
1

1/12/10 COT 6936 1

COT 6936: Topics in Algorithms

Giri Narasimhan
ECS 254A / EC 2443; Phone: x3748

giri@cs.fiu.edu
http://www.cs.fiu.edu/~giri/teach/COT6936_S10.html

https://online.cis.fiu.edu/portal/course/view.php?id=427

Optimization Problems

• Problem:
– A problem is a function (relation) from a set I of

instances of the problem to a set S of solutions.

• p: I S

• Decision Problem:
– Problem with S = {TRUE, FALSE}

• Optimization Problem:
– Problem with a mapping from set S of solutions to a

positive rational number called the solution value

• p: I S m(I,S)

1/12/10 COT 6936 2

Optimization Versions of NP-Complete Problems

• TSP

• CLIQUE

• Vertex Cover & Set Cover

• Hamiltonian Cycle

• Hamiltonian Path

• SAT & 3SAT

• 3-D matching

1/12/10 COT 6936 3

2

Optimization Versions of NP-Complete Problems

• Computing a minimum TSP tour is NP-hard
(every problem in NP can be reduced to it in
polynomial time)

• BUT, it is not known to be in NP

• If P is NP-Complete, then its optimization
version is NP-hard (i.e., it is at least as hard
as any problem in NP, but may not be in NP)
– Proof by contradiction!

1/12/10 COT 6936 4

Performance Ratio

• Approximation Algorithm A
– A(I)

• Optimal Solution
– OPT(I)

• Performance Ratio on input I for
minimization problems
– RA(I) = max {A(I)/OPT(I), OPT(I)/A(I)}

• Performance Ratio of approximation
algorithm A
– RA = inf {r 1| RA(I) r, for all instances}

1/12/10 COT 6936 5

Metric Space

• It generalizes concept of Euclidean space

• Set with a distance function (metric) defined
on its elements
– D: M X M R (assigns a real number to

distance between every pair of elements from
the metric space M)
• D(x,y) = 0 iff x = y

• D(x,y) 0

• D(x,y) = D(y,x)

• D(x,y) + D(y,z) D(x,z)

1/12/10 COT 6936 6

3

Examples of metric spaces

• Euclidean distance

• Lp metrics

• Graph distances
– Distance between elements is the length of the

shortest path in the graph

1/12/10 COT 6936 7

TSP

• TSP in general graphs cannot be
approximated to within a constant (Why?)
– What is the approach?

• Prove that it is hard to approximate!

• TSP in general metric spaces holds promise!
– NN heuristic [Rosenkrantz, et al. 77]

• NN(I) (ceil(log2n) + 1) OPT(I)

– 2-OPT, 3-OPT, k-OPT, Lin-Kernighan Heuristic

• Can TSP in general metric spaces be
approximated to within a constant?

1/12/10 COT 6936 8

TSP in Euclidean Space

• TSP in Euclidean space can be approximated.
– MST Doubling (DMST) Algorithm

• Compute a MST, M

• Double the MST to create a tour, T1

• Modify the tour to get a TSP tour, T

– Theorem: DMST is a 2-approximation algorithm
for Euclidean metrics, i.e., DMST(I) < 2 OPT(I)

– Analysis:
• L(T) L(T1) = 2L(M) 2L(TOPT)

– Is the analysis tight?

1/12/10 COT 6936 9

4

Example of MST Doubling Algorithm

1/12/10 COT 6936 10

Example of Christofides Algorithm

1/12/10 COT 6936 11

TSP in Euclidean Metric

• Improved algorithms
– MM(I) < 3/2 OPT(I) [Christofides]

• Christofides observed that DMST has 4 stages:
– Find MST

– Double all edges

– Find Eulerian tour of resulting graph

– Convert Eulerian tour into TSP tour

• He modified step 2 to the following
– Add a matching of odd degree vertices

– PTAS(I) < (1+) OPT(I) [Arora]

1/12/10 COT 6936 12

5

TSP Approximation Algorithm

Theorem: The MST doubling algorithm is a
2-approximation algorithm for inputs from
any metric space.

1/12/10 COT 6936 13

Vertex Cover

• Find the smallest set of vertices that are
adjacent to all edges in the graph.

• Approximation Algorithm:
– Initialize vertex cover C = empty set

– while (an edge remains in the graph)
• Choose arbitrary edge e = (u,v)

• Add u and v to vertex cover C

• Remove all edges incident on u or v

– Output set C

• Analysis: |C| 2|COPT| [Is this tight?]

1/12/10 COT 6936 14

Greedy Vertex Cover

• Algorithm
– While graph has at least one edge

• Pick vertex v of highest degree and add to VC

• Remove all edges incident on v

• Analysis
– |VC| log n |VCOPT| [Is this tight?]

1/12/10 COT 6936 15

6

Greedy Vertex Cover: Analysis

• Let C be optimal vertex cover and K = |C|

• Iteration i: vertex of maximum degree di is
processed resulting in graph Gi

• Let e(G) = # edges in G. So e(Gi) = e(Gi-1) - di

• Observation: Sum of degrees of vertices in
any cover is e(G). Thus their average
degree is e(Gi-1)/K. And, di e(Gi-1)/K.

• K di K e(Gi-1)/K e(G) – K di

• Thus K di e(G)/2

1/12/10 COT 6936 16

Greedy Vertex Cover: Analysis

• After K vertices are removed, half the edges
of G are covered. After K logn vertices are
removed, all edges of G will be covered.

• Performance ratio log n

• Is the analysis tight?
– Goal is to find graph such that after K rounds,

we are left with half the edges uncovered

– Make the graph recursive so that we need log n
such rounds before all edges are covered.

1/12/10 COT 6936 17

Complements and Approx Algorithms

• Complement of a clique subgraph is an
independent set (i.e., a subgraph with no
edges connecting any of the vertices)

• If a vertex cover is removed (including all
incident edges), what remains?
– ??

• If the minimum vertex cover problem can be
2-approximated, what about the maximum
clique or maximum independent set?
– ??

1/12/10 COT 6936 18

7

Edge Colorings Example

1/12/10 COT 6936 19

Edge Colorings

• Theorem: Every graph can be edge colored
with at most +1 colors, where is the
maximum degree of the graph.

• Theorem: No graph can be edge colored with
less than colors.

• Theorem: It is NP-complete to decide
whether a graph can be edge colored with
colors [Holyer, 1981]
– Thus it can be approximated to within an additive

constant. Can’t do better than that!

1/12/10 COT 6936 20

Some NP-Complete Number Problems

• Input: set S of n integers

• Question 1: Is there a subset of S that adds
up to 0?
– Example: { 7, 3, 2, 5, 8}

• Input: set S of n integers, and integer B

• Question 2: Is there a subset of S that adds
up to B (part of input)?
– Example

 S = {267,493,869,961,1000,1153,1246,1598,
1766,1922} and B = 5842

1/12/10 COT 6936 21

SUBSET-SUM

SUBSET-SUM

8

More NP-Complete Number Problems

• Input: set S of n integers

• Question 3: Is there a partition of S into
two subsets each with the same sum?
– Example: { 7, 3, 2, 1, 5, 8}

• Input: set S of 3n integers

• Question 4: Is there a partition of S into
|S|/3 subsets each of size 3 and each of
which adds up to the same value?
– Strongly NP-Complete!

1/12/10 COT 6936 22

PARTITION

3-PARTITION

Load Balancing

• Input: m identical machines; n jobs, job j has
processing time tj.

– Job j must run contiguously on one machine.

– A machine can process at most one job at a time.

• Def: The load of machine i is Li = sum of
processing times of assigned jobs.

• Def: The makespan is the maximum load on
any machine L = maxi Li.

• Load balancing: Assign each job to a machine
to minimize makespan. NP-Complete problem

1/12/10 COT 6936 23 Example from Kleinberg & Tardos;
Slides inspired by Kevin Wayne

Example

1/12/10 COT 6936 24

1 4 7

2

3

5

6

8

9

10 Machine 1

Machine 2

Machine 3

Load on Machine 1

Makespan

9

Greedy Algorithm

• Algorithm:
– for jobs 1 to n (in any order)

• Assign job j to machine with least load

• Observations:
1. LOPT max {t1, …, tn}

2. LOPT AVG(t)

3. If n > m, then LOPT 2tsmall

1/12/10 COT 6936 25

Analysis

• Theorem: Greedy Algorithm is 2-approximate

• Proof:
– Let i be machine with maximum load Li. Let j be

last job scheduled on it.

– Before j was assigned, machine i had least load.

– Thus Li – tj Lk, for all k in [1..m]

– tj LOPT

– Li 2LOPT

• Is the analysis tight?

1/12/10 COT 6936 26

Analysis is tight!

1/12/10 COT 6936 27

10

Longest Processing Time (LPT) Algorithm

• Algorithm:
– for jobs 1 to n (in decreasing order of time)

• Assign job j to machine with least load

• Proof:
– Let i be machine with maximum load Li. Let j be

last job scheduled on it.

– The last job is the shortest and is at most LOPT/2

– Thus Li is at most (3/2)LOPT [if n > m]

• Is the analysis tight?
– No! (4/3)-approximation exists [Graham, 1969]

1/12/10 COT 6936 28

10/30/08 COT 5407 29

Fractional Knapsack Problem
• Burglar’s choices:
 n bags of valuables: x1, x2, …, xn
 Unit Value: v1, v2, …, vn
 Max number of units in bag: q1, q2, …, qn
 Weight per unit: w1, w2, …, wn
 Getaway Truck has a weight limit of B.
 Burglar can take “fractional” amount of any item.
 How can burglar maximize value of the loot?
• Greedy Algorithm works!
 Pick maximum quantity of highest value per weight

item. Continue until weight limit B is reached.

10/30/08 COT 5407 30

0-1 Knapsack Problem

• Burglar’s choices:
 Items: x1, x2, …, xn
 Value: v1, v2, …, vn
 Weight: w1, w2, …, wn
 Getaway Truck has a weight limit of B.
 “Fractional” amount of items NOT allowed
 How can burglar maximize value of the loot?
• Greedy Algorithm does not work! Why?
• Need dynamic programming!

11

0-1 Knapsack Problem: Example

Item Value Weight

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

1/12/10 COT 6936 31

B = 12

10/30/08 COT 5407 32

0-1 Knapsack Problem
• Subproblems?

– V[j, L] = Optimal solution for knapsack problem assuming
truck weight limit L & choice of items from set {1,2,…, j}.

– V[n, B] = Optimal solution for original problem
– V[1, L] = easy to compute for all values of L.

• Recurrence Relation? [Either xj included or not]
– V[j, L] = max { V[j-1, L] , vj + V[j-1, L-wj] }

• Table of solutions?
– V[1..n, 1..B]

• Ordering of subproblems?
– Row-wise

Another NP-Complete Number Problem

• Input: set S of n items each with values {v1,
…,vn} and weights {w1,…,wn}; Knapsack with
weight limit B and value V

• Question: Is there a choice of items from S
whose weights add up to at most B and whose
value adds up to at least V?

1/12/10 COT 6936 33

KNAPSACK

12

Knapsack Problem

• The 0-1 Knapsack problem is NP-Complete.

• The 0-1 Knapsack problem can be solved
exactly in O(nB) time.

• Does this mean P = NP ? What is going on
here?

• What we have here is a pseudo-polynomial
time algorithm. Why?

1/12/10 COT 6936 34

Knapsack: Approximations

• Greedy Algorithm is 2-approximate
– Sort items by value/weight

– Greedily add items to knapsack if it does not
exceed the weight limit

• Improved algorithm is (1 + 1/k)-approximate
[Sahni, 1975]
– Time complexity is polynomial in n, logV, and logB

– Time complexity is exponential in k

– This is a “approximation scheme”

– Implies cannot get to within an additive constant!

1/12/10 COT 6936 35

• Set of points {p1,…,pn} in Rd

• Typical data mining problem is to find k
clusters in this data

Clustering

1/12/10 COT 6936 36

13

Clustering

• Requires a distance function
– Euclidean distance (L2 distance) and Lp metrics

– Mahalanobis distance

– Pearson Correlation Coefficient

– General metric distance

• Requires an objective function to optimize
– Maximum distance to a center

– Sum of distances to a center

– Median of distance to a center

• Can any point be center? (finite vs infinite)
1/12/10 COT 6936 37

Clustering

• Set of points S = {p1,…,pn} in Rd

• Find a set of k centers such that the
maximum of the distance of a point to its
closest center is minimized.

• MinC Maxi d(pi,C)

• d(pi,C) = Mincj in C dist(pi,cj)

1/12/10 COT 6936 38

Well-known clustering techniques

• Algorithms
– K-Means

– Hierarchical clustering

– Clustering using MSTs

– Greedy algorithm
• Put first center at best possible location for single

center; then keep adding centers to reduce covering
radius each time by as much as possible.

• Disadvantages
– All three are heuristic algorithms (solutions not

optimal, no provable approximation factor)
1/12/10 COT 6936 39

14

Clustering: Approximation Algorithm

• Improved Greedy algorithm:
– Repeatedly choose next center to be site farthest from

any existing center. Choose first center is arbitrarily.

1/12/10 COT 6936 40

Clustering: Approximation Analysis

• Analysis:
– Let r = radius of largest greedy cluster

– Let rOPT = radius of largest optimal cluster

– If distance from optimal center to every site is rOPT,
then distance from any site to some optimal center is
rOPT. Take ball of radius rOPT around every greedy center.
All optimal centers are covered;

– Ball of radius 2rOPT around each greedy center will cover
every site.

– Thus r 2 rOPT.

1/12/10 COT 6936 41

Alternative (Corrected) Proof

• Improved Greedy algorithm:
– Repeatedly choose next center to be site farthest from

any existing center

• Analysis:
– Let r = distance between last 2 greedy centers & rOPT =

radius of largest cluster in optimal clustering

– Let r > 2rOPT. Take ball of radius r around every greedy
center. Exactly one optimal center in each ball (?);

– Pair optimal and greedy centers (ci,ci*).

– Let s be any site and ci* be its nearest optimal center

– d(s, C) d(s, ci) d(s, ci*) + d(ci*, ci) 2r(C*).

– Thus r(C) 2r(C*), i.e., r < 2rOPT

1/12/10 COT 6936 42

15

Observation

• Analysis compared r with rOPT without
knowing what the optimal clustering looked
like!

1/12/10 COT 6936 43

Bin Packing

• Given an infinite number of unit capacity bins

• Given finite set of items with rational sizes

• Place items into minimum number of bins such
that each bin is never filled beyond capacity

• BIN-PACKING is NP-Complete
– Reduction from 3-PARTITION

1/12/10 COT 6936 44

Bin Packing: Approx Algorithm

• First-Fit:
– place item in lowest numbered bin that can

accommodate item
• FF(I) < 2 OPT(I)

• FF(I) 17/10 OPT(I) + 2

• First-Fit Decreasing:
– Sort items in decreasing size and then do first-

fit placement
• FFD(I) = 11/9 OPT(I) + 4

1/12/10 COT 6936 45

16

Bin Packing: Approx Algorithm

• Connection to Partition
– Hard even when you have only 2 bins

– Cannot approximate to within (3/2)- unless
P = NP

– Can get (1+)approximation if OPT > 2/

1/12/10 COT 6936 46

• Greedy Algorithm
– While there are uncovered items

• Find set with most uncovered items and add to cover

• Analysis
– Approximation Ratio = log n

– It is tight. In example below, it will pick 5 sets
instead of 2.

Set Cover

1/12/10 COT 6936 47

Approximability of NP-Hard Problems
Approximation Factor Problem/Algorithm

1+ Euclidean TSP (Arora)

1.5 Euclidean TSP (Christofides)

2 Vertex Cover

c Coloring

log n Set Cover

log2n

n

n Independent Set, Clique

n General TSP

1/12/10 COT 6936 48

