is, q E Can&(p), 
in O(logn) time. Each node in a Cands() tree also keeps 
track of the leftmost point in its subtree, and so the 
root of Cands (p) records lcand(p). The parent pointers 
can be maintained as part of the standard tree update 
operations, within the same asymptotic time bound, as 
can the “leftmost” fields. As part of our algorithm, we 
will make sure that the “leftmost” fields are maintained 
correctly whenever the x-order of points changes. 

The second auxiliary data structure, Parents(p), 
records in an ordered sequence all the points for which 
p is a target in the maxima diagram. The sequence can 
be divided into the points above p, denoted Parents,(p), 
and the points below p, denoted Parentsb(p). In each of 
the two subsequences, the points appear in the order in 
which their edges hit Dam(p), which is the same as their 
z-order. The sequence Parents(p) is stored in a balanced 
binary tree with parent pointers, so for each of the two 
edges extending from a point q in the maxima diagram, 
we can find the point p for which q E Parents(p) in loga- 
rithmic time. Parents(p) is required to support the f60” 

exchanges described below, though it is not needed for 
the 2 exchanges. 

The following algorithmic sketch shows how to update 
all the affected Cands(), Pare&(), and lcand () fields 
when two points p and q exchange positions in the x- 
order of S. Without loss of generality, assume that p + q 
(p is left of q) before the exchange. Furthermore, assume 
that p is below q at the instant of exchange (similar 
pseudo-code applies if p is above q). See Figure 5. 

1. If p E Parents(q), specifically in Parentsb(q), then 

(a) Split off the portion of Cands(q) inside Dam(p) 
and join it to the top of Cands (p). 

(b) Let u be the point such that q E Parents,(u). 
Delete q from Parents,(u) and insert it into 
Parents a (p) . 

(c) Let v be the new bottom point of Cands(q), 
if any, or else the point such that q E 
Parentsb(v). Delete p from Parent%(q) and 
insert it into Parentsb(v). 

2. Let p’ and q’ be the points such that p E Cands(p’), 
and q E Cands(q’). If p’ = q’, then update Zcand(p’) 
starting from p and q in the tree for Cands(p’). 

Figure 5: An x event and the change in the Cands sets. 

Lemma 3.4 After the preceding procedure for updat- 
ing the Cands (), Parentso, and lcand () fields when two 
points of S exchange in x-order, the data structure cor- 
rectly represents the maxima diagram for the current 
configuration of S, and the lcand() fields are correct. 

The following pseudo-code tells how to update the af- 
fected fields when two points p and q exchange positions 
in the +60”-order of S (at the instant of exchange, the 
line through p and q makes an angle of -30’ with the 
x-axis). Without loss of generality, assume that p is left 
of q. There are two cases, depending on whether q enters 
or exits from Dam(p). In this abstract we give only the 
pseudo-code for the case in which q enters Dam(p). (See 
Figure 6.) The code for the case in which q exits Dam(p) 
inverts the action performed in the first case. 

1. If p E Parents,(q) then 



(4 

(b) 

Cc) 

Let v be the point such that q E Can&(v). 
Delete 4 from Can&(v) and insert it into 
Cuds(p). 

Let t be the leftmost point in Parentsb(q) that 
is to the right of p, if any, or else the point such 
that q E Parents,(t). (Recall that z-order in 
Parentsb(q) is equivalent to the order in which 
edges hit Dam(q).) Delete p from Parents,(q) 
and insert p into Parents,(t). 

Split off the subsequence of Parentsb(q) whose 
points are to the left of t (and hence left of p) 
and join it onto the bottom of Parentsb(p). 

I (4 (b) 

Figure 6: A 60’ event. (a+b) q enters &m(p); (b+a) 
q exits Dam(p) . 

Lemma 3.5 After the preceding procedure for updat- 
ing the Cunds(), Parentso, and Zcand() fields when two 
points of S exchange in the +60”-order, the data struc- 
ture correctly represents the maxima diagram for the cur- 
rent configuration of S, and the lcand() fields are correct. 

The procedure for exchanging two points in the -60°- 
order is symmetric to the one for +60°-order exchanges. 
There are O(n2) exchanges in each of the three orders. 

Each of the update operations needed to restore 
the auxiliary data structures Cands(), Parentso, and 
lcand() takes O(logn) time: each involves a constant 
number of standard operations on binary trees. 

The final element of our kinetic data structure is a 
kinetic tournament on the 3n distances corresponding to 
(p, Icand(p)) pairs (this adds 3n certificates to our KDS). 
The root of the tournament tree contains the closest pair 
at any time during the running of the algorithm. Note 
that when lcand(p) changes, it triggers a discontinuity 
of the associated distance in the kinetic tournament, but 
bounds like those in Section 1 apply even in this case. 

Theorem 3.6 The kinetic data structure for the closest 
pair problem is efficient, compact, and local. 

4 Conclusion and further issues 

We have presented a new framework for maintaining at- 
tributes (configuration functions) of objects in continu- 

755 

ous motion. This framework introduces an on-line, com- 
binatorial approach to changes in the configuration func- 
tion, avoids a discretization of time, and sets the ground 
for using sophisticated algorithmic techniques to main- 
tain these configurations in what we call kinetic data 
structures. We measure the quality of a KDS by its local- 
ity and efficiency. By working through three examples, 
we have demonstrated the generality of the kinetization 
procedure, which transforms a static algorithm into its 
kinetic counterpart. 

The algorithms described in this paper have recently 
been implemented by Craig Silverstein (convex hull) and 
Li Zhang (closest pair) [23, 241. In both cases, finite pre- 
cision arithmetic generated errors in the exact sequenc- 
ing of events, which were due to two main causes. The 
first was keeping a global clock for event times-as more 
and more bits are required to record the current time, 
precision is lost as the simulation proceeds. A possible fix 
to this problem is to store only time differences between 
events in the priority queue. The second was the oper- 
ation of taking square roots to solve the second degree 
equations that arise in determining event times in the 
convex hull case (and in the closest pair case when balls 
bounce against each other). To address these problems, 
it proved fruitful, in the convex hull case, to resort to 
the approximate model mentioned in the introduction, 
i.e., to schedule an event at a date that is a conserva- 
tive estimate of the actual date at which it will happen, 
and, from that point, reschedule it at a more precise 
date given the updated knowledge of the positions of 
the points (iterative convergence). 

In conclusion, we mention a number of issues that need 
further work: 

Although in the analyses of the two examples dis- 
cussed in this paper (convex hull and closest pair) we 
have assumed that each point follows a fixed pseudo- 
algebraic flight plan, it seems that in general it is impor- 
tant to make the number of flight plan changes (globally, 
or on a per object basis) a parameter of the analysis. 
This will become necessary, even if our actual objects 
never change flight plans, whenever we want to com- 
pose kinetizations. For example, the separation of the 
closest pair among continuously moving points changes 
continuously, even if the actual pairs realizing the dis- 
tance change from time to time. If this distance itself 
is to become an input to another kinetic algorithm, its 
flight plan has to be updated whenever the underlying 
realizing pair changes. An instance of this phenomenon 
is already present inside our kinetization of the closest 
pair algorithm in Section 3. 

Experiments on random inputs showed that our ki- 
netic convex hull algorithm has an overhead of internal 
events that is of the same order as the number of exter- 



756 

nal events [23], whereas our kinetic closest pair algorithm 
always processes O(n2) internal events [24]. Hence, ide- 
ally, the measure of efficiency should not compare the 
worst case number of internal events to the worst case 
number of external events, but the worst case ratio of the 
actual number of internal events to the actual number 
of external events for any flight plan. It appears much 
more difficult to develop good algorithms with respect 
to this measure. Even if an exact analysis is difficult, 
heuristics that prune unneeded internal events are likely 
to prove important in practice. 

We can view our kinetization process as starting from 
a proof of correctness of a static configuration function, 
and then ‘animating this proof through time.’ Not all 
proofs are equally good for this use. Our locality require- 
ment favors proofs that have a small number of predi- 
cates involving each particular datum. Thus it will gen- 
erally be advantageous to start with ‘shallow proofs’- 
proofs of small depth-for the static problem, such as 
one gets, for example, from parallel algorithms for solv- 
ing the static version. Techniques already developed in 
parallel computational geometry [3], or in parametric 
searching [2], may prove to be useful. 

In a real time system, it is possible that there is not 
sufficient time to completely process an event before the 
next event appears. If the kinetic structures are to be 
used in such a context, it is crucial to be able to main- 
tain partially correct structures, with a mechanism for 
processing multiple events efficiently and correctly as a 
batch. 

Acknowledgments. We wish to thank Pankaj 
Agarwal, Rajeev Motwani, G.D. Ramkumar, Craig Sil- 
verstein! and Li Zhang for useful discussions. Leonidas 
Guibas acknowledges support by ARO-MURK grant 5- 
23542, and NSF grants CCR-9215219 and IRI-9306544. 

References 

[l] P. K. Agarwal, 0. Schwarzkopf, and M. Sharir. The 
overlay of lower envelopes and its applications. Discrete 
Comput. Geom., 15:1-13, 1996. 

[2] Pankaj K. Agarwal, M. Sharir, and S. Toledo. Applica- 
tions of parametric searching in geometric optimization. 
J. Algorithms, 17:292-318, 1994. 

[3] S. G. Akl and K. A. Lyons. Parallel Computational Ge- 
ometry. Prentice-Hall, 1993. 

[4] M. J. Atallah. Some dynamic computational geometry 
problems. Comput. Math. Appl., 11:1171-1181, 1985. 

[5] Sergei N. Bespamyatnikh. An optimal algorithm for clos- 
est pair maintenance. In Proc. 11 th Annu. ACM Sympos. 
Compnt. Geom., pages 152-161, 1995. 

[6] Paul B. Callahan and S. Rao Kosaraju. Algorithms 
for dynamic closest-pair and n-body potential fields. 

In Proc. 6th ACM-SIAM Sympos. Discrete Algorithms 
(SODA ‘95) pages 263-272, 1995. 

[7] 0. Devillers, M. Golin, K. Kedem, and S. Schirra. Re- 
venge of the dog: Queries on Voronoi diagrams of mov- 
ing points. In Proc. 6th Canad. Conf. Comput. Geom., 
pages 122-127, 1994. 

[8] H. Edelsbrunner and E. Welzl. Constructing belts in 
two-dimensional arrangements with applications. SIAM 
J. Comput., 15:271-284, 1986. 

[9] J.-J. Fn and R. C. T. Lee. Voronoi diagrams of moving 
points in the plane. Internat. J. Comput. Geom. Appl., 
1(1):23-32, 1991. 

[lo] M. Golin, R. Raman, C. Schwarz, and M. Smid. Ran- 
domized data structures for the dynamic closest-pair 
problem. In Proc. 4th ACM-SIAM Sympos. Discrete Al- 
gorithms, pages 301-310, 1993. 

[ll] L. Guibas, J. S. B. Mitchell, and T. Roos. Voronoi di- 
agrams of moving points in the plane. In Proc. 17th 
Internat. Workshop Graph- Theoret. Concepts Comput. 
Sci., volume.570 of Lecture Notes in Computer Science, 
pages 113-125. Springer-Verlag, 1991. 

[12] J. Hershberger. Finding the upper envelope of n line seg- 
ments in O(nlog n) time. Inform. Process. Lett., 33:169- 
174, 1989. 

[13] J. Hershberger and S. Suri. Applications of a semi- 
dynamic convex hull algorithm. BIT, 32:249-267, 1992. 

[14] S. Kapoor and M. Smid. New techniques for exact and 
approximate dynamic closest-point problems. In Proc. 
10th Annu. ACM Sympos. Comput. Geom., pages 165- 
174, 1994. 

[15] M. C. Lin and J. F. Canny. Efficient algorithms for incre- 
mental distance computation. In Proc. IEEE Internat. 
Conf. Robot. Autom., volume 2, pages 1008-1014, 1991. 

[16] T. Ottmann and D. Wood. Dynamical sets of points. 
Comput. Vision Graph. Image Process., 27:157-166, 
1984. 

[17] M. H. Overmars and J. van Leeuwen. Maintenance 
of configurations in the plane. J. Comput. Syst. Sci., 
23:166-204, 1981. 

(181 Madhav K. Ponamgi? Ming C. Lin, and Dinesh 
Manocha. Incremental collision detection for polygonal 
models. In Proc. 11th Annu. ACM Sympos. Comput. 
Geom., pages V7-V8, 1995. 

1191 F. P. Preparata and M. I. Shamos. Computational Ge- 
ometry: An Introduction. Springer-Verlag, New York, 
NY, 1985. 

[20] T. Roos. Voronoi diagrams over dynamic scenes. Dis- 
crete Appl. Math., 43:243-259, 1993. 

[21] M. Sharir. Almost tight upper bounds for lower en- 
velopes in higher dimensions. Discrete Comput. Geom., 
12:327-345, 1994. 

[22] M. Sharir and P. K. Agarwal. Davenport-Schintel Se- 
quences and Their Geometric Applications. Cambridge 
University Press, New York, 1995. 

/23] C. Silverstein. Personal communication. 1996. 

1241 L. Zhang. Personal communication. 1996. 


