
1/9/10 COT 6936 1

Example

• [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9],
[6,10], [8,11], [8,12], [12,14]

• Simple Greedy Selection
– Sort by start time and pick in “greedy” fashion
– Does not work. WHY?

• [0,6], [6,10] is the solution you will end up with.

• Other greedy strategies
– Sort by length of interval
– Does not work. WHY?

1/9/10 COT 6936 2

Example
• [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11], [8,12], [12,14]
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14] -- Sorted

by finish times
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]

1/9/10 COT 6936 3

Greedy Algorithms

• Given a set of activities (si, fi), we want to
schedule the maximum number of non-overlapping
activities.

• GREEDY-ACTIVITY-SELECTOR (s, f)
1. n = length[s]

2. S = {a1}

3. i = 1

4.for m = 2 to n do

5. if sm is not before fi then

6. S = S U {am}

7. i = m

8. return S

1/9/10 COT 6936 4

Why does it work?
• THEOREM
 Let A be a set of activities and let a1 be the activity with

the earliest finish time. Then activity a1 is in some
maximum-sized subset of non-overlapping activities.

• PROOF
 Let S’ be a solution that does not contain a1. Let a’1 be the

activity with the earliest finish time in S’. Then replacing a’1
by a1 gives a solution S of the same size.

 Why are we allowed to replace? Why is it of the same size?

Then apply induction! How?

Generalized Activity Selection
• Say each activity has associated profit and you are asked to

maximize profit instead of the number of scheduled non-
overlapping activities.

• Greedy algorithm does not work. [Why?]

1/9/10 COT 6936 5

1/9/10 COT 6936 6

Dynamic Programming

• Activity Problem Revisited: Given a set of n
activities ai = (si, fi), we want to schedule the
maximum number of non-overlapping
activities.

• New Approach:
– Observation: To solve the problem on activities

A = {a1,…,an}, we notice that either
• optimal solution does not include an

– then enough to solve subproblem on An-1= {a1,…,an-1}

• optimal solution includes an
– Enough to solve subproblem on Ak = {a1,…,ak}, the set A without

activities that overlap an.

1/9/10 COT 6936 7

An efficient implementation

• Why not solve the subproblems on A1, A2, …,
An-1,An in that order?

• Is the problem on A1 easy?

• Can the optimal solutions to the problems on
A1,…,Ai help to solve the problem on Ai+1?
– YES! Either:

• optimal solution does not include ai+1
– problem on Ai

• optimal solution includes ai+1
– problem on Ak (equal to Ai without activities that overlap ai+1)

– but this has already been solved according to our ordering.

1/9/10 COT 6936 8

Dynamic Programmming: Activity Selection

• Select the maximum number of non-overlapping
activities from a set of n activities A = {a1, …, an}
(sorted by finish times).

• Identify “easier” subproblems to solve.

 A1 = {a1}

 A2 = {a1, a2}

 A3 = {a1, a2, a3}, …,

 An = A

• Subproblems: Select the max number of non-
overlapping activities from Ai

1/9/10 COT 6936 9

Dynamic Programmming: Activity Selection

• Solving for An solves the original problem.
• Solving for A1 is easy.
• If you have optimal solutions S1, …, Si-1 for subproblems on

A1, …, Ai-1, how to compute Si?
• The optimal solution for Ai either

– Case 1: does not include ai or
– Case 2: includes ai

• Case 1:
– Si = Si-1

• Case 2:
– Si = Sk U {ai}, for some k < i.
– How to find such a k? We know that ak cannot overlap ai.

1/9/10 COT 6936 10

Dynamic Programmming: Activity Selection

• DP-ACTIVITY-SELECTOR (s, f)
1. n = length[s]
2.N[1] = 1 // number of activities in S1

3.F[1] = 1 // last activity in S1
4.for i = 2 to n do
5. let k be the last activity finished before si
6. if (N[i-1] > N[k]) then // Case 1
7. N[i] = N[i-1]
8. F[i] = F[i-1]
9. else // Case 2
10. N[i] = N[k] + 1
11. F[i] = i

How to output Sn?

 Backtrack!

Time Complexity?

 O(n lg n)

1/9/10 COT 6936 11

Dynamic Programming Features
• Identification of subproblems
• Recurrence relation for solution of subproblems
• Overlapping subproblems (sometimes)
• Identification of a hierarchy/ordering of

subproblems
• Use of table to store solutions of subproblems

(MEMOIZATION)
• Optimal Substructure

1/9/10 COT 6936 12

Longest Common Subsequence
 S1 = CORIANDER CORIANDER

 S2 = CREDITORS CREDITORS

Longest Common Subsequence(S1[1..9], S2[1..9]) = CRIR

Subproblems:

– LCS[S1[1..i], S2[1..j]], for all i and j [BETTER]

• Recurrence Relation:
– LCS[i,j] = LCS[i-1, j-1] + 1, if S1[i] = S2[j])

 LCS[i,j] = max { LCS[i-1, j], LCS[i, j-1] }, otherwise

• Table (m X n table)

• Hierarchy of Solutions?

1/9/10 COT 6936 13

LCS Problem
LCS_Length (X, Y)
1. m length[X]
2. n Length[Y]
3. for i = 1 to m
4. do c[i, 0] 0
5. for j =1 to n
6. do c[0,j] 0
7. for i = 1 to m
8. do for j = 1 to n
9. do if (xi = yj)
10. then c[i, j] c[i-1, j-1] + 1
11. b[i, j] “ ”
12. else if c[i-1, j] c[i, j-1]
13. then c[i, j] c[i-1, j]
14. b[i, j] “ ”
15. else
16. c[i, j] c[i, j-1]
17. b[i, j] “ ”
18. return

1/9/10 COT 6936 14

LCS Example

1/9/10 COT 6936 15

Dynamic Programming vs. Divide-&-conquer

• Divide-&-conquer works best when all subproblems are
independent. So, pick partition that makes algorithm most
efficient & simply combine solutions to solve entire problem.

• Dynamic programming is needed when subproblems are
dependent; we don’t know where to partition the problem.

 For example, let S1= {ALPHABET}, and S2 = {HABITAT}.
 Consider the subproblem with S1 = {ALPH}, S2 = {HABI}.

 Then, LCS (S1 , S2) + LCS (S1-S1 , S2-S2) LCS(S1, S2)

• Divide-&-conquer is best suited for the case when no
“overlapping subproblems” are encountered.

• In dynamic programming algorithms, we typically solve each
subproblem only once and store their solutions. But this is
at the cost of space.

1/9/10 COT 6936 16

Dynamic programming vs Greedy
1. Dynamic Programming solves the sub-problems bottom up.

The problem can’t be solved until we find all solutions of
sub-problems. The solution comes up when the whole
problem appears.

 Greedy solves the sub-problems from top down. We first
need to find the greedy choice for a problem, then reduce
the problem to a smaller one. The solution is obtained when
the whole problem disappears.

2. Dynamic Programming has to try every possibility before
solving the problem. It is much more expensive than greedy.
However, there are some problems that greedy can not
solve while dynamic programming can. Therefore, we first
try greedy algorithm. If it fails then try dynamic
programming.

1/9/10 COT 6936 17

Fractional Knapsack Problem
• Burglar’s choices:
 n bags of valuables: x1, x2, …, xn
 Unit Value: v1, v2, …, vn
 Max number of units in bag: q1, q2, …, qn
 Weight per unit: w1, w2, …, wn
 Getaway Truck has a weight limit of B.
 Burglar can take “fractional” amount of any item.
 How can burglar maximize value of the loot?
• Greedy Algorithm works!
 Pick maximum quantity of highest value per weight

item. Continue until weight limit B is reached.

1/9/10 COT 6936 18

0-1 Knapsack Problem
• Burglar’s choices:
 Items: x1, x2, …, xn
 Value: v1, v2, …, vn
 Weight: w1, w2, …, wn
 Getaway Truck has a weight limit of B.
 “Fractional” amount of items NOT allowed
 How can burglar maximize value of the loot?
• Greedy Algorithm does not work! Why?
• Need dynamic programming!

1/9/10 COT 6936 19

0-1 Knapsack Problem
• Subproblems?

– V[j, L] = Optimal solution for knapsack problem assuming
truck weight limit L & choice of items from set {1,2,…, j}.

– V[n, B] = Optimal solution for original problem
– V[1, L] = easy to compute for all values of L.

• Table of solutions?
– V[1..n, 1..B]

• Ordering of subproblems?
– Row-wise

• Recurrence Relation? [Either xj included or not]
– V[j, L] = max { V[j-1, L] , vj + V[j-1, L-wj] }

1/9/10 COT 6936 20

1-d, 2-d, 3-d Dynamic Programming
• Classification based on the dimension of the table used to

store solutions to subproblems.

• 1-dimensional DP
– Activity Problem

• 2-dimensional DP
– LCS Problem

– 0-1 Knapsack Problem

– Matrix-chain multiplication

• 3-dimensional DP
– All-pairs shortest paths problem

1/9/10 COT 6936 21

All Pairs Shortest Path Algorithm
• Invoke Dijkstra’s SSSP algorithm n times.

• Or use dynamic programming. How? 2 Versions:
– Version 1 Subproblems: SP[i,j,k] = Length of the shortest path from i

to j using at most k edges.

– Version 2 Subproblems: C[i,j,k] = Length of the shortest path from i
to j using intermediate vertices from the set {1,2,…,k}

• Recurrence relations for the 2 versions?

• Time complexity for the 2 versions?

1/9/10 COT 6936 22

