
\qquad
\qquad
\qquad
\qquad
\qquad
Randomization

- Randomized Algorithms: Uses values
generated by random number generator to
decide next step
- Often easier to implement and/or more
efficient
- Applications
- Used in protocol in "Ethernet Cards" to decide
when it next tries to access the shared medium
- Primality testing \& cryptography
- Monte Carlo simulations
1/12/10
cor 6936

QuickSort vs Randomized QuickSort

QuickSort

- Pick a fixed pivot
- Partition input based on pivot into two sets
\qquad
- Recursively sort the two partitions

Randomized QuickSort

- Pick a random pivot
- Partition input based on pivot into two sets
- Recursively sort the two partitions

1/12/10
COT 6936

QuickSort: Probabilistic Analysis
- Expected rank of pivot $=n / 2(W h y ?)$
- Thus expected size of sublists after
partition $=n / 2$
- Hence the recurrence $T(n)=2 T(n / 2)+O(n)$
- Average time complexity $=T(n)=O(n \log n)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

New Quicksort: Randomized Analysis

- Let $X_{i j}$ be a random variable representing the number of times items i and j are compared by the algorithm.
- Expected time complexity = expected value of sum of all random variables $X_{i j}$.
- $\operatorname{Pr}\left(X_{i j}=1\right)=2 /(j-i+1) \quad$ (Why?)
$T(n)=$? \qquad
\qquad

1/12/10
COT 6936
5

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Edge Contractions and Min-Cuts

\qquad

- Lemma: If you are not contracting an edge from the cut-set, edge contractions do no \dagger
\qquad affect the size of min-cuts.
Observation: Most edges are not part of the min-cut.
- Idea: Use randomization
\qquad
\qquad
\qquad

Randomized Algorithms: Min-Cut
- Assume that the Min-cut is of size k
- Pick a random edge
- Prob $\{$ edge is not in Min-cut $\} \geq 1-2 / n$ (why?)
- Prob $\{$ Min-cut is output $\} \geq 2 / n(n-1)$ (why?)

\qquad

Monte Carlo vs Las Vegas

\qquad
Monte Carlo algorithms: sometimes incorrect, but with bounded probability \qquad

- One-sided versus two-sided errors

Las Vegas algorithms: always correct, but with variable run times

Chain Hashing

\qquad

- Balls and Bins Model
- Throw m balls into n bins
\qquad
- Location of each ball chosen independently and uniformly at random
\qquad
Interesting questions to ask
- How many balls in a bin on the average?
\qquad
- How many bins are empty?
- How many balls in the fullest bin?
- If $m=n$, how many bins are expected to have > 1 ball in it?

COT 6936

Power of Two Choices

- Hashing with two hash functions

- Dramatically reduces the expected size of the \qquad largest bin while doubling the average search cost.
- Dynamic Resource Allocation
- Multiple identical resources to choose from
- Find load of each one and pick least loaded
- Pick random resource
- Sample 2 random resources and pick less loaded one

Bloom Filters

- Used to test set membership by using bit arrays to indicate which positions have been hashed to.

0	0	1	1	0	1	0	0	1

- Use k hash functions instead of 1.
- How large should k be for given error bound?

Breaking symmetry

\qquad
Many users want to share a resource

- Want to pick a permutation quickly
\qquad
- Hash to 2^{b} bits and sort them
- If $b=3 \log _{2} n$ then two users will have distinct hash values with probability $1-1 / n$

