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Optimization Problems

• Problem:  
– A problem is a function (relation) from a set I of 

instances of the problem to a set S of solutions.  

• p: I  S 

• Decision Problem:  
– Problem with S = {TRUE, FALSE}  

• Optimization Problem:  
– Problem with a mapping from set S of solutions to a 

positive rational number called the solution value  

• p: I  S  m(I,S) 
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Optimization Versions of NP-Complete Problems

• TSP 

• CLIQUE 

• Vertex Cover & Set Cover 

• Hamiltonian Cycle  

• Hamiltonian Path 

• SAT & 3SAT 

• 3-D matching 
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Optimization Versions of NP-Complete Problems

• Computing a minimum TSP tour is NP-hard 
(every problem in NP can be reduced to it in 
polynomial time) 

• BUT, it is not known to be in NP 

• If P is NP-Complete, then its optimization 
version is NP-hard (i.e., it is at least as hard 
as any problem in NP, but may not be in NP) 
– Proof by contradiction! 
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Performance Ratio

• Approximation Algorithm A 
– A(I)  

• Optimal Solution 
– OPT(I) 

• Performance Ratio on input I for 
minimization problems 
– RA(I) = max {A(I)/OPT(I), OPT(I)/A(I)} 

• Performance Ratio of approximation 
algorithm A 
– RA = inf {r  1| RA(I)  r, for all instances} 
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Metric Space

• It generalizes concept of Euclidean space 

• Set with a distance function (metric) defined 
on its elements 
– D: M X M       R (assigns a real number to 

distance between every pair of elements from 
the metric space M) 
• D(x,y) = 0 iff x = y 

• D(x,y)  0 

• D(x,y) = D(y,x) 

• D(x,y) + D(y,z)  D(x,z) 
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Examples of metric spaces

• Euclidean distance 

• Lp metrics 

• Graph distances 
– Distance between elements is the length of the 

shortest path in the graph 
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TSP

• TSP in general graphs cannot be 
approximated to within a constant (Why?) 
– What is the approach? 

• Prove that it is hard to approximate! 

• TSP in general metric spaces holds promise!  
– NN heuristic [Rosenkrantz, et al. 77] 

• NN(I)   (ceil(log2n) + 1) OPT(I) 

– 2-OPT, 3-OPT, k-OPT, Lin-Kernighan Heuristic 

• Can TSP in general metric spaces be 
approximated to within a constant?  
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TSP in Euclidean Space

• TSP in Euclidean space can be approximated. 
– MST Doubling (DMST) Algorithm  

• Compute a MST, M 

• Double the MST to create a tour, T1 

• Modify the tour to get a TSP tour, T 

– Theorem: DMST is a 2-approximation algorithm 
for Euclidean metrics, i.e., DMST(I) < 2 OPT(I) 

– Analysis:  
• L(T)  L(T1) = 2L(M)  2L(TOPT)   

– Is the analysis tight? 
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Example of MST Doubling Algorithm
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Example of Christofides Algorithm
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TSP in Euclidean Metric

• Improved algorithms  
– MM(I) < 3/2 OPT(I)   [Christofides]  

• Christofides observed that DMST has 4 stages: 
– Find MST 

– Double all edges 

– Find Eulerian tour of resulting graph 

– Convert Eulerian tour into TSP tour 

• He modified step 2 to the following 
– Add a matching of odd degree vertices 

– PTAS(I) < (1+ ) OPT(I)  [Arora] 
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TSP Approximation Algorithm

Theorem: The MST doubling algorithm is a  
2-approximation algorithm for inputs from 
any metric space. 
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Vertex Cover

• Find the smallest set of vertices that are 
adjacent to all edges in the graph. 

• Approximation Algorithm:  
– Initialize vertex cover C = empty set 

– while (an edge remains in the graph)  
• Choose arbitrary edge e = (u,v)  

• Add u and v to vertex cover C 

• Remove all edges incident on u or v 

– Output set C 

• Analysis: |C|  2|COPT|   [Is this tight?] 
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Greedy Vertex Cover

• Algorithm 
– While graph has at least one edge 

• Pick vertex v of highest degree and add to VC 

• Remove all edges incident on v 

• Analysis 
– |VC|  log n |VCOPT|   [Is this tight?] 
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Greedy Vertex Cover: Analysis

• Let C be optimal vertex cover and K = |C| 

• Iteration i: vertex of maximum degree di is 
processed resulting in graph Gi 

• Let e(G) = # edges in G. So e(Gi) = e(Gi-1) - di 

• Observation: Sum of degrees of vertices in 
any cover is  e(G). Thus their average 
degree is  e(Gi-1)/K. And, di  e(Gi-1)/K. 

• K di  K e(Gi-1)/K  e(G) – K di 

• Thus K di  e(G)/2 
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Greedy Vertex Cover: Analysis

• After K vertices are removed, half the edges 
of G are covered. After K logn vertices are 
removed, all edges of G will be covered.  

• Performance ratio  log n 

• Is the analysis tight?  
– Goal is to find graph such that after K rounds,  

we are left with half the edges uncovered 

– Make the graph recursive so that we need log n 
such rounds before all edges are covered. 
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Complements and Approx Algorithms

• Complement of a clique subgraph is an 
independent set (i.e., a subgraph with no 
edges connecting any of the vertices) 

• If a vertex cover is removed (including all 
incident edges), what remains? 
– ?? 

• If the minimum vertex cover problem can be 
2-approximated, what about the maximum 
clique or maximum independent set? 
– ?? 
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Edge Colorings Example
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Edge Colorings

• Theorem: Every graph can be edge colored 
with at most +1 colors, where  is the 
maximum degree of the graph. 

• Theorem: No graph can be edge colored with 
less than  colors. 

• Theorem: It is NP-complete to decide 
whether a graph can be edge colored with  
colors [Holyer, 1981] 
– Thus it can be approximated to within an additive 

constant. Can’t do better than that! 
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Some NP-Complete Number Problems

• Input: set S of n integers  

• Question 1: Is there a subset of S that adds 
up to 0?    
– Example: { 7, 3, 2, 5, 8} 

• Input: set S of n integers, and integer B 

• Question 2: Is there a subset of S that adds 
up to B (part of input)?   
– Example  

 S = {267,493,869,961,1000,1153,1246,1598, 
1766,1922} and B = 5842 
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SUBSET-SUM 

SUBSET-SUM 
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More NP-Complete Number Problems

• Input: set S of n integers 

• Question 3: Is there a partition of S into 
two subsets each with the same sum? 
– Example: { 7, 3, 2, 1, 5, 8} 

• Input: set S of 3n integers 

• Question 4: Is there a partition of S into  
|S|/3 subsets each of size 3 and each of 
which adds up to the same value? 
– Strongly NP-Complete! 
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PARTITION 

3-PARTITION 

Load Balancing

• Input: m identical machines; n jobs, job j has 
processing time tj.  

– Job j must run contiguously on one machine. 

– A machine can process at most one job at a time. 

• Def: The load of machine i is Li = sum of 
processing times of assigned jobs. 

• Def: The makespan is the maximum load on 
any machine L = maxi Li. 

• Load balancing: Assign each job to a machine 
to minimize makespan. NP-Complete problem 
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Slides inspired by Kevin Wayne  

Example
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Greedy Algorithm

• Algorithm: 
– for jobs 1 to n (in any order) 

• Assign job j to machine with least load 

• Observations: 
1. LOPT  max {t1, …, tn} 

2. LOPT  AVG(t)   

3. If n > m, then LOPT  2tsmall 
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Analysis

• Theorem: Greedy Algorithm is 2-approximate 

• Proof:  
– Let i be machine with maximum load Li. Let j be 

last job scheduled on it.  

– Before j was assigned, machine i  had least load. 

– Thus Li – tj  Lk, for all k in [1..m] 

– tj  LOPT 

– Li  2LOPT 

• Is the analysis tight? 
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Analysis is tight!
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Longest Processing Time (LPT) Algorithm

• Algorithm: 
– for jobs 1 to n (in decreasing order of time) 

• Assign job j to machine with least load 

• Proof:  
– Let i be machine with maximum load Li. Let j be 

last job scheduled on it.  

– The last job is the shortest and is at most LOPT/2 

– Thus Li is at most (3/2)LOPT   [if n > m] 

• Is the analysis tight? 
– No! (4/3)-approximation exists [Graham, 1969] 
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Fractional Knapsack Problem
• Burglar’s choices: 
 n bags of valuables: x1, x2, …, xn 
 Unit Value:  v1, v2, …, vn 
 Max number of units in bag: q1, q2, …, qn 
 Weight per unit: w1, w2, …, wn 
 Getaway Truck has a weight limit of B. 
 Burglar can take “fractional” amount of any item.  
 How can burglar maximize value of the loot? 
• Greedy Algorithm works! 
 Pick maximum quantity of highest value per weight 

item. Continue until weight limit B is reached. 
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0-1 Knapsack Problem

• Burglar’s choices: 
 Items: x1, x2, …, xn 
 Value:  v1, v2, …, vn 
 Weight: w1, w2, …, wn 
 Getaway Truck has a weight limit of B. 
 “Fractional” amount of items NOT allowed  
 How can burglar maximize value of the loot? 
• Greedy Algorithm does not work! Why? 
• Need dynamic programming! 
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0-1 Knapsack Problem: Example

Item Value Weight 

1 1 1 

2 6 2 

3 18 5 

4 22 6 

5 28 7 
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B = 12 
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0-1 Knapsack Problem
• Subproblems? 

– V[j, L] = Optimal solution for knapsack problem assuming 
truck weight limit L & choice of items from set {1,2,…, j}. 

– V[n, B] = Optimal solution for original problem 
– V[1, L] = easy to compute for all values of L. 

• Recurrence Relation? [Either xj included or not] 
– V[j, L] = max { V[j-1, L]  ,  vj + V[j-1, L-wj] }  

• Table of solutions? 
– V[1..n, 1..B] 

• Ordering of subproblems? 
– Row-wise 

Another NP-Complete Number Problem

• Input: set S of n items each with values {v1,
…,vn} and weights {w1,…,wn}; Knapsack with 
weight limit B and value V  

• Question: Is there a choice of items from S 
whose weights add up to at most B and whose 
value adds up to at least V? 
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KNAPSACK 
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Knapsack Problem

• The 0-1 Knapsack problem is NP-Complete.  

• The 0-1 Knapsack problem can be solved 
exactly in O(nB) time.  

• Does this mean P = NP ? What is going on 
here? 

• What we have here is a pseudo-polynomial 
time algorithm. Why? 
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Knapsack: Approximations

• Greedy Algorithm is 2-approximate 
– Sort items by value/weight 

– Greedily add items to knapsack if it does not 
exceed the weight limit 

• Improved algorithm is (1 + 1/k)-approximate 
[Sahni, 1975] 
– Time complexity is polynomial in n, logV, and logB 

– Time complexity is exponential in k 

– This is a “approximation scheme” 

– Implies cannot get to within an additive constant! 
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• Set of points {p1,…,pn} in Rd 

• Typical data mining problem is to find k 
clusters in this data 

Clustering
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Clustering

• Requires a distance function 
– Euclidean distance (L2 distance) and Lp metrics 

– Mahalanobis distance 

– Pearson Correlation Coefficient 

– General metric distance 

• Requires an objective function to optimize 
– Maximum distance to a center 

– Sum of distances to a center 

– Median of distance to a center 

• Can any point be center? (finite vs infinite) 
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Clustering

• Set of points S = {p1,…,pn} in Rd 

• Find a set of k centers such that the 
maximum of the distance of a point to its 
closest center is minimized. 

• MinC Maxi d(pi,C)  

• d(pi,C) = Mincj in C dist(pi,cj) 
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Well-known clustering techniques

• Algorithms 
– K-Means 

– Hierarchical clustering 

– Clustering using MSTs 

– Greedy algorithm 
• Put first center at best possible location for single 

center; then keep adding centers to reduce covering 
radius each time by as much as possible. 

• Disadvantages 
– All three are heuristic algorithms (solutions not 

optimal, no provable approximation factor) 
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Clustering: Approximation Algorithm

• Improved Greedy algorithm:  
– Repeatedly choose next center to be site farthest from 

any existing center. Choose first center is arbitrarily. 

1/12/10 COT 6936 40 

Clustering: Approximation Analysis

• Analysis: 
– Let r = radius of largest greedy cluster  

– Let rOPT = radius of largest optimal cluster 

– If distance from optimal center to every site is  rOPT, 
then distance from any site to some optimal center is  
rOPT. Take ball of radius rOPT around every greedy center. 
All optimal centers are covered;  

– Ball of radius 2rOPT around each greedy center will cover 
every site.  

– Thus r  2 rOPT.  
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Alternative (Corrected) Proof

• Improved Greedy algorithm:  
– Repeatedly choose next center to be site farthest from 

any existing center 

• Analysis: 
– Let r = distance between last 2 greedy centers & rOPT = 

radius of largest cluster in optimal clustering 

– Let r > 2rOPT. Take ball of radius r around every greedy 
center. Exactly one optimal center in each ball (?);  

– Pair optimal and greedy centers (ci,ci*). 

– Let s be any site and ci* be its nearest optimal center 

– d(s, C)  d(s, ci)  d(s, ci*) + d(ci*, ci)  2r(C*). 

– Thus r(C)  2r(C*), i.e., r < 2rOPT 
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Observation

• Analysis compared r with rOPT without 
knowing what the optimal clustering looked 
like!  
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Bin Packing

• Given an infinite number of unit capacity bins 

• Given finite set of items with rational sizes 

• Place items into minimum number of bins such 
that each bin is never filled beyond capacity 

• BIN-PACKING is NP-Complete 
– Reduction from 3-PARTITION 
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Bin Packing: Approx Algorithm

• First-Fit:  
– place item in lowest numbered bin that can 

accommodate item 
• FF(I) < 2 OPT(I) 

• FF(I)  17/10 OPT(I) + 2 

• First-Fit Decreasing: 
– Sort items in decreasing size and then do first-

fit placement 
• FFD(I) = 11/9 OPT(I) + 4 
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Bin Packing: Approx Algorithm

• Connection to Partition 
– Hard even when you have only 2 bins 

– Cannot approximate to within (3/2)-  unless  
P = NP 

– Can get (1+ )approximation if OPT > 2/  
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• Greedy Algorithm 
– While there are uncovered items 

• Find set with most uncovered items and add to cover 

• Analysis  
– Approximation Ratio = log n 

– It is tight. In example below, it will pick 5 sets 
instead of 2.  

Set Cover
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Approximability of NP-Hard Problems
Approximation Factor Problem/Algorithm 

1+  Euclidean TSP (Arora) 

1.5 Euclidean TSP (Christofides) 

2 Vertex Cover 

c Coloring 

log n Set Cover 

log2n 

n 

n  Independent Set, Clique 

n General TSP 
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