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Example

• [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], 
[6,10], [8,11], [8,12], [12,14] 

• Simple Greedy Selection  
– Sort by start time and pick in “greedy” fashion 
– Does not work. WHY? 

• [0,6], [6,10] is the solution you will end up with.  

• Other greedy strategies 
– Sort by length of interval 
– Does not work. WHY? 
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Example
• [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11], [8,12], [12,14] 
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14] -- Sorted 

by finish times 
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14] 
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14] 
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14] 
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14] 
• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14] 
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Greedy Algorithms

• Given a set of activities (si, fi), we want to 
schedule the maximum number of non-overlapping 
activities. 

• GREEDY-ACTIVITY-SELECTOR (s, f) 
1. n = length[s] 

2. S = {a1} 

3. i = 1 

4.for m = 2 to n do 

5.  if sm is not before fi then 

6.   S = S U {am} 

7.    i = m 

8. return S 



1/9/10 COT 6936 4 

Why does it work?
• THEOREM 
 Let A be a set of activities and let a1 be the activity with 

the earliest finish time. Then activity a1 is in some 
maximum-sized subset of non-overlapping activities.  

• PROOF 
 Let S’ be a solution that does not contain a1. Let a’1 be the 

activity with the earliest finish time in S’. Then replacing a’1 
by a1 gives a solution S of the same size.  

 Why are we allowed to replace? Why is it of the same size? 

Then apply induction! How? 



Generalized Activity Selection
• Say each activity has associated profit and you are asked to 

maximize profit instead of the number of scheduled non-
overlapping activities.  

• Greedy algorithm does not work. [Why?] 
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Dynamic Programming

• Activity Problem Revisited: Given a set of n 
activities ai = (si, fi), we want to schedule the 
maximum number of non-overlapping 
activities. 

• New Approach: 
– Observation: To solve the problem on activities  

A = {a1,…,an}, we notice that either  
• optimal solution does not include an  

– then enough to solve subproblem on  An-1= {a1,…,an-1} 

• optimal solution includes an  
– Enough to solve subproblem on Ak = {a1,…,ak}, the set A without 

activities that overlap an. 
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An efficient implementation

• Why not solve the subproblems on A1, A2, …, 
An-1,An in that order? 

• Is the problem on A1 easy?  

• Can the optimal solutions to the problems on 
A1,…,Ai help to solve the problem on Ai+1? 
– YES! Either: 

• optimal solution does not include ai+1  
– problem on Ai 

• optimal solution includes ai+1  
– problem on Ak (equal to Ai without activities that overlap ai+1) 

– but this has already been solved according to our ordering. 
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Dynamic Programmming: Activity Selection

• Select the maximum number of non-overlapping 
activities from a set of n activities A = {a1, …, an} 
(sorted by finish times). 

• Identify “easier” subproblems to solve. 

 A1 = {a1} 

 A2 = {a1, a2} 

 A3 = {a1, a2, a3}, …, 

 An = A 

• Subproblems: Select the max number of non-
overlapping activities from Ai 
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Dynamic Programmming: Activity Selection

• Solving for An solves the original problem. 
• Solving for A1 is easy. 
• If you have optimal solutions S1, …, Si-1 for subproblems on 

A1, …, Ai-1, how to compute Si? 
• The optimal solution for Ai either 

– Case 1: does not include ai or 
– Case 2: includes ai 

• Case 1:  
– Si = Si-1  

• Case 2: 
– Si = Sk U {ai}, for some k < i.  
– How to find such a k? We know that ak cannot overlap ai. 
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Dynamic Programmming: Activity Selection

• DP-ACTIVITY-SELECTOR (s, f) 
1. n = length[s] 
2.N[1] = 1        // number of activities in S1 

3.F[1] = 1        // last activity in S1 
4.for i = 2 to n do 
5.   let k be the last activity finished before si 
6.   if (N[i-1] > N[k]) then  // Case 1 
7.   N[i] = N[i-1] 
8.              F[i] = F[i-1] 
9.   else  // Case 2 
10.              N[i] = N[k] + 1 
11.              F[i] = i 

How to output Sn? 

 Backtrack! 

Time Complexity? 

 O(n lg n) 
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Dynamic Programming Features
• Identification of subproblems 
• Recurrence relation for solution of subproblems 
• Overlapping subproblems (sometimes) 
• Identification of a hierarchy/ordering of 

subproblems 
• Use of table to store solutions of subproblems 

(MEMOIZATION) 
• Optimal Substructure 
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Longest Common Subsequence
 S1 = CORIANDER   CORIANDER 

 S2 = CREDITORS   CREDITORS 

Longest Common Subsequence(S1[1..9], S2[1..9]) = CRIR 

Subproblems: 

– LCS[S1[1..i], S2[1..j]],  for all i and j [BETTER] 

• Recurrence Relation: 
– LCS[i,j] = LCS[i-1, j-1] + 1,  if S1[i] = S2[j]) 

 LCS[i,j] = max { LCS[i-1, j], LCS[i, j-1] }, otherwise 

• Table (m X n table)  

• Hierarchy of Solutions? 
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LCS Problem
LCS_Length (X, Y )  
1. m  length[X]  
2. n  Length[Y]  
3. for i = 1 to m  
4. do c[i, 0]  0  
5. for j =1 to n  
6. do c[0,j] 0  
7. for i = 1 to m  
8.       do for j = 1 to n  
9.            do if ( xi = yj )  
10.                  then c[i, j]  c[i-1, j-1] + 1  
11.                       b[i, j]  “ ” 
12.                  else if c[i-1, j] c[i, j-1]  
13.                           then c[i, j]  c[i-1, j]  
14.                           b[i, j]  “ ” 
15.                      else  
16.                           c[i, j]  c[i, j-1]  
17.                           b[i, j]  “ ” 
18. return  
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LCS Example
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Dynamic Programming vs. Divide-&-conquer

• Divide-&-conquer  works  best  when  all  subproblems  are 
independent. So, pick partition that makes algorithm most 
efficient & simply combine solutions to solve entire problem.  

• Dynamic  programming  is  needed  when  subproblems  are 
dependent; we don’t know where to partition the problem.  

 For example, let S1= {ALPHABET}, and S2 = {HABITAT}.  
 Consider the subproblem with S1  = {ALPH}, S2  = {HABI}. 

 Then, LCS (S1 , S2 ) + LCS (S1-S1 , S2-S2 )  LCS(S1, S2) 

• Divide-&-conquer  is  best  suited  for  the  case  when  no 
“overlapping subproblems” are encountered.  

• In dynamic programming algorithms, we typically solve each 
subproblem only once and store their solutions. But this is 
at the cost of space. 
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Dynamic programming vs Greedy
1. Dynamic Programming solves the sub-problems bottom up. 

The problem can’t be solved until we find all solutions of 
sub-problems. The solution comes up when the whole 
problem appears.  

 Greedy solves the sub-problems from top down. We first 
need to find the greedy choice for a problem, then reduce 
the problem to a smaller one. The solution is obtained when 
the whole problem disappears.  

2. Dynamic Programming has to try every possibility before 
solving the problem. It is much more expensive than greedy. 
However, there are some problems that greedy can not 
solve while dynamic programming can. Therefore, we first 
try greedy algorithm. If it fails then try dynamic 
programming.  
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Fractional Knapsack Problem
• Burglar’s choices: 
 n bags of valuables: x1, x2, …, xn 
 Unit Value:  v1, v2, …, vn 
 Max number of units in bag: q1, q2, …, qn 
 Weight per unit: w1, w2, …, wn 
 Getaway Truck has a weight limit of B. 
 Burglar can take “fractional” amount of any item.  
 How can burglar maximize value of the loot? 
• Greedy Algorithm works! 
 Pick maximum quantity of highest value per weight 

item. Continue until weight limit B is reached. 
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0-1 Knapsack Problem
• Burglar’s choices: 
 Items: x1, x2, …, xn 
 Value:  v1, v2, …, vn 
 Weight: w1, w2, …, wn 
 Getaway Truck has a weight limit of B. 
 “Fractional” amount of items NOT allowed  
 How can burglar maximize value of the loot? 
• Greedy Algorithm does not work! Why? 
• Need dynamic programming! 
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0-1 Knapsack Problem
• Subproblems? 

– V[j, L] = Optimal solution for knapsack problem assuming 
truck weight limit L & choice of items from set {1,2,…, j}. 

– V[n, B] = Optimal solution for original problem 
– V[1, L] = easy to compute for all values of L. 

• Table of solutions? 
– V[1..n, 1..B] 

• Ordering of subproblems? 
– Row-wise 

• Recurrence Relation? [Either xj included or not] 
– V[j, L] = max { V[j-1, L]  ,  vj + V[j-1, L-wj] }  
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1-d, 2-d, 3-d Dynamic Programming
• Classification based on the dimension of the table used to 

store solutions to subproblems.  

• 1-dimensional DP 
– Activity Problem 

• 2-dimensional DP 
– LCS Problem 

– 0-1 Knapsack Problem 

– Matrix-chain multiplication 

• 3-dimensional DP 
– All-pairs shortest paths problem 



1/9/10 COT 6936 21 

All Pairs Shortest Path Algorithm
• Invoke Dijkstra’s SSSP algorithm n times. 

• Or use dynamic programming. How? 2 Versions: 
– Version 1 Subproblems: SP[i,j,k] = Length of the shortest path from i 

to j using at most k edges. 

– Version 2 Subproblems: C[i,j,k] = Length of the shortest path from i 
to j using intermediate vertices from the set {1,2,…,k} 

• Recurrence relations for the 2 versions? 

• Time complexity for the 2 versions? 
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