
\qquad
\qquad
\qquad
\qquad
\qquad

Semester Schedule

\qquad
Milestones:

- By Jan 18: Meet with me and discuss project \qquad
- By Jan 25: Send me email with project team information and topic \qquad
- Feb $3^{\text {rd }}$ week: Short presentation (15 minutes) giving intro to project, problem definition, notation, and background
- March $2^{\text {nd }}$ week: Take-home Exam \qquad
- Starting March last week: Full length presentation of project (1 hour) \qquad
- April 15: Written report on project 1/7/10 cot6936

Problems from last lecture

- Achieving diversity in heights:
- Largest empty range problem
- Smallest empty range problem
- Which is harder and why?
- Binary Counter
- How many bits were changed when a binary counter is incremented from 0 to N ?
- Drunken Sailors problem
- How many sailors will sleep in their own cabins?
- Homework: Robot Challenge problem

1/7/10
cot 6936

NP-Completeness
- Computers and Intractability: A Guide to the
theory of NP-Completeness, by Garey and
Johnson
- Compendium (100 pages) of NP-Complete and
related problems

\qquad

Polynomial-time computations

\qquad

- An algorithm has (worst-case) time complexity $O(T(n))$ if it runs in time at most \qquad $c T(n)$ for some $c>0$ and for every input of length n. [Time complexity \approx worst-case.]
An algorithm is a polynomial-time algorithm if its (worst-case) time complexity is $O(p(n))$, where $p(n)$ is some polynomial in n. [Polynomial in what?]
- Composition of polynomials is a polynomial. [What are the implications?]

The class P

- A problem is in P if there exists a polynomial-time algorithm for the problem. \qquad [p is therefore a class of problems, not algorithms.]
- Examples of p
- DFS: Linear-time algorithm exists
- Sorting: $O(n \log n)$-time algorithm exists
- Bubble Sort: Quadratic-time algorithm $O\left(n^{2}\right)$
- APSP: Cubic-time algorithm $O\left(n^{3}\right)$

COT 6936

The class WP

- A problem is in 20 if there exists a nondeterministic polynomial-time algorithm that solves the problem.
- [Alternative definition] A problem is in $2 P$ if there exists a (deterministic) polynomialtime algorithm that verifies a solution to the problem.
All problems in \nexists are in $2 \boldsymbol{\sim}$. [The converse is the big deal!]
\qquad

TSP: Traveling Salesperson Problem
Input:

- Weighted graph, G
- Length bound, B
- Output:
- Is there a TSP tour in G of length at most B ?
- Is TSP in \%p?
- YES. Easy to verify a given solution.
- Is TSP in p?
- OPEN!
- One of the greatest unsolved problems of this century!
- Same as asking: Is $p=n$ n?
\qquad
1/7/10
COT 6936
8

So, what is NP-Complete?

- mp-Complede problems are the "hardest" problems in $2 \overline{1}$.
- We need to formalize the notion of "hardest".

Terminology

- Problem:

- An abstract problem is a function (relation) from a set I of instances of the problem to a set S of solutions.

$$
p: I \rightarrow S
$$

- An instance of a problem p is obtained by assigning values to the parameters of the abstract problem.
- Thus, describing set of all instances (i.e., possible inputs) and the set of corresponding outputs defines a problem.

- Algorithm:

- An algorithm that solves problem p must give correct solutions to all instances of the problem.

- Polynomial-time algorithm:

Terminology (Cont'd)

Input Length:

- length of an encoding of an instance of the problem.
- Time and space complexities are written in terms of it.
- Worst-case time/space complexity of an algorithm
- Is the maximum time/space required by the algorithm on any input of length n.
Worst-case time/space complexity of a problem
UPPER BOUND: worst-case time complexity of best existing algorithm that solves the problem.
- LOWER BOUND: (provable) worst-case time complexity of best algorithm (need not exist) that could solve the problem.
LOWER BOUND \leq UPPER BOUND
- Complexity Class P :
- Set of all problems p for which polynomial-time algorithms exist
\qquad
\qquad
\qquad
\qquad
\qquad

1/7/10
COT 6936
11

Terminology (Cont'd)

- Decision Problems:
- These are problems for which the solution set is \{yes, no\}
- Example: Does a given graph have an odd cycle?
- Example: Does a given weighted graph have a TSP tour of length at most B? Complement of a decision problem:
- These are problems for which the solution is "complemented".
- Example: Does a given graph NOT have an odd cycle?
- Example: Is every TSP tour of a given weighted graph of length greater than B? \qquad
Optimization Problems:
- These are problems where one is maximizing (or minimizing) some objective function. \qquad
- Example: Given a weighted graph, find a MST.
- Example: Given a weighted graph, find an optimal TSP tour.
- Verification Algorithms:
- Given a problem instance i and a certificate s, is s a solution for instance i?
1/7/10
COT 6936

12

Terminology (Cont'd)

- Complexity Class p :

- Set of all problems p for which polynomial-time algorithms exist.
- Complexity Class 2p:
- Set of all problems p for which polynomial-time verification algorithms exist.
- Complexity Class ca-Wp:
- Set of all problems p for which polynomial-time verification algorithms exist for their complements, i.e., their complements are in \%p.

1/7/10
COT 6936
13

What are WP-Complete problems?

- These are the hardest problems in w.
- A problem p is mp -Complede if
- there is a polynomial-time reduction from every problem in kp to p.
$-p \in \mathbb{m}$
- How to prove that a problem is kp -Camplede?

- Cook's Theorem: [1972]
-The SAT problem is WP-Complete.
Steve Cook, Richard Karp, Leonid Levin
Cot 6936

```
WP-Complete vs NP-Hard
- A problem p is mp-Complere if
    - there is a polynomial-time reduction from every
    problem in %pto p.
    - p\in\mathscr{N}
- A problem p is %p-#ard if
    - there is a polynomial-time reduction from every
    problem in \p to p.
Remember: to prove problem p is \p-Complete you have to reduce a NP-Complete problem to p.

\section*{The SAT Problem: an example}
- Consider the boolean expression:
\(C=(a \vee \neg b \vee c) \wedge(\neg a \vee d \vee \neg e) \wedge(a \vee \neg d \vee \neg c)\)
- Is \(C\) satisfiable? [Does there exist a True/False assignments to the boolean variables \(a, b, c, d, e\), such that \(C\) is True?]
- If there are \(n\) boolean variables, then there are \(2^{n}\) different truth value assignments.
- However, a solution can be quickly verified!

1/7/10
COT 6936
17

\section*{The SAT (Satisfiability) Problem}

Input: Boolean expression \(C\) in Conjunctive normal form (CNF) in \(n\) variables and \(m\) clauses.
Question: Is \(C\) satisfiable?
- Let \(C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}\)
- Where each \(C_{i}=\quad\left(y_{1}^{\prime} v y_{2}^{\prime} v \cdots v y_{k}^{\prime}\right)\)
- And each \(\in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}\)

We want to know if there exists a truth assignment to all the variables in the boolean expression \(C\) that makes it true.
Steve Cook showed that the problem of deciding whether a non-deterministic Turing machine T accepts an input w or not can be written as a boolean expression \(C_{T}\) for a SAT problem. The boolean expression will have length bounded by a polynomial in the size of \(T\) and \(w\).

\footnotetext{
- How to now prove Cook's theorem? Is SAT in Wp?
- Can every problem in Wb poly. reduced to it ?
\(1 / 7 / 10\) COT6936 18
}

\(\qquad\)

\section*{More MP-Complete problems}

\section*{3SAT}

Input: Boolean expression \(C\) in Conjunctive normal \(\qquad\) form (CNF) in \(n\) variables and \(m\) clauses. Each clause has at most three literals. \(\qquad\)
Question: Is \(C\) satisfiable?
- Let \(C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}\)
- Where each \(C_{i}=\left(y_{1}^{\prime} v y_{2}^{\prime} v y_{3}^{\prime}\right)\)
- And each \(y_{j}^{\prime} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n}, \neg x_{n}\right\}\)
- We want to know if there exists a truth assignment to all the variables in the boolean expression \(C\) that makes it true.

3SAT is IP-Complete.

\section*{3SAT is Ip-Complete}
\(\qquad\)
- 3SAT is in \%P.
- SAT can be reduced in polynomial time to 3SAT.
\(\qquad\)
This implies that every problem in 2p can be reduced in polynomial time to 3SAT. Therefore, \(\qquad\) 3SAT is IP -Compled.
- So, we have to design an algorithm such that: \(\qquad\)
Input: an instance C of SAT
Output: an instance \(C^{\prime}\) of 3SAT such that satisfiability is retained. In other words, \(C\) is satisfiable if and only if \(C^{\prime}\) is satisfiable.

\section*{3SAT is WP-Complete}

Let \(C\) be an instance of SAT with clauses \(C_{1}, C_{2}, \ldots\), \(C_{m}\)
- Let \(C_{i}\) be a disjunction of \(k>3\) literals.
\(C_{i}=y_{1} \vee y_{2} \vee \ldots \vee y_{k}\)
Rewrite \(C_{i}\) as follows:
\(C_{i}^{\prime}=\left(y_{1} \vee y_{2} \vee z_{1}\right) \wedge\)
\(\left(\neg z_{1} \vee y_{3} \vee z_{2}\right) \wedge\)
\(\left(\neg z_{2} \vee y_{4} \vee z_{3}\right) \wedge\)
\(\left(\neg z_{k-3} \vee y_{k-1} \vee y_{k}\right)\)
Claim: \(C_{i}\) is satisfiable if and only if \(C_{i}^{\prime}\) is satisfiable.
1/7/10
COT 6936
22

\section*{More NP-Complete problems?}

2SAT
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{More IP-Complete problems?} \\
\hline \multicolumn{3}{|l|}{2SAT} \\
\hline \multicolumn{3}{|l|}{- Input: Boolean expression \(C\) in Conjunctive normal form (CNF) in \(n\) variables and \(m\) clauses. Each clause has at most three literals.} \\
\hline \multicolumn{3}{|l|}{Question: Is \(C\) satisfiable?} \\
\hline \multicolumn{3}{|l|}{- Let \(C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}\)} \\
\hline \multicolumn{3}{|l|}{- Where each \(C_{i}=\left(y_{1}^{\prime} \vee v_{2}^{\prime}\right)\)} \\
\hline \multicolumn{3}{|l|}{- And each \(y_{j}^{\prime} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \sim \mathcal{X}\right.\)} \\
\hline \multicolumn{3}{|l|}{We want to know if there exists a truth assignment to all the variables in the boolean expression \(C\) that makes it} \\
\hline \multicolumn{3}{|c|}{true. \(\quad 2 S A T\) is in \(P\).} \\
\hline 17710 & cor 6936 & \({ }^{23}\) \\
\hline
\end{tabular}

\section*{2SAT is in \(P\)}
- If there is only one literal in a clause, it must be set to true.
- If there are two literals in some clause, and if one of them is set to false, then the other must be set to true.
- Using these constraints, it is possible to check if there is some inconsistency.
How? Homework: do not submit!

COT 6936
\(\qquad\)
2SAT is in \(P\)
If there is only one literal in a clause, it must
be set to true.
If there are two literals in some clause, and
if one of them is set to false, then the other
must be set to true.
Using these constraints, it is possible to
check if there is some inconsistency.
How? Homework: do not submit!
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)


\section*{Vertex Cover}

A vertex cover is a set of vertices that "covers" all the edges of the graph.

\section*{Examples}

\(\qquad\)
\(\qquad\)
\(\qquad\)


\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Hamiltonian Cycle Problem (HCP)}
\(\qquad\)
Input: Graph G
Question: Does \(G\) contain a hamiltonian cycle?
- HCP is in Wp.
- There exists a polynomial-time reduction
\(\qquad\)
\(\qquad\) from 3SAT to HCP.
- Thus HCP is up-Complete. \(\qquad\)
\(\qquad\)

1/7/10
COT 6936

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Perfect (2-D) Matching vs 3-D Matching}
1. Input: Bipartite graph, \(G(U, V, E)\) Question: Does \(G\) have a perfect matching?
2. Input: Sets \(U\) and \(V\), and \(E=\) subset of \(U \times V\) Question: Is there a subset of \(E\) of size \(|U|\) that covers \(U\) and \(V\) ? [Related to 1.]
3. Input: Sets \(U, V, W, \& E=\) subset of \(U \times V \times W\) Question: Is there a subset of \(E\) of size \(|U|\) that covers \(U, V\) and \(W\) ?

1/7/10 COT 6936 31

\section*{Coping with NP-Completeness}

Approximation: Search for an "almost" optimal solution with provable quality.
Randomization: Design algorithms that find "provably" good solutions with high prob and/ or run fast on the average.
Restrict the inputs (e.g., planar graphs), or fix some input parameters.
Heuristics: Design algorithms that work "reasonably well".
\(\qquad\)
\(\qquad\)```

