
Simple Linear Work SuÆx Array Constrution?Juha K�arkk�ainen, Peter SandersMax-Plank-Institut f�ur InformatikStuhlsatzenhausweg 85, 66123 Saarbr�uken, Germany[juha,sanders℄�mpi-sb.mpg.de.Abstrat. A suÆx array represents the suÆxes of a string in sorted order. Being a simplerand more ompat alternative to suÆx trees, it is an important tool for full text indexing andother string proessing tasks. We introdue the skew algorithm for suÆx array onstrutionover integer alphabets that an be implemented to run in linear time using integer sortingas its only nontrivial subroutine:1. reursively sort suÆxes beginning at positions i mod 3 6= 0.2. sort the remaining suÆxes using the information obtained in step one.3. merge the two sorted sequenes obtained in steps one and two.The algorithm is muh simpler than previous linear time algorithms that are all based onthe more ompliated suÆx tree data struture. Sine sorting is a well studied problem, weobtain optimal algorithms for several other models of omputation, e.g. external memory withparallel disks, ahe oblivious, and parallel. The adaptations for BSP and EREW-PRAMare asymptotially faster than the best previously known algorithms.1 IntrodutionThe suÆx tree [39℄ of a string is a ompat trie of all the suÆxes of the string. It is a powerful datastruture with numerous appliations in omputational biology [21℄ and elsewhere [20℄. One of theimportant properties of the suÆx tree is that it an be onstruted in linear time in the lengthof the string. The lassial linear time algorithms [32, 36, 39℄ require a onstant alphabet size, butFarah's algorithm [11, 14℄ works also for integer alphabets, i.e., when haraters are polynomiallybounded integers. There are also eÆient onstrution algorithms for many advaned models ofomputation (see Table 1).The suÆx array [18, 31℄ is a lexiographially sorted array of the suÆxes of a string. For severalappliations, the suÆx array is a simpler and more ompat alternative to the suÆx tree [2, 6, 18,31℄. The suÆx array an be onstruted in linear time by a lexiographi traversal of the suÆx tree,but suh a onstrution loses some of the advantage that the suÆx array has over the suÆx tree. Thefastest diret suÆx array onstrution algorithms that do not use suÆx trees require O(n logn)time [5, 30, 31℄. Also under other models of omputation, diret algorithms annot math suÆxtree based algorithms [9, 16℄. The existene of an I/O-optimal diret algorithm is mentioned as animportant open problem in [9℄.We introdue the skew algorithm, the �rst linear-time diret suÆx array onstrution algorithmfor integer alphabets. The skew algorithm is simpler than any suÆx tree onstrution algorithm.(In the appendix, we give a 50 line C++ implementation.) In partiular, it is muh simpler thanlinear time suÆx tree onstrution for integer alphabets.Independently of and in parallel with the present work, two other diret linear time suÆx arrayonstrution algorithms have been introdued by Kim et al. [28℄, and Ko and Aluru [29℄. The twoalgorithms are quite di�erent from ours (and eah other).? Partially supported by the Future and Emerging Tehnologies programme of the EU under ontratnumber IST-1999-14186 (ALCOM-FT).



The skew algorithm. Farah's linear-time suÆx tree onstrution algorithm [11℄ as well as someparallel and external algorithms [12{14℄ are based on the following divide-and-onquer approah:1. Construt the suÆx tree of the suÆxes starting at odd positions. This is done by redution tothe suÆx tree onstrution of a string of half the length, whih is solved reursively.2. Construt the suÆx tree of the remaining suÆxes using the result of the �rst step.3. Merge the two suÆx trees into one.The rux of the algorithm is the last step, merging, whih is a ompliated proedure and relieson strutural properties of suÆx trees that are not available in suÆx arrays. In their reent diretlinear time suÆx array onstrution algorithm, Kim et al. [28℄ managed to perform the mergingusing suÆx arrays, but the proedure is still very ompliated.The skew algorithm has a similar struture:1. Construt the suÆx array of the suÆxes starting at positions i mod 3 6= 0. This is done byredution to the suÆx array onstrution of a string of two thirds the length, whih is solvedreursively.2. Construt the suÆx array of the remaining suÆxes using the result of the �rst step.3. Merge the two suÆx arrays into one.Surprisingly, the use of two thirds instead of half of the suÆxes in the �rst step makes the last stepalmost trivial: a simple omparison-based merging is suÆient. For example, to ompare suÆxesstarting at i and j with i mod 3 = 0 and j mod 3 = 1, we �rst ompare the initial haraters, andif they are the same, we ompare the suÆxes starting at i + 1 and j + 1 whose relative order isalready known from the �rst step.Results. The simpliity of the skew algorithm makes it easy to adapt to other models of om-putation. Table 1 summarizes our results together with the best previously known algorithms fora number of important models of omputation. The olumn \alphabet" in Table 1 identi�es themodel for the alphabet �. In a onstant alphabet, we have j�j = O(1), an integer alphabetmeans that haraters are integers in a range of size nO(1), and general alphabet only assumes thatharaters an be ompared in onstant time.The skew algorithm for RAM, external memory and ahe oblivious models is the �rst optimaldiret algorithm. For BSP and EREW-PRAM models, we obtain an improvement over all previousresults, inluding the �rst linear work BSP algorithm. On all the models, the skew algorithm ismuh simpler than the best previous algorithm.In many appliations, the suÆx array needs to be augmented with additional data, the mostimportant being the longest ommon pre�x (lp) array [1, 2, 26, 27, 31℄. In partiular, the suÆx treean be onstruted easily from the suÆx and lp arrays [11, 13, 14℄. There is a linear time algorithmfor omputing the lp array from the suÆx array [27℄, but it does not appear to be suitable forparallel or external omputation. We extend our algorithm to ompute also the lp array whileretaining the omplexities of Table 1. Hene, we also obtain improved suÆx tree onstrutionalgorithms for the BSP and EREW-PRAM models.The paper is organized as follows. In Setion 2, we desribe the basi skew algorithm, whihis then adapted to di�erent models of omputation in Setion 3. The algorithm is extended toompute the longest ommon pre�xes in Setion 4.2 The Skew AlgorithmFor ompatibility with C and beause we use many modulo operations we start arrays at position0. We use the abbreviations [a; b℄ = fa; : : : ; bg and s[a; b℄ = [s[a℄; : : : ; s[b℄℄ for a string or array s.



Table 1. SuÆx array onstrution algorithms. The algorithms in [11{14℄ are indiret, i.e., they atuallyonstrut a suÆx tree, whih an be then be transformed into a suÆx arraymodel of omputation omplexity alphabet soureRAM O(n log n) time general [31, 30, 5℄O(n) time integer [11, 28, 29℄,skewExternal Memory [38℄D disks, blok size B,fast memory of size M O� nDB logMB nB log2 n� I/OsO�n logMB nB log2 n� internal work integer [9℄O� nDB logMB nB� I/OsO�n logMB nB� internal work integer [14℄,skewCahe Oblivious [15℄M=B ahe bloks of size B O� nB logMB nB log2 n� ahe faults general [9℄O� nB logMB nB� ahe faults general [14℄,skewBSP [37℄P proessorsh-relation in time L+ gh O�n log nP + (L+ gnP ) log3 n logPlog(n=P ) � time general [12℄O�n lognP + L log2 P + gn log nP log(n=P )� time general skewP = O�n1��� proessors O�n=P + L log2 P + gn=P � time integer skewEREW-PRAM [25℄ O�log4 n� time, O(n log n) work general [12℄O�log2 n� time, O(n log n) work general skewarbitrary-CRCW-PRAM [25℄ O(log n) time, O(n) work (rand.) onstant [13℄priority-CRCW-PRAM [25℄ O�log2 n� time, O(n) work (rand.) onstant skewSimilarly, [a; b) = [a; b � 1℄ and s[a; b) = s[a; b � 1℄. The operator Æ is used for the onatenationof strings. Consider a string s = s[0; n) over the alphabet � = [1; n℄. The suÆx array SA ontainsthe suÆxes Si = s[i; n) in sorted order, i.e., if SA[i℄ = j then suÆx Sj has rank i + 1 among theset of strings fS0; : : : ; Sn�1g. To avoid tedious speial ase treatments, we desribe the algorithmfor the ase that n is a multiple of 3 and adopt the onvention that all strings � onsidered have�[j�j℄ = �[j�j+1℄ = 0. The implementation in the Appendix �lls in the remaining details. Figure 1gives an example.The �rst and most time onsuming step of the skew algorithm sorts the suÆxes Si with i mod3 6= 0 among themselves. To this end, it �rst �nds lexiographi names s0i 2 [1; 2n=3℄ for thetriples s[i; i + 2℄ with i mod 3 6= 0, i.e., numbers with the property that s0i � s0j if and only ifs[i; i + 2℄ � s[j; j + 2℄. This an be done in linear time by radix sort and sanning the sortedsequene of triples | if triple s[i; i+2℄ is the k-th di�erent triple appearing in the sorted sequene,we set s0i = k.If all triples get di�erent lexiographi names, we are done with step one. Otherwise, the suÆxarray SA12 of the string s12 = [s0i : i mod 3 = 1℄ Æ [s0i : i mod 3 = 2℄is omputed reursively. Note that there an be no more lexiographi names than haraters ins12 so that the alphabet size in a reursive all never exeeds the size of the string. The reursivelyomputed suÆx array SA12 represents the desired order of the suÆxes Si with i mod 3 6= 0. To seethis, note that s12[ i�13 ; n3 ) for i mod 3 = 1 represents the suÆx Si = s[i; n) Æ [0℄ via lexiographinaming. The 0 haraters at the end of s make sure that s12[n=3�1℄ is unique in s12 so that it does
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Fig. 1. The skew algorithm applied to s = mississippi.not matter that s12 has additional haraters. Similarly, s12[n+i�23 ; 2n3 ) for i mod 3 = 2 representsthe suÆx Si = s[i; n) Æ [0; 0℄.The seond step is easy. The suÆxes Si with i mod 3 = 0 are sorted by sorting the pairs(s[i℄; Si+1). Sine the order of the suÆxes Si+1 is already impliit in SA12, it suÆes to stably sortthose entries SA12[j℄ that represent suÆxes Si+1, i mod 3 = 0, with respet to s[i℄. This is possiblein linear time by a single pass of radix sort.The skew algorithm is so simple beause also the third step is quite easy. We have to merge thetwo suÆx arrays to obtain the omplete suÆx array SA. To ompare a suÆx Sj with j mod 3 = 0with a suÆx Si with i mod 3 6= 0, we distinguish two ases:If i mod 3 = 1, we write Si as (s[i℄; Si+1) and Sj as (s[j℄; Sj+1). Sine i + 1 mod 3 = 2 andj + 1 mod 3 = 1, the relative order of Sj+1 and Si+1 an be determinded from their positionin SA12. This position an be determined in onstant time by preomputing an array SA12 withSA12[i℄ = j + 1 if SA12[j℄ = i. This is nothing but a speial ase of lexiographi naming.1Similarly, if i mod 3 = 2, we ompare the triples (s[i℄; s[i + 1℄; Si+2) and (s[j℄; s[j + 1℄; Sj+2)replaing Si+2 and Sj+2 by their lexiographi names in SA12.The running time of the skew algorithm is easy to establish.Theorem 1. The skew algorithm an be implemented to run in time O(n).Proof. The exeution time obeys the reurrene T (n) = O(n)+T (d2n=3e), T (n) = O(1) for n < 3.This reurrene has the solution T (n) = O(n). ut1 SA12 � 1 is also known as the inverse suÆx array of SA12.



3 Other Models of ComputationTheorem 2. The skew algorithm an be implemented to ahieve the following performane guar-antees on advaned models of omputation:model of omputation omplexity alphabetExternal Memory [38℄D disks, blok size B,fast memory of size M O� nDB logMB nB� I/OsO�n logMB nB� internal work integerCahe Oblivious [15℄ O� nB logMB nB� ahe faults generalBSP [37℄P proessorsh-relation in time L+ gh O�n lognP + L log2 P + gn lognP log(n=P )� time generalP = O�n1��� proessors O�n=P + L log2 P + gn=P � time integerEREW-PRAM [25℄ O�log2 n� time and O(n logn) work generalpriority-CRCW-PRAM [25℄ O�log2 n� time and O(n) work (rand.) onstantProof. External Memory: Sorting tuples and lexiographi naming is easily redued to externalmemory integer sorting. I/O optimal deterministi2 parallel disk sorting algorithms are well known[34, 33℄. We have to make a few remarks regarding internal work however. To ahieve optimalinternal work for all values of n, M , and B, we an use radix sort where the most signi�antdigit has blogM � 1 bits and the remaining digits have blogM=B bits. Sorting then starts withO�logM=B n=M� data distribution phases that need linear work eah and an be implementedusing O(n=DB) I/Os using the same I/O strategy as in [33℄. It remains to stably sort the elementsby their blogM � 1 most signi�ant bits. For this we an use the distribution based algorithmfrom [33℄ diretly. In the distribution phases, elements an be put into a buket using a full lookuptable mapping keys to bukets. Sorting bukets of size M an be done in linear time using a lineartime internal algorithm.Cahe Oblivious: We use the omparison based model here sine it is not known how to doahe oblivious integer sorting with O( nB logM=B nB ) ahe faults and o(n logn) work. The result isan immediate orollary of the optimal omparison based sorting algorithm [15℄.EREW PRAM: We an use Cole's merge sort [8℄ for sorting and merging. Lexiographi namingan be implemented using linear work and O(logP ) time using pre�x sums. After �(logP ) levelsof reursion, the problem size has redued so far that the remaining subproblem an be solved ona single proessor. We get an overall exeution time of O�n logn=P + log2 P �.BSP: For the ase of many proessors, we proeed as for the EREW-PRAM algorithm using theoptimal omparison based sorting algorithm [19℄ that takes time O(n logn=P+(gn=P+L) lognlog(n=P ) ).For the ase of few proessors, we an use a linear work sorting algorithm based on radix sort[7℄ and a linear work merging algorithm [17℄. The integer sorting algorithm remains appliable atleast during the �rst �(log logn) levels of reursion of the skew algorithm. Then we an a�ord toswith to a omparison based algorithm without inreasing the overall amount of internal work.CRCW PRAM: We employ the stable integer sorting algorithm [35℄ that works in O(logn)time using linear work for keys with O(log logn) bits. This algorithm an be used for the �rst2 Simpler randomized algorithms with favorable onstant fators are also available [10℄.



�(log log logn) iterations. Then we an a�ord to swith to the algorithm [22℄ that works for poly-nomial size keys at the prie of being ineÆient by a fator O(log logn). Lexiographi naming anbe implemented by omputing pre�x sums using linear work and logarithmi time. Comparisonbased merging an be implemented with linear work and O(logn) time using [23℄. utThe resulting algorithms are simple exept that they may use ompliated subroutines forsorting to obtain theoretially optimal results. There are usually muh simpler implementationsof sorting that work well in pratie although they may sari�e determinism or optimality forertain ombinations of parameters.4 Longest Common Pre�xesLet lp(i; j) denote the length of the longest ommon pre�x (lp) of the suÆxes Si and Sj . Thelongest ommon pre�x array LCP ontains the lengths of the longest ommon pre�xes of suÆxesthat are adjaent in the suÆx array, i.e., LCP[i℄ = lp(SA[i℄; SA[i+1℄). A well-known property oflps is that for any 0 � i < j < n, lp(i; j) = mini�k<j LCP[k℄ :Thus, if we preproess LCP in linear time to answer range minimum queries in onstant time [3,4, 24℄, we an �nd the longest ommon pre�x of any two suÆxes in onstant time.We will show how the LCP array an be omputed from the LCP12 array orresponding toSA12 in linear time. Let j = SA[i℄ and k = SA[i+1℄. We explain two ases; the others are similar.First, assume that j mod 3 = 1 and k mod 3 = 2, and let j0 = (j � 1)=3 and k0 = (n+ k� 2)=3be the orresponding positions in s12. Sine j and k are adjaent in SA, so are j0 and k0 in SA12,and thus ` = lp12(j0; k0) = LCP12[SA12[j0℄� 1℄. Then LCP[i℄ = lp(j; k) = 3`+ lp(j+3`; k+3`),where the last term is at most 2 and an be omputed in onstant time by harater omparisons.As the seond ase, assume j mod 3 = 0 and k mod 3 = 1. If s[j℄ 6= s[k℄, LCP[i℄ = 0 and we aredone. Otherwise, LCP[i℄ = 1 + lp(j + 1; k + 1), and we an ompute lp(j + 1; k + 1) as above as3`+lp(j+1+3`; k+1+3`), where ` = lp12(j0; k0) with j0 = ((j+1)�1)=3, k0 = (n+(k+1)�2)=3.An additional ompliation is that, unlike in the �rst ase, j + 1 and k + 1 may not be adjaentin SA, and onsequently, j0 and k0 may not be adjaent in SA12. Thus we have to ompute `by performing a range minimum query in LCP12 instead of a diret lookup. However, this is stillonstant time.Theorem 3. The extended skew algorithm omputing both SA and LCP an be implemented torun in linear time.To obtain the same extension for other models of omputation, we need to show how to answerO(n) range minimum queries on LCP12. We an take advantage of the balaned distribution ofthe range minimum queries shown by the following property.Lemma 1. No suÆx is involved in more than two lp queries at the top level of the extended skewalgorithm.Proof. Let Si and Sj be two suÆxes whose lp lp(i; j) is omputed to �nd the lp of the suÆxesSi�1 and Sj�1. (The other ase that lp(i; j) is needed for the lp of Si�2 and Sj�2 is similar.)Then Si�1 and Sj�1 are lexiographially adjaent suÆxes and s[i � 1℄ = s[j � 1℄. Thus, thereannot be another suÆx Sk, Si < Sk < Sj , with s[k � 1℄ = s[i� 1℄. This shows that a suÆx anbe involved in lp queries only with its two lexiographially nearest neighbors that have the samepreeding harater. ut



We desribe a simple algorithm for answering the range minimum queries that an be easilyadapted to the models of Theorem 2. It is based on the ideas in [3, 4℄ (whih are themselves basedon earlier results).The LCP12 array is divided into bloks of size logn. For eah blok [a; b℄, preompute and storethe following data:{ For all i 2 [a; b℄, a logn-bit vetor Qi that identi�es all j 2 [a; i℄ suh that LCP12[j℄ <mink2[j+1;i℄ LCP12[k℄.{ For all i 2 [a; b℄, the minimum values over the ranges [a; i℄ and [i; b℄.{ The minimum for all ranges that end just before or begin just after [a; b℄ and ontain exatlya power of two full bloks.If a range [i; j℄ is ompletely inside a blok, its minimum an be found with the help of Qj inonstant time (see [3℄ for details). Otherwise, [i; j℄ an be overed with at most four of the rangeswhose minimum is stored, and its minimum is the smallest of those minima.Theorem 4. The extended skew algorithm omputing both SA and LCP an be implemented toahieve the omplexities of Theorem 2.Proof. (Outline) External Memory and Cahe Oblivious: The range minimum algorithm anbe implemented with sorting and sanning.Parallel models: The bloks in the range minima data struture are distributed over the proes-sors in the obvious way. Preproessing range minima data strutures redues to loal operationsand a straightforward omputation proeeding from shorter to longer ranges. Lemma 1 ensuresthat queries are evenly balaned over the data struture. ut5 DisussionThe skew algorithm is a simple and asymptotially eÆient diret algorithm for suÆx array on-strution that is easy to adapt to various models of omputation. We expet that it is a good startingpoint for atual implementations, in partiular on parallel mahines and for external memory.The key to the algorithm is the use of suÆxes Si with i mod 3 2 f1; 2g in the �rst, reursivestep, whih enables simple merging in the third step. There are other hoies of suÆxes that wouldwork. An interesting possibility, for example, is to take suÆxes Si with i mod 7 2 f3; 5; 6g. Someadjustments to the algorithm are required (sorting the remaining suÆxes in multiple groups andperforming a multiway merge in the third step) but the main ideas still work. In general, a suitablehoie is a periodi set of positions aording to a di�erene over. A di�erene over D modulov is a set of integers in the range [0; v) suh that, for all i 2 [0; v), there exist j; k 2 D suh thati � k � j (mod v). For example f1; 2g is a di�erene over modulo 3 and f3; 5; 6g is a di�ereneover modulo 7, but f1g is not a di�erene over modulo 2. Any nontrivial di�erene over moduloa onstant ould be used to obtain a linear time algorithm. Di�erene overs and their propertiesplay a more entral role in the suÆx array onstrution algorithm in [5℄, whih runs in O(n logn)time using sublinear extra spae in addition to the string and the suÆx array.An interesting theoretial question is whether there are faster CRCW-PRAM algorithms fordiret suÆx array onstrution. For example, there are very fast algorithms for padded sorting, listsorting and approximate pre�x sums [22℄ that ould be used for sorting and lexiographi namingin the reursive alls. The result would be some kind of suÆx list or padded suÆx array that ouldbe onverted into a suÆx array in logarithmi time.
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A Soure CodeThe following C++ �le ontains a omplete linear time implementation of suÆx array onstrution.This ode strives for oniseness rather than for speed | it has only 50 lines not ounting omments,empty lines, and lines with a braket only. A driver program an be found at http://www.mpi-sb.mpg.de/~sanders/programs/suffix/.inline bool leq(int a1, int a2, int b1, int b2) // lexiographi order{ return(a1 < b1 || a1 == b1 && a2 <= b2); } // for pairsinline bool leq(int a1, int a2, int a3, int b1, int b2, int b3){ return(a1 < b1 || a1 == b1 && leq(a2,a3, b2,b3)); } // and triples// stably sort a[0..n-1℄ to b[0..n-1℄ with keys in 0..K from rstati void radixPass(int* a, int* b, int* r, int n, int K){ // ount ourrenesint*  = new int[K + 1℄; // ounter arrayfor (int i = 0; i <= K; i++) [i℄ = 0; // reset ountersfor (int i = 0; i < n; i++) [r[a[i℄℄℄++; // ount ourrenesfor (int i = 0, sum = 0; i <= K; i++) // exlusive prefix sums{ int t = [i℄; [i℄ = sum; sum += t; }for (int i = 0; i < n; i++) b[[r[a[i℄℄℄++℄ = a[i℄; // sortdelete [℄ ;}// find the suffix array SA of s[0..n-1℄ in {1..K}^n// require s[n℄=s[n+1℄=s[n+2℄=0, n>=2void suffixArray(int* s, int* SA, int n, int K) {int n0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;int* s12 = new int[n02 + 3℄; s12[n02℄= s12[n02+1℄= s12[n02+2℄=0;int* SA12 = new int[n02 + 3℄; SA12[n02℄=SA12[n02+1℄=SA12[n02+2℄=0;int* s0 = new int[n0℄;int* SA0 = new int[n0℄;// generate positions of mod 1 and mod 2 suffixes// the "+(n0-n1)" adds a dummy mod 1 suffix if n%3 == 1for (int i=0, j=0; i < n+(n0-n1); i++) if (i%3 != 0) s12[j++℄ = i;// lsb radix sort the mod 1 and mod 2 triplesradixPass(s12 , SA12, s+2, n02, K);radixPass(SA12, s12 , s+1, n02, K);radixPass(s12 , SA12, s , n02, K);



// find lexiographi names of triplesint name = 0, 0 = -1, 1 = -1, 2 = -1;for (int i = 0; i < n02; i++) {if (s[SA12[i℄℄ != 0 || s[SA12[i℄+1℄ != 1 || s[SA12[i℄+2℄ != 2){ name++; 0 = s[SA12[i℄℄; 1 = s[SA12[i℄+1℄; 2 = s[SA12[i℄+2℄; }if (SA12[i℄ % 3 == 1) { s12[SA12[i℄/3℄ = name; } // left halfelse { s12[SA12[i℄/3 + n0℄ = name; } // right half}// reurse if names are not yet uniqueif (name < n02) {suffixArray(s12, SA12, n02, name);// store unique names in s12 using the suffix arrayfor (int i = 0; i < n02; i++) s12[SA12[i℄℄ = i + 1;} else // generate the suffix array of s12 diretlyfor (int i = 0; i < n02; i++) SA12[s12[i℄ - 1℄ = i;// stably sort the mod 0 suffixes from SA12 by their first haraterfor (int i=0, j=0; i < n02; i++) if (SA12[i℄ < n0) s0[j++℄ = 3*SA12[i℄;radixPass(s0, SA0, s, n0, K);// merge sorted SA0 suffixes and sorted SA12 suffixesfor (int p=0, t=n0-n1, k=0; k < n; k++) {#define GetI() (SA12[t℄ < n0 ? SA12[t℄ * 3 + 1 : (SA12[t℄ - n0) * 3 + 2)int i = GetI(); // pos of urrent offset 12 suffixint j = SA0[p℄; // pos of urrent offset 0 suffixif (SA12[t℄ < n0 ? // different ompares for mod 1 and mod 2 suffixesleq(s[i℄, s12[SA12[t℄ + n0℄, s[j℄, s12[j/3℄) :leq(s[i℄,s[i+1℄,s12[SA12[t℄-n0+1℄, s[j℄,s[j+1℄,s12[j/3+n0℄)){ // suffix from SA12 is smallerSA[k℄ = i; t++;if (t == n02) // done --- only SA0 suffixes leftfor (k++; p < n0; p++, k++) SA[k℄ = SA0[p℄;} else { // suffix from SA0 is smallerSA[k℄ = j; p++;if (p == n0) // done --- only SA12 suffixes leftfor (k++; t < n02; t++, k++) SA[k℄ = GetI();}}delete [℄ s12; delete [℄ SA12; delete [℄ SA0; delete [℄ s0;}


