
\qquad

Gaussian Elimination

Solving a system of simultaneous equations $x_{1} \quad-2 x_{3}=2$
$x_{2}+x_{3}=3 \quad O\left(n^{3}\right)$ algorithm
$x_{1}+x_{2} \quad-x_{4}=4$
$x_{2}+3 x_{3}+x_{4}=5$
$x_{1} \quad-2 x_{3} \quad=2$
$x_{2}+x_{3}=3$
$x_{2}+2 x_{3}-x_{4}=2$
$x_{2}+3 x_{3}+x_{4}=5$
2/11/10
COT 6936
2

Linear Programming
- Want more than solving simultaneous
equations
We have an objective function to optimize

Chocolate Shop [DPV book]

2 kinds of chocolate

- milk [Profit: \$1 per box] [Demand: 200]
- Deluxe [Profit: $\$ 6$ per box] [Demand: 300]

Production capacity: 400 boxes

- Goal: maximize profit
- Maximize $x_{1}+6 x_{2}$ subject to constraints:
- $x_{1} \leq 200$
- $x_{2} \leq 300$
- $x_{1}+x_{2} \leq 400$
- $x_{1}, x_{2} \geq 0$

2/11/10
COT 6936
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Diet Problem
- Food type: $F_{1, \ldots,}, F_{m}$ - Nutrients: - Min daily requirement of nutrients: c_{1}, \ldots, c_{n} - Price per unit of food: b_{1}, \ldots, b_{m} - Nutrient N_{j} in food F_{i} : $\quad \mathrm{a}_{\mathrm{ij}}$ - Problem: Supply daily nutrients at minimum cos \dagger - Min $\Sigma_{i} b_{i} x_{i}$ - $\Sigma_{i} a_{i j} x_{i} \geq c_{j} \quad$ for $1 \leq j \leq n$ - $x_{i} \geq 0$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Transportation Problem		
- Ports (Production Units):	P_{1}, \ldots, P_{m}	
- Port/production capacity:	s_{1}, \ldots, s_{m}	
- Markets (Consumption Units):	M_{1}, \ldots, M_{n}	
- Min daily market need:	r_{1}, \ldots, r_{n}	
- Cost of transporting to M_{k} from port $P_{i}:$	$a_{i k}$	
- Problem: Meet market need at minimum		
transportation cost		
Multicommodity versions		
cor6 636		

Assignment Problem
- Workers: b_{1}, \ldots, b_{n} - Jobs: g_{1}, \ldots, g_{m} - Value of assigning person b_{i} to job $g_{k}: a_{i k}$ - Problem: Choose job assignment with maximum value
The General Assignment Problem generalizes the Bipartite Matching Problem
2110 ${ }^{\text {210 }}$

\qquad

Bandwidth Allocation Problem

Maximize revenue by allocating bandwidth to connections along two routes without exceeding bandwidth capacities
$\operatorname{Max} 3\left(x_{A B}+x_{A B}{ }^{\prime}\right)+2\left(x_{B C}+x_{B C}{ }^{\prime}\right)+4\left(x_{A C}+x_{A C}{ }^{\prime}\right)$ s.t.
$x_{A B}+x_{A B}{ }^{\prime}+x_{B C}+x_{B C^{\prime}} \leq 10$
$x_{A B}+x_{A B}{ }^{\prime}+x_{A C}+x_{A C^{\prime}} \leq 12$
$x_{B C}+x_{B C}{ }^{\prime}+x_{A C}+x_{A C}{ }^{\prime} \leq 8$
$x_{A B}+x_{B C}{ }^{\prime}+x_{A C^{\prime}} \leq 6 ; \quad x_{A B}+x_{A B}{ }^{\prime} \geq 2 ; \quad x_{B C}+x_{B C}{ }^{\prime} \geq 2$
$x_{A B}{ }^{\prime}+x_{B C}+x_{A C^{\prime}} \leq 13 ; \quad x_{A C}+x_{A C}{ }^{\prime} \geq 2$
$x_{A B}{ }^{\prime}+x_{B C}{ }^{\prime}+x_{A C} \leq 11 ;$ \& all nonneg constraints
2/11/10
COT 6936
${ }^{9}$

\qquad

Converting to standard form
- Min $-2 x_{1}+3 x_{2}$ Subject to
$x_{1}+x_{2}=7$
$x_{1}-2 x_{2} \leq 4$
$x_{1} \geq 0$
Max $2 x_{1}-3 x_{2}$ Subject to
$x_{1}+x_{2} \leq 7$
$-x_{1}-x_{2} \leq-7$
$-x_{1}-2 x_{2} \leq 4$
$-x_{1} \geq 0$
$2 n 1110$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Converting to standard form

\qquad
Max $2 x_{1}-3 x_{2}$ Subject to
$x_{1}+x_{2} \leq 7$
\qquad
$-x_{1}-x_{2} \leq-7$
$x_{1}-2 x_{2} \leq 4$
$x_{1} \geq 0$
Max $2 x_{1}-3\left(x_{3}-x_{4}\right)$ Subject to
$x_{1}+x_{3}-x_{4} \leq 7$
$-x_{1}-\left(x_{3}-x_{4}\right) \leq-7$
$x_{1}-2\left(x_{3}-x_{4}\right) \leq 4$
$x_{1}, x_{3}, x_{4} \geq 0$
2/11/10
COT 6936
12 \qquad

\qquad

Slack Form

\qquad
Max $2 x_{1}-3 x_{2}+3 x_{3}$ Subject to
$x_{1}+x_{2}-x_{3} \leq 7$
$-x_{1}-x_{2}+x_{3} \leq-7$
$x_{1}-2 x_{2}-2 x_{3} \leq 4$
$x_{1}, x_{2}, x_{3} \geq 0$
Max $2 x_{1}-3 x_{2}+3 x_{3}$ Subject to
$x_{1}+x_{2}-x_{3}+x_{4}=7$
$-x_{1}-x_{2}+x_{3}+x_{5}=-7$
$x_{1}-2 x_{2}-2 x_{3}+x_{6}=4$
$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0$
2/11/10
COT 6936

Duality	
- $\operatorname{Max} c^{\top} x$ Subject to $A x \leq b$ and $x \geq 0$	[Primal]
- $\operatorname{Min} y^{\top} b$ Subject to $y^{\top} A \geq c$ and $y \geq 0$	[Dual]
211110	

\qquad

Understanding Duality

Maximize $x_{1}+6 x_{2}$ subject to:

- $x_{1} \leq 200$	$\left(y_{1}\right)$	
$x_{2} \leq 300$	$\left(y_{2}\right)$	[(100,300)]
- $x_{1}+x_{2} \leq 400$	$\left(y_{3}\right)$	
- $x_{1}, x_{2} \geq 0$		

Different choice of multipliers gives us different bounds. We want smallest bound.

- Minimize $200 y_{1}+300 y_{2}+400 y_{3}$ subject to:
- $\left.\begin{array}{ll}y_{1}+y_{3} \geq 1 & \left(x_{1}\right) \\ \text { - } \begin{array}{ll}y_{2}+y_{3} \geq 6 & \left(x_{2}\right)\end{array} & {[(0,5,1)]} \\ \text { - } y_{1, ~} y_{2} \geq 0 & \end{array}\right]$
- $y_{1}, y_{2} \geq 0$

2/11/10
COT 6936

Duality Principle

\qquad

- Primal feasible values \leq dual feasible values

Max primal value $=\min$ dual value
Duality Theorem: If a linear program has a
\qquad bounded optimal value then so does its dual and the two optimal values are equal.

Visualizing Duality

Shortest Path Problem

- Build a physical model and between each pair of vertices attach a string of appropriate length
- To find shortest path from s to t, hold the two vertices and pull them apart as much as possible without breaking the strings \qquad

Simplex Algorithm

Start at v, any vertex of feasible region while (there is neighbor v ' of v with better objective value) do set $v=v^{\prime}$

- Report v as optimal point and its value as optimal value

What is a

- Vertex?, neighbor?
- Start vertex? How to pick next neighbor?
2/11/10 сот6936 20

Steps of Simplex Algorithm		
- In order to find next neighbor from		
arbitrary vertex, we do a change of origin		
(pivot)		

\qquad
2/11/10

Simplex Algorithm Example

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simplex Algorithm Example	
Initial LP: $\begin{aligned} 2 x_{1}-x_{2} & \leq 4 \\ x_{1}+2 x_{2} & \leq 9 \\ -x_{1}+x_{2} & \leq 3 \\ x_{1} & \geq 0 \\ x_{2} & \geq 0 \end{aligned}$	Current vertex: $\{(4)$, (D) $\}$ (origin). Objective value: 0 . Move: increase x (5) is released, (3) becomes tight. Stop at $x_{2}=3$. New vertex $\{(4),(3)\}$ has local coordinates $\left(y_{1}, y_{2}\right)$; $y_{1}=x_{1}, \quad y_{2}=3+x_{1}-x_{2}$
	Current vertex: $\{(4$, (3) $\}$ Objective value: 15 . Move: increase y_{1} (4) is released, (3) becomes tight. Stop at $y_{1}=1$. New vertex $\left\{(2)\right.$, (3) has local coordinates $\left(x_{1}, s_{2}\right)$: $z_{1}=3-3 y_{1}+2 y_{2}, \quad z_{2}=y_{2}$

Simplex Algorithm Example	
Rewritten LP: $\begin{align*} \max 15 & +7 y_{1}-5 y_{2} \\ y_{1}+y_{2} & \leq 7 \tag{1}\\ 3 y_{1}-2 y_{2} & \leq 3 \tag{2}\\ y_{2} & \geq 0 \tag{8}\\ y_{1} & \geq 0 \tag{4}\\ -y_{1}+y_{2} & \leq 3 \tag{5} \end{align*}$	Current vertex: $\{$ (9, (3) $\}$. Objective value: 15 . Mote: increase y_{1}. (4) is released, (2) becomes tight. Stop at $y_{1}=1$. New vertex $\{(2),(3)\}$ has local coordinates $\left(z_{1}, z_{2}\right)$; $z_{1}=3-3 y_{1}+2 y_{2}, \quad z_{2}=y_{2}$
Rewritten LP: $\begin{align*} & \max 22-\frac{j}{j} z_{1}-\frac{1}{j} v_{2} \\ &-\frac{1}{3} s_{1}+\frac{3}{2} z_{2} \leq 6 \tag{1}\\ & s_{1} \geq 0 \tag{2}\\ & z_{2} \geq 0 \tag{3}\\ & \frac{1}{3} s_{1}-\frac{3}{3} s_{2} \leq 1 \tag{4}\\ & \frac{1}{3} s_{1}+\frac{1}{3} s_{2} \leq 4 \tag{5}\\ & 2 / 11 / 10 \end{align*}$	Current vertex: $\{(2)$, (3) $\}$. Objective value: 22 . Optimal: all $c_{1}<0$. Solve (2), (3) (in original LP) to get optimal solution $\left(x_{1}, x_{2}\right)=(1,4)$.

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Polynomial-time algorithms for LP

- Simplex is not poly-time in the worst-case
- Khachiyan's ellipsoid algorithm is a polynomial-time algorithm
\qquad
- "LP is in P"
- Karmarkar's interior-point algorithm
- Good implementations for LP exist
- Works very well in practice
- More competitive than the poly-time methods for LP

COT 6936
27

\qquad

Min-Cost Network Flow Problem	
- $\operatorname{Min} \sum_{e} a(e) f(e)$	Subject to
$f(e) \leq c(e)$	for each edge e
$f(u, v)=-f(v, u)$	for each u, v in set of vertices
$\Sigma_{v} f(u, v)=0$	for each u in V-\{s,t\}
$\Sigma_{v} f(s, v)=F$	
$f(e) \geq 0$	for each edge e
211110	Cor 6936

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Vertex Cover as an LP?

\qquad

- For vertex v, create variable x_{v}
- Takes value 0 if it is not in vertex cover
\qquad
- Takes value 1 if it is in vertex cover
- For edge (u, v), create constraint $x_{u}+x_{v} \geq 1$
- Objective function: Σx_{v}
- Additional constraints: $x_{v} \leq 1$
- DOES THIS WORK?
- Doesn't work because x_{v} needs to be from $\{0,1\}$

COT 6936
\qquad
\qquad
\qquad
\qquad

2/11/10
Integer Linear Programming

- LP with integral solutions
- NP-hard
- If A is a totally unimodular matrix (TUM),
then the LP solution is always integral.
- A TUM is a matrix for which every nonsingular
submatrix has determinant $0,+1$ or -1 .
- A TUM is a matrix for which every nonsingular
submatrix has integral inverse.
2n1110

