
\qquad
\qquad
\qquad
\qquad
\qquad

Optimization Problems

- Problem:

- A problem is a function (relation) from a set I of instances of the problem to a set S of solutions. - $p: I \rightarrow S$
- Decision Problem:
- Problem with S = \{TRUE, FALSE\}
- Optimization Problem:
- Problem with a mapping from set S of solutions to a positive rational number called the solution value
- $p: I \rightarrow S \rightarrow m(I, S)$
1/12/10
COT 6936

Optimization Versions of NP-Complete Problems			
- TSP			
- CLIQUE			
- Vertex Cover \& Set Cover			
- Hamiltonian Cycle			
- Hamiltonian Path			
- SAT \& 3SAT			
- 3-D matching			
11210			

Optimization Versions of NP-Complete Problems

- Computing a minimum TSP tour is NP-hard (every problem in NP can be reduced to it in polynomial time)
BUT, it is not known to be in NP
If P is NP-Complete, then its optimization version is NP-hard (i.e., it is at least as hard as any problem in NP, but may not be in NP)
- Proof by contradiction!

1/12/10

COT 6936
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Performance Ratio

- Approximation Algorithm A
- A(I)
Optimal Solution
- OPT(I)
- Performance Ratio on input I for
minimization problems
- $R_{A}(I)=\max \{A(I) / O P T(I), O P T(I) / A(I)\}$
- Performance Ratio of approximation
algorithm A
$-R_{A}=\inf \left\{r \geq 1 \mid R_{A}(I) \leq r\right.$, for all instances $\}$
$1 / 12110$

Metric Space

- It generalizes concept of Euclidean space
- Set with a distance function (metric) defined on its elements
- $D: M \times M \Rightarrow R$ (assigns a real number to distance between every pair of elements from the metric space M)
- $D(x, y)=0$ iff $x=y$
- $D(x, y) \geq 0$
- $D(x, y)=D(y, x)$
- $D(x, y)+D(y, z) \geq D(x, z)$

1/12/10 COT 6936

Examples of metric spaces	
- Euclidean distance	
- L_{p} metrics	
Graph distances	
- Distance between elements is the length of the	
shortest path in the graph	

\qquad

TSP

\qquad
TSP in general graphs cannot be approximated to within a constant (Why?) \qquad

- What is the approach?
- Prove that it is hard to approximate! \qquad
TSP in general metric spaces holds promise!
- NN heuristic [Rosenkrantz, et al. 77]
- NN(I) $\leq \frac{1}{2}\left(\right.$ ceil $\left.\left(\log _{2} n\right)+1\right)$ OPT(I)
- 2-OPT, 3-OPT, k-OPT, Lin-Kernighan Heuristic - Can TSP in general metric spaces be approximated to within a constant?

1/12/10
COT 6936
8

TSP in Euclidean Space

- TSP in Euclidean space can be approximated.
- MST Doubling (DMST) Algorithm
- Compute a MST, M
- Double the MST to create a tour, T_{1}
- Modify the tour to get a TSP tour, T
- Theorem: DMST is a 2-approximation algorithm for Euclidean metrics, i.e., DMST(I) < 2 OPT(I)
- Analysis:
- $L(T) \leq L\left(T_{1}\right)=2 L(M) \leq 2 L\left(T_{\text {opT }}\right)$
- Is the analysis tight?
\qquad
\qquad
\qquad
\qquad
\qquad
1/12/10
COT 6936
9

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TSP in Euclidean Metric	
- Improved algorithms	
- MM(I) < 3/2 OPT(I)	[Christofides]
- Christofides observed that DMST has 4 stages:	
- Double all edges	
- Find Eulerian tour of resulting graph	
- Convert Eulerian tour into TSP tour	
- He modified step 2 to the following - Add a matching of odd degree vertices	
- PTAS(I) < $(1+\varepsilon) \mathrm{OPT}(\mathrm{I})$	[Arora]
${ }_{111210}$ cor 6936	12

TSP Approximation Algorithm
Theorem: The MST doubling algorithm is a
2-approximation algorithm for inputs from
any metric space.

\qquad

Vertex Cover

- Find the smallest set of vertices that are adjacent to all edges in the graph. \qquad
- Approximation Algorithm:
- Initialize vertex cover $C=$ empty set
- while (an edge remains in the graph)
\qquad
- Choose arbitrary edge e $=(u, v)$
- Add u and v to vertex cover C
- Remove all edges incident on u or v
- Output set C
Analysis: $|C| \leq 2\left|C_{\text {OPT }}\right| \quad$ [Is this tight?]
Greedy Vertex Cover
- Algorithm
- While graph has at least one edge
- Pick vertex vof highest degree and add to VC
- Remove all edges incident on v
- Analysis
$-|V C| \leq \log n\left|V C_{\text {OPT }}\right| \quad$ [Is this tight?]
I/12/10
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Greedy Vertex Cover: Analysis

- Let C be optimal vertex cover and $K=|C|$ - Iteration i: vertex of maximum degree d_{i} is processed resulting in graph G_{i}
- Let $e(G)=\#$ edges in G. So $e\left(G_{i}\right)=e\left(G_{i-1}\right)-d_{i}$ - Observation: Sum of degrees of vertices in any cover is $\geq e(G)$. Thus their average degree is $\geq e\left(G_{i-1}\right) / K$. And, $d_{i} \geq e\left(G_{i-1}\right) / K$.
$\Sigma_{k} d_{i} \geq \Sigma_{k} e\left(G_{i-1}\right) / K \geq e(G)-\Sigma_{k} d_{i}$
Thus $\sum_{k} d_{i} \geq e(G) / 2$

Greedy Vertex Cover: Analysis

- After K vertices are removed, half the edges of G are covered. After K logn vertices are removed, all edges of G will be covered.
- Performance ratio $\leq \log n$

Is the analysis tight?

- Goal is to find graph such that after K rounds, we are left with half the edges uncovered
- Make the graph recursive so that we need $\log n$ such rounds before all edges are covered.
1/12/10
COT 6936
17

Complements and Approx Algorithms

```
- Complement of a clique subgraph is an
independent set (i.e., a subgraph with no
edges connecting any of the vertices)
- If a vertex cover is removed (including all
incident edges), what remains?
- ??
- If the minimum vertex cover problem can be
2-approximated, what about the maximum
clique or maximum independent set?
- ??
    1/12/10
                                    COT }693
Edge Colorings Example
\(\qquad\)

\section*{Edge Colorings}
\(\qquad\)
Theorem: Every graph can be edge colored with at most \(\Delta+1\) colors, where \(\Delta\) is the \(\qquad\) maximum degree of the graph.
Theorem: No graph can be edge colored with less than \(\Delta\) colors.
Theorem: It is NP-complete to decide whether a graph can be edge colored with \(\Delta\) colors [Holyer, 1981]
- Thus it can be approximated to within an additive constant. Can't do better than that!

1/12/10
COT 6936
\({ }^{20}\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
```

Some NP-Complete Number Problems

- Input: set S of n integers
Question 1: Is there a subset of S that adds
up to 0?
SUBSET-SUM
- Example: {-7, -3, -2, 5, 8}
- Input: set S of n integers, and integer B
- Question 2: Is there a subset of S that adds
up to B (part of input)?
- Example
S ={267,493,869,961,1000,1153,1246,1598,
1766,1922} and B=5842
1/12/10 coт6936

More NP-Complete Number Problems

- Input: set S of n integers

Question 3: Is there a partition of S into two subsets each with the same sum?

- Example: $\{-7,-3,-2,1,5,8\} \quad$ PARTITION
- Input: set S of $3 n$ integers

Question 4: Is there a partition of S into $|S| / 3$ subsets each of size 3 and each of which adds up to the same value?

- Strongly NP-Complete! 3-PARTITION
1/12/10
COT 6936
22
\qquad

Load Balancing

Input: m identical machines; n jobs, job j has processing time t_{j}.

- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.
- Def: The load of machine i is $L=$ sum of processing times of assigned jobs.
Def: The makespan is the maximum load on any machine $L=\max L$.
Load balancing: Assign each job to a machine to minimize makespan. NP-Complete problem

1/12/10
COT 6936 Example from Kleinberg \& Tardos
Slides inspired by Kevin Wayne
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Greedy Algorithm

- Algorithm:

- for jobs 1 to n (in any order)
- Assign job j to machine with least load

Observations:

1. $L_{\text {OPT }} \geq \max \left\{t_{1}, \ldots, t_{n}\right\}$
2. $L_{O P T} \geq A V G(t)$
3. If $n>m$, then $L_{\text {OPT }} \geq 2 \dagger_{\text {small }}$

Analysis

\qquad

- Theorem: Greedy Algorithm is 2 -approximate - Proof:
- Let i be machine with maximum load L_{i}. Let j be last job scheduled on it.
- Before j was assigned, machine i had least load.
- Thus $L_{i}-t_{j} \leq L_{k}$, for all k in [1..m]
$-t_{j} \leq L_{\text {OPT }}$
$-L_{i} \leq 2 L_{\text {OPT }}$
Is the analysis tight?

1/12/10
COT 6936

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
Longest Processing Time (LPT) Algorithm
Algorithm:
    - for jobs 1 to n (in decreasing order of time)
    - Assign job j to machine with least load
Proof:
    -Let i be machine with maximum load }\mp@subsup{L}{i}{}\mathrm{ . Let }j\mathrm{ be
    last job scheduled on it.
- The last job is the shortest and is at most L LOPT}/
- Thus }\mp@subsup{L}{i}{}\mathrm{ is at most (3/2)LopT [if n>m]
Is the analysis tight?
- No! (4/3)-approximation exists [Graham, 1969]
1/12/10 COT6936
28
```


Fractional Knapsack Problem

Burglar's choices:
n bags of valuables: $x_{1}, x_{2}, \ldots, x_{n}$
Unit Value: $v_{1}, v_{2}, \ldots, v_{n}$
Max number of units in bag: $q_{1}, q_{2}, \ldots, q_{n}$
Weight per unit: $w_{1}, w_{2}, \ldots, w_{n}$
Getaway Truck has a weight limit of B.
Burglar can take "fractional" amount of any item.
How can burglar maximize value of the loot?

- Greedy Algorithm works!

Pick maximum quantity of highest value per weight item. Continue until weight limit B is reached.

10/30/08
COT 5407

0-1 Knapsack Problem

Burglar's choices:

Items: $x_{1}, x_{2}, \ldots, x_{n}$
Value: $v_{1}, v_{2}, \ldots, v_{n}$
Weight: $w_{1}, w_{2}, \ldots, w_{n}$
Getaway Truck has a weight limit of B.
"Fractional" amount of items NOT allowed
How can burglar maximize value of the loot?

- Greedy Algorithm does not work! Why?

Need dynamic programming!

10/30/08
COT 5407
30
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-

```
\(\qquad\)

\(\qquad\)

\section*{0-1 Knapsack Problem}
- Subproblems?
- V[j, L] = Optimal solution for knapsack problem assuming truck weight limit \(L\) \& choice of items from set \(\{1,2, \ldots, j\}\).
\(\qquad\)
- \(V[n, B]=\) Optimal solution for original problem \(\qquad\)
- \(V[1, L]\) = easy to compute for all values of \(L\).

Recurrence Relation? [Either \(x_{\mathrm{j}}\) included or not]
\(-V[j, L]=\max \left\{V[j-1, L], ~ V_{j}+V\left[j-1, L-w_{j}\right]\right\}\) \(\qquad\)
Table of solutions?
- V[1..n, 1..B]
- Ordering of subproblems?
- Row-wise

10/30/08
COT 5407

\section*{Another NP-Complete Number Problem}
\(\qquad\)
- Input: set \(S\) of \(n\) items each with values \(\left\{v_{1}\right.\), \(\left.\ldots, v_{n}\right\}\) and weights \(\left\{w_{1}, \ldots, w_{n}\right\}\); Knapsack with
\(\qquad\) weight limit \(B\) and value \(V\)
Question: Is there a choice of items from \(S\) whose weights add up to at most \(B\) and whose value adds up to at least V ?

NAPSACK

\section*{Knapsack Problem}

The 0-1 Knapsack problem is NP-Complete. - The 0-1 Knapsack problem can be solved exactly in \(O(n B)\) time.
- Does this mean \(p=x p\) ? What is going on here?
- What we have here is a pseudo-polynomial time algorithm. Why?

\section*{Knapsack: Approximations}
\(\qquad\)
- Greedy Algorithm is 2-approximate
- Sort items by value/weight
- Greedily add items to knapsack if it does not exceed the weight limit
- Improved algorithm is ( \(1+1 / \mathrm{k}\) )-approximate [Sahni, 1975]
- Time complexity is polynomial in \(n, \log V\), and \(\log B\)
- Time complexity is exponential in \(k\)
- This is a "approximation scheme"
- Implies cannot get to within an additive constant!

1/12/10
COT 6936
35
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\begin{tabular}{l} 
Clustering \\
\hline - Requires a distance function \\
- Euclidean distance ( \(L_{2}\) distance) and \(L_{p}\) metrics \\
- Mahalanobis distance \\
- Pearson Correlation Coefficient \\
- General metric distance \\
- Requires an objective function to optimize \\
- Maximum distance to a center \\
- Sum of distances to a center \\
- Median of distance to a center \\
- Can any point be center? (finite vs infinite) \\
cor 6936
\end{tabular}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Well-known clustering techniques}
- Algorithms
- K-Means
\(\qquad\)
- Hierarchical clustering \(\qquad\)
- Clustering using MSTs \(\qquad\)
- Put first center at best possible location for single center; then keep adding centers to reduce covering radius each time by as much as possible. \(\qquad\)

\section*{- Disadvantages}
- All three are heuristic algorithms (solutions not optimal, no provable approximation factor) 1/12/10 cot 6936

\section*{Clustering: Approximation Algorithm}

\section*{- Improved Greedy algorithm:}
- Repeatedly choose next center to be site farthest from \(\qquad\) any existing center. Choose first center is arbitrarily.


1/12/10


40

\section*{Clustering: Approximation Analysis}
\(\qquad\)
Analysis:
- Let \(r=\) radius of largest greedy cluster \(\qquad\)
- Let \(r_{\text {opt }}=\) radius of largest optimal cluster
- If distance from optimal center to every site is \(\leq r_{\text {opt }}\), then distance from any site to some optimal center is \(\leq\) \(r_{\text {opt }}\). Take ball of radius \(r_{\text {opt }}\) around every greedy center. All optimal centers are covered;
- Ball of radius \(2 r_{\text {OPT }}\) around each greedy center will cover every site. \(\qquad\)
- Thus \(r \leq 2 r_{\text {OPT }}\).

\section*{Alternative (Corrected) Proof}
\(\qquad\)
Improved Greedy algorithm:
- Repeatedly choose next center to be site farthest from \(\qquad\) any existing center

\section*{- Analysis:}
- Let \(r=\) distance between last 2 greedy centers \& \(r_{\text {OPT }}=\) radius of largest cluster in optimal clustering
- Let \(r>2 r_{\text {opt }}\). Take ball of radius \(\frac{1}{2} r\) around every greedy center. Exactly one optimal center in each ball (?):
- Pair optimal and greedy centers ( \(c_{i}, c_{i}^{*}\) ).
- Let \(s\) be any site and \(c_{i}^{*}\) be its nearest optimal center
\(-d(s, C) \leq d\left(s, c_{i}\right) \leq d\left(s, c_{i}^{\star}\right)+d\left(c_{i}^{*}, c_{i}\right) \leq 2 r\left(C^{\star}\right)\).
- Thus \(r(C) \leq 2 r\left(C^{\star}\right)\), i.e., \(r<2 r_{\text {OPT }}\)

1/12/10
Cot 6936
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Observation } \\
- Analysis compared \(r\) with \(r_{\text {opt }}\) without \\
knowing what the optimal clustering looked \\
like! \\
\\
\\
\\
\\
\hline
\end{tabular}
\(\qquad\)

\section*{Bin Packing}
- Given an infinite number of unit capacity bins - Given finite set of items with rational sizes
- Place items into minimum number of bins such that each bin is never filled beyond capacity - BIN-PACKING is NP-Complete
- Reduction from 3-PARTITION

\section*{Bin Packing: Approx Algorithm}

\section*{- First-Fit:}
- place item in lowest numbered bin that can accommodate item
- \(\mathrm{FF}(\mathrm{I})<2\) OPT(I)
- \(F F(I) \leq 17 / 10\) OPT(I) +2
- First-Fit Decreasing:
- Sort items in decreasing size and then do firstfit placement - \(\operatorname{FFD}(\mathrm{I})=11 / 9\) OPT(I) +4


\section*{Set Cover}

\section*{- Greedy Algorithm}
- While there are uncovered items
- Find set with most uncovered items and add to cover

\section*{- Analysis}
- Approximation Ratio \(=\log n\)
- It is tight. In example below, it will pick 5 sets instead of 2 .
```

