COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2443; Phone: x3748

giri@cs.fiu.edu

http://www.cs.fiu.edu/~giri/teach/5407F08.html https://online.cis.fiu.edu/portal/course/view.php?id=427

Purpose of this class

First course in algorithms is inadequate preparation for most PhD students

- Learn standard techniques
- Solve standard problems
- Learn basic analysis techniques
- Need to go beyond that!
- This course
- Model/formalize a problem
- Leverage existing solutions
- Create your own solutions
- COT 6936 1/5/10

Expectations

2

3

• Attend class

1/5/10

- Participate in class discussions
- Team work; discussion groups
- Solve practical research problems
- Make a presentation; write a report
- need a research component; may implement • Write research paper
- No cell phones, SMS, or email during class

COT 6936

Evaluation					
 Exam (1) Quizzes Homework Assignments Semester Project Class Participation 	20% 5% 15% 40% 20%				
1/5/10 COT 6936	6 4				

Semester Schedule

Milestones:

- By Jan 18: Meet with me and discuss project
- By Jan 25: Send me email with project team information and topic
- Feb 3rd week: Short presentation (15 minutes) giving intro to project, problem definition, notation, and background

- March 2nd week: Take-home Exam
- Starting March last week: Full length presentation of project (1 hour)
- April 15: Written report on project
- 1/5/10 COT 6936

Classical (Theoretical) Algorithmic Model Input-output description provided Input provided & stored in memory • Output computed & stored or output immediately Entire program stored in memory Algebraic Computation-Tree Model (Variants: indirection, floor function, square root) Space (?) and time (?) efficiency • Deterministic and Sequential algorithms

- Worst-case analysis
- No other factors to consider

1/5/10

COT 6936

Binary Counter: What we know Worst case per increment = O(# bits) Average case per increment = O(# bits) Amortized complexity = ??

Additional Topics

- Approximation Algorithms
- Computational Geometry
- Computational Biology
- String Algorithms
- Computational Finance
- Combinatorial Optimization
- Algorithmic Game Theory
- Heuristic Algorithms
- Problem Modeling and Transformations

1/5/10

Paging Algorithms

COT 6936

Here are 3 well-known paging algorithms
Least Recently Used (LRU): evict item whose most recent request was furthest in the past
First-in, First-out (FIFO): evict item that

- was brought in furthest in the past
- Least Frequently Used (LFU): evict item that has been requested least often

COT 6936

Which ones are good algorithms and why? What is an optimal algorithm?

24

Robot Challenge Problem					
 Homework # I know 2 way 1. By modelin 2. With a state Write pseud 	1 - here it is! is of solving it. g it as a known proble ndard algorithmic tec o-code to solve this	m hnique s problem.			
1/5/10	COT 6936	25			

Drun	kon	cailore	and	cabine
Diui	IKEIT	Salius	anu	Capins

 A ship arrives at a port. 40 sailors go ashore for revelry. They return to the ship rather inebriated. Being unable to remember their cabin location, they find a random unoccupied cabin to sleep the night. <u>How many sailors</u> are expected to sleep in their own cabins?

COT 6936

Variants? Generalizations?

1/5/10