
1

COT 6936: Topics in Algorithms

Giri Narasimhan
ECS 254A / EC 2443; Phone: x3748

giri@cs.fiu.edu
http://www.cs.fiu.edu/~giri/teach/COT6936_S10.html

https://online.cis.fiu.edu/portal/course/view.php?id=427

1/7/10 1 COT 6936

Semester Schedule

• Milestones:
– By Jan 18: Meet with me and discuss project

– By Jan 25: Send me email with project team
information and topic

– Feb 3rd week: Short presentation (15 minutes)
giving intro to project, problem definition,
notation, and background

– March 2nd week: Take-home Exam

– Starting March last week: Full length
presentation of project (1 hour)

– April 15: Written report on project
1/7/10 COT 6936 2

Problems from last lecture

• Achieving diversity in heights:
– Largest empty range problem

– Smallest empty range problem

– Which is harder and why?

• Binary Counter
– How many bits were changed when a binary

counter is incremented from 0 to N?

• Drunken Sailors problem
– How many sailors will sleep in their own cabins?

• Homework: Robot Challenge problem
1/7/10 COT 6936 3

2

NP-Completeness

• Computers and Intractability: A Guide to the
theory of NP-Completeness, by Garey and
Johnson
– Compendium (100 pages) of NP-Complete and

related problems

1/7/10 COT 6936 4

1/7/10 COT 6936 5

Polynomial-time computations

• An algorithm has (worst-case) time
complexity O(T(n)) if it runs in time at most
cT(n) for some c > 0 and for every input of
length n. [Time complexity worst-case.]

• An algorithm is a polynomial-time algorithm if
its (worst-case) time complexity is O(p(n)),
where p(n) is some polynomial in n.
[Polynomial in what?]

• Composition of polynomials is a polynomial.
[What are the implications?]

1/7/10 COT 6936 6

The class P

• A problem is in P if there exists a
polynomial-time algorithm for the problem.
[P is therefore a class of problems, not
algorithms.]

• Examples of P
– DFS: Linear-time algorithm exists

– Sorting: O(n log n)-time algorithm exists

– Bubble Sort: Quadratic-time algorithm O(n2)

– APSP: Cubic-time algorithm O(n3)

3

1/7/10 COT 6936 7

The class NP

• A problem is in NP if there exists a non-
deterministic polynomial-time algorithm that
solves the problem.

• [Alternative definition] A problem is in NP if
there exists a (deterministic) polynomial-
time algorithm that verifies a solution to the
problem.

• All problems in P are in NP. [The converse is
the big deal!]

1/7/10 COT 6936 8

TSP: Traveling Salesperson Problem
• Input:

– Weighted graph, G
– Length bound, B

• Output:
– Is there a TSP tour in G of length at most B?

• Is TSP in NP?
– YES. Easy to verify a given solution.

• Is TSP in P?
– OPEN!
– One of the greatest unsolved problems of this century!
– Same as asking: Is P = NP?

1/7/10 COT 6936 9

So, what is NP-Complete?

•NP-Complete problems are the “hardest”
problems in NP.

• We need to formalize the notion of
“hardest”.

4

1/7/10 COT 6936 10

Terminology

• Problem:
– An abstract problem is a function (relation) from a set I

of instances of the problem to a set S of solutions.
p: I S

– An instance of a problem p is obtained by assigning values
to the parameters of the abstract problem.

– Thus, describing set of all instances (i.e., possible inputs)
and the set of corresponding outputs defines a problem.

• Algorithm:
– An algorithm that solves problem p must give correct

solutions to all instances of the problem.

• Polynomial-time algorithm:

1/7/10 COT 6936 11

Terminology (Cont d)
• Input Length:

– length of an encoding of an instance of the problem.
– Time and space complexities are written in terms of it.

• Worst-case time/space complexity of an algorithm
– Is the maximum time/space required by the algorithm on any input

of length n.

• Worst-case time/space complexity of a problem
– UPPER BOUND: worst-case time complexity of best existing

algorithm that solves the problem.
– LOWER BOUND: (provable) worst-case time complexity of best

algorithm (need not exist) that could solve the problem.
– LOWER BOUND UPPER BOUND

• Complexity Class P :
– Set of all problems p for which polynomial-time algorithms exist

1/7/10 COT 6936 12

Terminology (Cont d)
• Decision Problems:

– These are problems for which the solution set is {yes, no}

– Example: Does a given graph have an odd cycle?

– Example: Does a given weighted graph have a TSP tour of length at most B?

• Complement of a decision problem:
– These are problems for which the solution is “complemented”.
– Example: Does a given graph NOT have an odd cycle?

– Example: Is every TSP tour of a given weighted graph of length greater than
B?

• Optimization Problems:
– These are problems where one is maximizing (or minimizing) some objective

function.
– Example: Given a weighted graph, find a MST.

– Example: Given a weighted graph, find an optimal TSP tour.

• Verification Algorithms:
– Given a problem instance i and a certificate s, is s a solution for instance i?

5

1/7/10 COT 6936 13

Terminology (Cont d)

• Complexity Class P :
– Set of all problems p for which polynomial-time

algorithms exist.

• Complexity Class NP :
– Set of all problems p for which polynomial-time

verification algorithms exist.

• Complexity Class co-NP :
– Set of all problems p for which polynomial-time

verification algorithms exist for their
complements, i.e., their complements are in NP.

1/7/10 COT 6936 14

Terminology (Cont d)

• Reductions: p1 p2
– A problem p1 is reducible to p2, if there exists an

algorithm R that takes an instance i1 of p1 and outputs an
instance i2 of p2, with the constraint that the solution for
i1 is YES if and only if the solution for i2 is YES.

– Thus, R converts YES (NO) instances of p1 to YES (NO)
instances of p2.

• Polynomial-time reductions: p1 p2
– Reductions that run in polynomial time.

• If p1 p2, then
–If p2 is easy, then so is p1. p2 P p1 P

–If p1 is hard, then so is p2. p1 P p2 P

P

P

1/7/10 COT 6936 15

What are NP-Complete problems?

• These are the hardest problems in NP.

• A problem p is NP-Complete if
– there is a polynomial-time reduction from every

problem in NP to p.

– p NP

• How to prove that a problem is NP-Complete?

• Cook’s Theorem: [1972]

–The SAT problem is NP-Complete.

Steve Cook, Richard Karp, Leonid Levin

6

1/7/10 COT 6936 16

NP-Complete vs NP-Hard

• A problem p is NP-Complete if
– there is a polynomial-time reduction from every

problem in NP to p.

– p NP

• A problem p is NP-Hard if
– there is a polynomial-time reduction from every

problem in NP to p.

• Remember: to prove problem p is NP-Complete
you have to reduce a NP-Complete problem to p.

1/7/10 COT 6936 17

The SAT Problem: an example
• Consider the boolean expression:
 C = (a ¬b c) (¬a d ¬e) (a ¬d ¬c)
• Is C satisfiable? [Does there exist a True/False

assignments to the boolean variables a, b, c, d, e,
such that C is True?]

• If there are n boolean variables, then there are 2n
different truth value assignments.

• However, a solution can be quickly verified!

1/7/10 COT 6936 18

The SAT (Satisfiability) Problem
• Input: Boolean expression C in Conjunctive normal

 form (CNF) in n variables and m clauses.
• Question: Is C satisfiable?

– Let C = C1 C2 … Cm
– Where each Ci =
– And each {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}
– We want to know if there exists a truth assignment to all the

variables in the boolean expression C that makes it true.

• Steve Cook showed that the problem of deciding whether a
non-deterministic Turing machine T accepts an input w or
not can be written as a boolean expression CT for a SAT
problem. The boolean expression will have length bounded by
a polynomial in the size of T and w.

()i

k

ii

i
yyy

21

• How to now prove Cook’s theorem? Is SAT in NP?

• Can every problem in NP be poly. reduced to it ?

i

j
y

7

1/7/10 COT 6936 19

co-NP

The problem classes and their relationships

P NP-C

1/7/10 COT 6936 20

More NP-Complete problems

3SAT

• Input: Boolean expression C in Conjunctive normal
form (CNF) in n variables and m clauses. Each
clause has at most three literals.

• Question: Is C satisfiable?
– Let C = C1 C2 … Cm

– Where each Ci =

– And each {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}
– We want to know if there exists a truth assignment to all

the variables in the boolean expression C that makes it
true.

i

j
y

()iii
yyy

321

3SAT is NP-Complete.

1/7/10 COT 6936 21

3SAT is NP-Complete

• 3SAT is in NP.

• SAT can be reduced in polynomial time to 3SAT.

• This implies that every problem in NP can be
reduced in polynomial time to 3SAT. Therefore,
3SAT is NP-Complete.

• So, we have to design an algorithm such that:

• Input: an instance C of SAT

• Output: an instance C’ of 3SAT such that
satisfiability is retained. In other words, C is
satisfiable if and only if C’ is satisfiable.

8

1/7/10 COT 6936 22

3SAT is NP-Complete

• Let C be an instance of SAT with clauses C1, C2, …,
Cm

• Let Ci be a disjunction of k > 3 literals.
 Ci = y1 y2 … yk
• Rewrite Ci as follows:

C’i = (y1 y2 z1)
 (¬ z1 y3 z2)
 (¬ z2 y4 z3)
 …
 (¬ zk-3 yk-1 yk)

• Claim: Ci is satisfiable if and only if C’i is satisfiable.

1/7/10 COT 6936 23

More NP-Complete problems?

2SAT

• Input: Boolean expression C in Conjunctive normal
form (CNF) in n variables and m clauses. Each
clause has at most three literals.

• Question: Is C satisfiable?
– Let C = C1 C2 … Cm

– Where each Ci =

– And each {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}
– We want to know if there exists a truth assignment to all

the variables in the boolean expression C that makes it
true.

i

j
y

()ii
yy

21

2SAT is in P.

1/7/10 COT 6936 24

2SAT is in P

• If there is only one literal in a clause, it must
be set to true.

• If there are two literals in some clause, and
if one of them is set to false, then the other
must be set to true.

• Using these constraints, it is possible to
check if there is some inconsistency.

• How? Homework: do not submit!

9

1/7/10 COT 6936 25

The CLIQUE Problem

CLIQUE

• Input: Graph G(V,E) and integer k

• Question: Does G have a clique of size k?

• A clique is a completely connected subgraph.

1/7/10 COT 6936 26

CLIQUE is NP-Complete

• CLIQUE is in NP.

• Reduce 3SAT to CLIQUE in polynomial time.
• F = (x1 ¬x2 x3) (¬x1 ¬x3 x4) (x2 x3 ¬x4) (¬x1 ¬x2 x3)

x
1

¬x2

x3

¬x1 ¬x3
x4

F is satisfiable if and
only if G has a clique
of size k where k is
the number of clauses
in F.

1/7/10 COT 6936 27

Vertex Cover

A vertex cover is a set of vertices that
“covers” all the edges of the graph.

Examples

10

1/7/10 COT 6936 28

Vertex Cover (VC)

Input: Graph G, integer k

Question: Does G contain a vertex cover of size k?

• VC is in NP.

• polynomial-time reduction from CLIQUE to VC.

• Thus VC is NP-Complete.

V

G

V

G’

Claim: G’ has a clique of size k’ if and only if G has a
VC of size k = n – k’

1/7/10 COT 6936 29

Hamiltonian Cycle Problem (HCP)

Input: Graph G

Question: Does G contain a hamiltonian cycle?

• HCP is in NP.

• There exists a polynomial-time reduction
from 3SAT to HCP.

• Thus HCP is NP-Complete.

Shortest Path vs Longest Path

Input: Graph G with edge weights, vertices u
and v, bound B

Question: Does G contain a shortest path from
u to v of length at most B?

Question: Does G contain a longest path from u
to v of length at most B?

Homework: Listen to Cool MP3:

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3

1/7/10 COT 6936 30

11

Perfect (2-D) Matching vs 3-D Matching

1. Input: Bipartite graph, G(U,V,E)
 Question: Does G have a perfect matching?

2. Input: Sets U and V, and E = subset of U V

 Question: Is there a subset of E of size |U|
that covers U and V? [Related to 1.]

3. Input: Sets U,V,W, & E = subset of U V W

 Question: Is there a subset of E of size |U|
that covers U, V and W?

1/7/10 COT 6936 31

Coping with NP-Completeness

• Approximation: Search for an "almost"
optimal solution with provable quality.

• Randomization: Design algorithms that find
“provably” good solutions with high prob and/
or run fast on the average.

• Restrict the inputs (e.g., planar graphs), or
fix some input parameters.

• Heuristics: Design algorithms that work
"reasonably well”.

1/7/10 COT 6936 32

