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k-Institut f�ur InformatikStuhlsatzenhausweg 85, 66123 Saarbr�u
ken, Germany[juha,sanders℄�mpi-sb.mpg.de.Abstra
t. A suÆx array represents the suÆxes of a string in sorted order. Being a simplerand more 
ompa
t alternative to suÆx trees, it is an important tool for full text indexing andother string pro
essing tasks. We introdu
e the skew algorithm for suÆx array 
onstru
tionover integer alphabets that 
an be implemented to run in linear time using integer sortingas its only nontrivial subroutine:1. re
ursively sort suÆxes beginning at positions i mod 3 6= 0.2. sort the remaining suÆxes using the information obtained in step one.3. merge the two sorted sequen
es obtained in steps one and two.The algorithm is mu
h simpler than previous linear time algorithms that are all based onthe more 
ompli
ated suÆx tree data stru
ture. Sin
e sorting is a well studied problem, weobtain optimal algorithms for several other models of 
omputation, e.g. external memory withparallel disks, 
a
he oblivious, and parallel. The adaptations for BSP and EREW-PRAMare asymptoti
ally faster than the best previously known algorithms.1 Introdu
tionThe suÆx tree [39℄ of a string is a 
ompa
t trie of all the suÆxes of the string. It is a powerful datastru
ture with numerous appli
ations in 
omputational biology [21℄ and elsewhere [20℄. One of theimportant properties of the suÆx tree is that it 
an be 
onstru
ted in linear time in the lengthof the string. The 
lassi
al linear time algorithms [32, 36, 39℄ require a 
onstant alphabet size, butFara
h's algorithm [11, 14℄ works also for integer alphabets, i.e., when 
hara
ters are polynomiallybounded integers. There are also eÆ
ient 
onstru
tion algorithms for many advan
ed models of
omputation (see Table 1).The suÆx array [18, 31℄ is a lexi
ographi
ally sorted array of the suÆxes of a string. For severalappli
ations, the suÆx array is a simpler and more 
ompa
t alternative to the suÆx tree [2, 6, 18,31℄. The suÆx array 
an be 
onstru
ted in linear time by a lexi
ographi
 traversal of the suÆx tree,but su
h a 
onstru
tion loses some of the advantage that the suÆx array has over the suÆx tree. Thefastest dire
t suÆx array 
onstru
tion algorithms that do not use suÆx trees require O(n logn)time [5, 30, 31℄. Also under other models of 
omputation, dire
t algorithms 
annot mat
h suÆxtree based algorithms [9, 16℄. The existen
e of an I/O-optimal dire
t algorithm is mentioned as animportant open problem in [9℄.We introdu
e the skew algorithm, the �rst linear-time dire
t suÆx array 
onstru
tion algorithmfor integer alphabets. The skew algorithm is simpler than any suÆx tree 
onstru
tion algorithm.(In the appendix, we give a 50 line C++ implementation.) In parti
ular, it is mu
h simpler thanlinear time suÆx tree 
onstru
tion for integer alphabets.Independently of and in parallel with the present work, two other dire
t linear time suÆx array
onstru
tion algorithms have been introdu
ed by Kim et al. [28℄, and Ko and Aluru [29℄. The twoalgorithms are quite di�erent from ours (and ea
h other).? Partially supported by the Future and Emerging Te
hnologies programme of the EU under 
ontra
tnumber IST-1999-14186 (ALCOM-FT).



The skew algorithm. Fara
h's linear-time suÆx tree 
onstru
tion algorithm [11℄ as well as someparallel and external algorithms [12{14℄ are based on the following divide-and-
onquer approa
h:1. Constru
t the suÆx tree of the suÆxes starting at odd positions. This is done by redu
tion tothe suÆx tree 
onstru
tion of a string of half the length, whi
h is solved re
ursively.2. Constru
t the suÆx tree of the remaining suÆxes using the result of the �rst step.3. Merge the two suÆx trees into one.The 
rux of the algorithm is the last step, merging, whi
h is a 
ompli
ated pro
edure and relieson stru
tural properties of suÆx trees that are not available in suÆx arrays. In their re
ent dire
tlinear time suÆx array 
onstru
tion algorithm, Kim et al. [28℄ managed to perform the mergingusing suÆx arrays, but the pro
edure is still very 
ompli
ated.The skew algorithm has a similar stru
ture:1. Constru
t the suÆx array of the suÆxes starting at positions i mod 3 6= 0. This is done byredu
tion to the suÆx array 
onstru
tion of a string of two thirds the length, whi
h is solvedre
ursively.2. Constru
t the suÆx array of the remaining suÆxes using the result of the �rst step.3. Merge the two suÆx arrays into one.Surprisingly, the use of two thirds instead of half of the suÆxes in the �rst step makes the last stepalmost trivial: a simple 
omparison-based merging is suÆ
ient. For example, to 
ompare suÆxesstarting at i and j with i mod 3 = 0 and j mod 3 = 1, we �rst 
ompare the initial 
hara
ters, andif they are the same, we 
ompare the suÆxes starting at i + 1 and j + 1 whose relative order isalready known from the �rst step.Results. The simpli
ity of the skew algorithm makes it easy to adapt to other models of 
om-putation. Table 1 summarizes our results together with the best previously known algorithms fora number of important models of 
omputation. The 
olumn \alphabet" in Table 1 identi�es themodel for the alphabet �. In a 
onstant alphabet, we have j�j = O(1), an integer alphabetmeans that 
hara
ters are integers in a range of size nO(1), and general alphabet only assumes that
hara
ters 
an be 
ompared in 
onstant time.The skew algorithm for RAM, external memory and 
a
he oblivious models is the �rst optimaldire
t algorithm. For BSP and EREW-PRAM models, we obtain an improvement over all previousresults, in
luding the �rst linear work BSP algorithm. On all the models, the skew algorithm ismu
h simpler than the best previous algorithm.In many appli
ations, the suÆx array needs to be augmented with additional data, the mostimportant being the longest 
ommon pre�x (l
p) array [1, 2, 26, 27, 31℄. In parti
ular, the suÆx tree
an be 
onstru
ted easily from the suÆx and l
p arrays [11, 13, 14℄. There is a linear time algorithmfor 
omputing the l
p array from the suÆx array [27℄, but it does not appear to be suitable forparallel or external 
omputation. We extend our algorithm to 
ompute also the l
p array whileretaining the 
omplexities of Table 1. Hen
e, we also obtain improved suÆx tree 
onstru
tionalgorithms for the BSP and EREW-PRAM models.The paper is organized as follows. In Se
tion 2, we des
ribe the basi
 skew algorithm, whi
his then adapted to di�erent models of 
omputation in Se
tion 3. The algorithm is extended to
ompute the longest 
ommon pre�xes in Se
tion 4.2 The Skew AlgorithmFor 
ompatibility with C and be
ause we use many modulo operations we start arrays at position0. We use the abbreviations [a; b℄ = fa; : : : ; bg and s[a; b℄ = [s[a℄; : : : ; s[b℄℄ for a string or array s.



Table 1. SuÆx array 
onstru
tion algorithms. The algorithms in [11{14℄ are indire
t, i.e., they a
tually
onstru
t a suÆx tree, whi
h 
an be then be transformed into a suÆx arraymodel of 
omputation 
omplexity alphabet sour
eRAM O(n log n) time general [31, 30, 5℄O(n) time integer [11, 28, 29℄,skewExternal Memory [38℄D disks, blo
k size B,fast memory of size M O� nDB logMB nB log2 n� I/OsO�n logMB nB log2 n� internal work integer [9℄O� nDB logMB nB� I/OsO�n logMB nB� internal work integer [14℄,skewCa
he Oblivious [15℄M=B 
a
he blo
ks of size B O� nB logMB nB log2 n� 
a
he faults general [9℄O� nB logMB nB� 
a
he faults general [14℄,skewBSP [37℄P pro
essorsh-relation in time L+ gh O�n log nP + (L+ gnP ) log3 n logPlog(n=P ) � time general [12℄O�n lognP + L log2 P + gn log nP log(n=P )� time general skewP = O�n1��� pro
essors O�n=P + L log2 P + gn=P � time integer skewEREW-PRAM [25℄ O�log4 n� time, O(n log n) work general [12℄O�log2 n� time, O(n log n) work general skewarbitrary-CRCW-PRAM [25℄ O(log n) time, O(n) work (rand.) 
onstant [13℄priority-CRCW-PRAM [25℄ O�log2 n� time, O(n) work (rand.) 
onstant skewSimilarly, [a; b) = [a; b � 1℄ and s[a; b) = s[a; b � 1℄. The operator Æ is used for the 
on
atenationof strings. Consider a string s = s[0; n) over the alphabet � = [1; n℄. The suÆx array SA 
ontainsthe suÆxes Si = s[i; n) in sorted order, i.e., if SA[i℄ = j then suÆx Sj has rank i + 1 among theset of strings fS0; : : : ; Sn�1g. To avoid tedious spe
ial 
ase treatments, we des
ribe the algorithmfor the 
ase that n is a multiple of 3 and adopt the 
onvention that all strings � 
onsidered have�[j�j℄ = �[j�j+1℄ = 0. The implementation in the Appendix �lls in the remaining details. Figure 1gives an example.The �rst and most time 
onsuming step of the skew algorithm sorts the suÆxes Si with i mod3 6= 0 among themselves. To this end, it �rst �nds lexi
ographi
 names s0i 2 [1; 2n=3℄ for thetriples s[i; i + 2℄ with i mod 3 6= 0, i.e., numbers with the property that s0i � s0j if and only ifs[i; i + 2℄ � s[j; j + 2℄. This 
an be done in linear time by radix sort and s
anning the sortedsequen
e of triples | if triple s[i; i+2℄ is the k-th di�erent triple appearing in the sorted sequen
e,we set s0i = k.If all triples get di�erent lexi
ographi
 names, we are done with step one. Otherwise, the suÆxarray SA12 of the string s12 = [s0i : i mod 3 = 1℄ Æ [s0i : i mod 3 = 2℄is 
omputed re
ursively. Note that there 
an be no more lexi
ographi
 names than 
hara
ters ins12 so that the alphabet size in a re
ursive 
all never ex
eeds the size of the string. The re
ursively
omputed suÆx array SA12 represents the desired order of the suÆxes Si with i mod 3 6= 0. To seethis, note that s12[ i�13 ; n3 ) for i mod 3 = 1 represents the suÆx Si = s[i; n) Æ [0℄ via lexi
ographi
naming. The 0 
hara
ters at the end of s make sure that s12[n=3�1℄ is unique in s12 so that it does
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Fig. 1. The skew algorithm applied to s = mississippi.not matter that s12 has additional 
hara
ters. Similarly, s12[n+i�23 ; 2n3 ) for i mod 3 = 2 representsthe suÆx Si = s[i; n) Æ [0; 0℄.The se
ond step is easy. The suÆxes Si with i mod 3 = 0 are sorted by sorting the pairs(s[i℄; Si+1). Sin
e the order of the suÆxes Si+1 is already impli
it in SA12, it suÆ
es to stably sortthose entries SA12[j℄ that represent suÆxes Si+1, i mod 3 = 0, with respe
t to s[i℄. This is possiblein linear time by a single pass of radix sort.The skew algorithm is so simple be
ause also the third step is quite easy. We have to merge thetwo suÆx arrays to obtain the 
omplete suÆx array SA. To 
ompare a suÆx Sj with j mod 3 = 0with a suÆx Si with i mod 3 6= 0, we distinguish two 
ases:If i mod 3 = 1, we write Si as (s[i℄; Si+1) and Sj as (s[j℄; Sj+1). Sin
e i + 1 mod 3 = 2 andj + 1 mod 3 = 1, the relative order of Sj+1 and Si+1 
an be determinded from their positionin SA12. This position 
an be determined in 
onstant time by pre
omputing an array SA12 withSA12[i℄ = j + 1 if SA12[j℄ = i. This is nothing but a spe
ial 
ase of lexi
ographi
 naming.1Similarly, if i mod 3 = 2, we 
ompare the triples (s[i℄; s[i + 1℄; Si+2) and (s[j℄; s[j + 1℄; Sj+2)repla
ing Si+2 and Sj+2 by their lexi
ographi
 names in SA12.The running time of the skew algorithm is easy to establish.Theorem 1. The skew algorithm 
an be implemented to run in time O(n).Proof. The exe
ution time obeys the re
urren
e T (n) = O(n)+T (d2n=3e), T (n) = O(1) for n < 3.This re
urren
e has the solution T (n) = O(n). ut1 SA12 � 1 is also known as the inverse suÆx array of SA12.



3 Other Models of ComputationTheorem 2. The skew algorithm 
an be implemented to a
hieve the following performan
e guar-antees on advan
ed models of 
omputation:model of 
omputation 
omplexity alphabetExternal Memory [38℄D disks, blo
k size B,fast memory of size M O� nDB logMB nB� I/OsO�n logMB nB� internal work integerCa
he Oblivious [15℄ O� nB logMB nB� 
a
he faults generalBSP [37℄P pro
essorsh-relation in time L+ gh O�n lognP + L log2 P + gn lognP log(n=P )� time generalP = O�n1��� pro
essors O�n=P + L log2 P + gn=P � time integerEREW-PRAM [25℄ O�log2 n� time and O(n logn) work generalpriority-CRCW-PRAM [25℄ O�log2 n� time and O(n) work (rand.) 
onstantProof. External Memory: Sorting tuples and lexi
ographi
 naming is easily redu
ed to externalmemory integer sorting. I/O optimal deterministi
2 parallel disk sorting algorithms are well known[34, 33℄. We have to make a few remarks regarding internal work however. To a
hieve optimalinternal work for all values of n, M , and B, we 
an use radix sort where the most signi�
antdigit has blogM
 � 1 bits and the remaining digits have blogM=B
 bits. Sorting then starts withO�logM=B n=M� data distribution phases that need linear work ea
h and 
an be implementedusing O(n=DB) I/Os using the same I/O strategy as in [33℄. It remains to stably sort the elementsby their blogM
 � 1 most signi�
ant bits. For this we 
an use the distribution based algorithmfrom [33℄ dire
tly. In the distribution phases, elements 
an be put into a bu
ket using a full lookuptable mapping keys to bu
kets. Sorting bu
kets of size M 
an be done in linear time using a lineartime internal algorithm.Ca
he Oblivious: We use the 
omparison based model here sin
e it is not known how to do
a
he oblivious integer sorting with O( nB logM=B nB ) 
a
he faults and o(n logn) work. The result isan immediate 
orollary of the optimal 
omparison based sorting algorithm [15℄.EREW PRAM: We 
an use Cole's merge sort [8℄ for sorting and merging. Lexi
ographi
 naming
an be implemented using linear work and O(logP ) time using pre�x sums. After �(logP ) levelsof re
ursion, the problem size has redu
ed so far that the remaining subproblem 
an be solved ona single pro
essor. We get an overall exe
ution time of O�n logn=P + log2 P �.BSP: For the 
ase of many pro
essors, we pro
eed as for the EREW-PRAM algorithm using theoptimal 
omparison based sorting algorithm [19℄ that takes time O(n logn=P+(gn=P+L) lognlog(n=P ) ).For the 
ase of few pro
essors, we 
an use a linear work sorting algorithm based on radix sort[7℄ and a linear work merging algorithm [17℄. The integer sorting algorithm remains appli
able atleast during the �rst �(log logn) levels of re
ursion of the skew algorithm. Then we 
an a�ord toswit
h to a 
omparison based algorithm without in
reasing the overall amount of internal work.CRCW PRAM: We employ the stable integer sorting algorithm [35℄ that works in O(logn)time using linear work for keys with O(log logn) bits. This algorithm 
an be used for the �rst2 Simpler randomized algorithms with favorable 
onstant fa
tors are also available [10℄.



�(log log logn) iterations. Then we 
an a�ord to swit
h to the algorithm [22℄ that works for poly-nomial size keys at the pri
e of being ineÆ
ient by a fa
tor O(log logn). Lexi
ographi
 naming 
anbe implemented by 
omputing pre�x sums using linear work and logarithmi
 time. Comparisonbased merging 
an be implemented with linear work and O(logn) time using [23℄. utThe resulting algorithms are simple ex
ept that they may use 
ompli
ated subroutines forsorting to obtain theoreti
ally optimal results. There are usually mu
h simpler implementationsof sorting that work well in pra
ti
e although they may sa
ri�
e determinism or optimality for
ertain 
ombinations of parameters.4 Longest Common Pre�xesLet l
p(i; j) denote the length of the longest 
ommon pre�x (l
p) of the suÆxes Si and Sj . Thelongest 
ommon pre�x array LCP 
ontains the lengths of the longest 
ommon pre�xes of suÆxesthat are adja
ent in the suÆx array, i.e., LCP[i℄ = l
p(SA[i℄; SA[i+1℄). A well-known property ofl
ps is that for any 0 � i < j < n, l
p(i; j) = mini�k<j LCP[k℄ :Thus, if we prepro
ess LCP in linear time to answer range minimum queries in 
onstant time [3,4, 24℄, we 
an �nd the longest 
ommon pre�x of any two suÆxes in 
onstant time.We will show how the LCP array 
an be 
omputed from the LCP12 array 
orresponding toSA12 in linear time. Let j = SA[i℄ and k = SA[i+1℄. We explain two 
ases; the others are similar.First, assume that j mod 3 = 1 and k mod 3 = 2, and let j0 = (j � 1)=3 and k0 = (n+ k� 2)=3be the 
orresponding positions in s12. Sin
e j and k are adja
ent in SA, so are j0 and k0 in SA12,and thus ` = l
p12(j0; k0) = LCP12[SA12[j0℄� 1℄. Then LCP[i℄ = l
p(j; k) = 3`+ l
p(j+3`; k+3`),where the last term is at most 2 and 
an be 
omputed in 
onstant time by 
hara
ter 
omparisons.As the se
ond 
ase, assume j mod 3 = 0 and k mod 3 = 1. If s[j℄ 6= s[k℄, LCP[i℄ = 0 and we aredone. Otherwise, LCP[i℄ = 1 + l
p(j + 1; k + 1), and we 
an 
ompute l
p(j + 1; k + 1) as above as3`+l
p(j+1+3`; k+1+3`), where ` = l
p12(j0; k0) with j0 = ((j+1)�1)=3, k0 = (n+(k+1)�2)=3.An additional 
ompli
ation is that, unlike in the �rst 
ase, j + 1 and k + 1 may not be adja
entin SA, and 
onsequently, j0 and k0 may not be adja
ent in SA12. Thus we have to 
ompute `by performing a range minimum query in LCP12 instead of a dire
t lookup. However, this is still
onstant time.Theorem 3. The extended skew algorithm 
omputing both SA and LCP 
an be implemented torun in linear time.To obtain the same extension for other models of 
omputation, we need to show how to answerO(n) range minimum queries on LCP12. We 
an take advantage of the balan
ed distribution ofthe range minimum queries shown by the following property.Lemma 1. No suÆx is involved in more than two l
p queries at the top level of the extended skewalgorithm.Proof. Let Si and Sj be two suÆxes whose l
p l
p(i; j) is 
omputed to �nd the l
p of the suÆxesSi�1 and Sj�1. (The other 
ase that l
p(i; j) is needed for the l
p of Si�2 and Sj�2 is similar.)Then Si�1 and Sj�1 are lexi
ographi
ally adja
ent suÆxes and s[i � 1℄ = s[j � 1℄. Thus, there
annot be another suÆx Sk, Si < Sk < Sj , with s[k � 1℄ = s[i� 1℄. This shows that a suÆx 
anbe involved in l
p queries only with its two lexi
ographi
ally nearest neighbors that have the samepre
eding 
hara
ter. ut



We des
ribe a simple algorithm for answering the range minimum queries that 
an be easilyadapted to the models of Theorem 2. It is based on the ideas in [3, 4℄ (whi
h are themselves basedon earlier results).The LCP12 array is divided into blo
ks of size logn. For ea
h blo
k [a; b℄, pre
ompute and storethe following data:{ For all i 2 [a; b℄, a logn-bit ve
tor Qi that identi�es all j 2 [a; i℄ su
h that LCP12[j℄ <mink2[j+1;i℄ LCP12[k℄.{ For all i 2 [a; b℄, the minimum values over the ranges [a; i℄ and [i; b℄.{ The minimum for all ranges that end just before or begin just after [a; b℄ and 
ontain exa
tlya power of two full blo
ks.If a range [i; j℄ is 
ompletely inside a blo
k, its minimum 
an be found with the help of Qj in
onstant time (see [3℄ for details). Otherwise, [i; j℄ 
an be 
overed with at most four of the rangeswhose minimum is stored, and its minimum is the smallest of those minima.Theorem 4. The extended skew algorithm 
omputing both SA and LCP 
an be implemented toa
hieve the 
omplexities of Theorem 2.Proof. (Outline) External Memory and Ca
he Oblivious: The range minimum algorithm 
anbe implemented with sorting and s
anning.Parallel models: The blo
ks in the range minima data stru
ture are distributed over the pro
es-sors in the obvious way. Prepro
essing range minima data stru
tures redu
es to lo
al operationsand a straightforward 
omputation pro
eeding from shorter to longer ranges. Lemma 1 ensuresthat queries are evenly balan
ed over the data stru
ture. ut5 Dis
ussionThe skew algorithm is a simple and asymptoti
ally eÆ
ient dire
t algorithm for suÆx array 
on-stru
tion that is easy to adapt to various models of 
omputation. We expe
t that it is a good startingpoint for a
tual implementations, in parti
ular on parallel ma
hines and for external memory.The key to the algorithm is the use of suÆxes Si with i mod 3 2 f1; 2g in the �rst, re
ursivestep, whi
h enables simple merging in the third step. There are other 
hoi
es of suÆxes that wouldwork. An interesting possibility, for example, is to take suÆxes Si with i mod 7 2 f3; 5; 6g. Someadjustments to the algorithm are required (sorting the remaining suÆxes in multiple groups andperforming a multiway merge in the third step) but the main ideas still work. In general, a suitable
hoi
e is a periodi
 set of positions a

ording to a di�eren
e 
over. A di�eren
e 
over D modulov is a set of integers in the range [0; v) su
h that, for all i 2 [0; v), there exist j; k 2 D su
h thati � k � j (mod v). For example f1; 2g is a di�eren
e 
over modulo 3 and f3; 5; 6g is a di�eren
e
over modulo 7, but f1g is not a di�eren
e 
over modulo 2. Any nontrivial di�eren
e 
over moduloa 
onstant 
ould be used to obtain a linear time algorithm. Di�eren
e 
overs and their propertiesplay a more 
entral role in the suÆx array 
onstru
tion algorithm in [5℄, whi
h runs in O(n logn)time using sublinear extra spa
e in addition to the string and the suÆx array.An interesting theoreti
al question is whether there are faster CRCW-PRAM algorithms fordire
t suÆx array 
onstru
tion. For example, there are very fast algorithms for padded sorting, listsorting and approximate pre�x sums [22℄ that 
ould be used for sorting and lexi
ographi
 namingin the re
ursive 
alls. The result would be some kind of suÆx list or padded suÆx array that 
ouldbe 
onverted into a suÆx array in logarithmi
 time.
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A Sour
e CodeThe following C++ �le 
ontains a 
omplete linear time implementation of suÆx array 
onstru
tion.This 
ode strives for 
on
iseness rather than for speed | it has only 50 lines not 
ounting 
omments,empty lines, and lines with a bra
ket only. A driver program 
an be found at http://www.mpi-sb.mpg.de/~sanders/programs/suffix/.inline bool leq(int a1, int a2, int b1, int b2) // lexi
ographi
 order{ return(a1 < b1 || a1 == b1 && a2 <= b2); } // for pairsinline bool leq(int a1, int a2, int a3, int b1, int b2, int b3){ return(a1 < b1 || a1 == b1 && leq(a2,a3, b2,b3)); } // and triples// stably sort a[0..n-1℄ to b[0..n-1℄ with keys in 0..K from rstati
 void radixPass(int* a, int* b, int* r, int n, int K){ // 
ount o

urren
esint* 
 = new int[K + 1℄; // 
ounter arrayfor (int i = 0; i <= K; i++) 
[i℄ = 0; // reset 
ountersfor (int i = 0; i < n; i++) 
[r[a[i℄℄℄++; // 
ount o

urren
esfor (int i = 0, sum = 0; i <= K; i++) // ex
lusive prefix sums{ int t = 
[i℄; 
[i℄ = sum; sum += t; }for (int i = 0; i < n; i++) b[
[r[a[i℄℄℄++℄ = a[i℄; // sortdelete [℄ 
;}// find the suffix array SA of s[0..n-1℄ in {1..K}^n// require s[n℄=s[n+1℄=s[n+2℄=0, n>=2void suffixArray(int* s, int* SA, int n, int K) {int n0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;int* s12 = new int[n02 + 3℄; s12[n02℄= s12[n02+1℄= s12[n02+2℄=0;int* SA12 = new int[n02 + 3℄; SA12[n02℄=SA12[n02+1℄=SA12[n02+2℄=0;int* s0 = new int[n0℄;int* SA0 = new int[n0℄;// generate positions of mod 1 and mod 2 suffixes// the "+(n0-n1)" adds a dummy mod 1 suffix if n%3 == 1for (int i=0, j=0; i < n+(n0-n1); i++) if (i%3 != 0) s12[j++℄ = i;// lsb radix sort the mod 1 and mod 2 triplesradixPass(s12 , SA12, s+2, n02, K);radixPass(SA12, s12 , s+1, n02, K);radixPass(s12 , SA12, s , n02, K);



// find lexi
ographi
 names of triplesint name = 0, 
0 = -1, 
1 = -1, 
2 = -1;for (int i = 0; i < n02; i++) {if (s[SA12[i℄℄ != 
0 || s[SA12[i℄+1℄ != 
1 || s[SA12[i℄+2℄ != 
2){ name++; 
0 = s[SA12[i℄℄; 
1 = s[SA12[i℄+1℄; 
2 = s[SA12[i℄+2℄; }if (SA12[i℄ % 3 == 1) { s12[SA12[i℄/3℄ = name; } // left halfelse { s12[SA12[i℄/3 + n0℄ = name; } // right half}// re
urse if names are not yet uniqueif (name < n02) {suffixArray(s12, SA12, n02, name);// store unique names in s12 using the suffix arrayfor (int i = 0; i < n02; i++) s12[SA12[i℄℄ = i + 1;} else // generate the suffix array of s12 dire
tlyfor (int i = 0; i < n02; i++) SA12[s12[i℄ - 1℄ = i;// stably sort the mod 0 suffixes from SA12 by their first 
hara
terfor (int i=0, j=0; i < n02; i++) if (SA12[i℄ < n0) s0[j++℄ = 3*SA12[i℄;radixPass(s0, SA0, s, n0, K);// merge sorted SA0 suffixes and sorted SA12 suffixesfor (int p=0, t=n0-n1, k=0; k < n; k++) {#define GetI() (SA12[t℄ < n0 ? SA12[t℄ * 3 + 1 : (SA12[t℄ - n0) * 3 + 2)int i = GetI(); // pos of 
urrent offset 12 suffixint j = SA0[p℄; // pos of 
urrent offset 0 suffixif (SA12[t℄ < n0 ? // different 
ompares for mod 1 and mod 2 suffixesleq(s[i℄, s12[SA12[t℄ + n0℄, s[j℄, s12[j/3℄) :leq(s[i℄,s[i+1℄,s12[SA12[t℄-n0+1℄, s[j℄,s[j+1℄,s12[j/3+n0℄)){ // suffix from SA12 is smallerSA[k℄ = i; t++;if (t == n02) // done --- only SA0 suffixes leftfor (k++; p < n0; p++, k++) SA[k℄ = SA0[p℄;} else { // suffix from SA0 is smallerSA[k℄ = j; p++;if (p == n0) // done --- only SA12 suffixes leftfor (k++; t < n02; t++, k++) SA[k℄ = GetI();}}delete [℄ s12; delete [℄ SA12; delete [℄ SA0; delete [℄ s0;}


