COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu

http://www.cs.fiu.edu/~giri/teach/COT6936_S10.html https://online.cis.fiu.edu/portal/course/view.php?id=427

2/11/10

COT 6936

Gaussian Elimination

O(n3) algorithm

· Solving a system of simultaneous equations

$$x_1 -2x_3 = 2$$

$$x_2 + x_3 = 3$$

$$x_1 + x_2 - x_4 = 4$$

$$x_2 + 3x_3 + x_4 = 5$$

$$x_1 -2x_3 = 2$$

$$x_2 + x_3 = 3$$

$$x_2 + 2x_3 - x_4 = 2$$

$$x_2 + 3x_3 + x_4 = 5$$

2/11/10

COT 6936

Linear Programming

- Want more than solving simultaneous
 equations
- · We have an objective function to optimize

2/11/10

COT 6936

Chocolate Shop [DPV book] 2 kinds of chocolate - milk [Profit: \$1 per box] [Demand: 200] - Deluxe [Profit: \$6 per box] [Demand: 300] Production capacity: 400 boxes Goal: maximize profit - Maximize x₁ + 6x₂ subject to constraints: · x₁ ≤ 200 · x₂ ≤ 300 · x₁ + x₂ ≤ 400 · x₁, x₂ ≥ 0

Diet Problem Food type: $F_1,...,F_m$ Nutrients: $N_1,...,N_n$ · Min daily requirement of nutrients: c1,...,cn Price per unit of food: $b_1,...,b_m$ Nutrient N_i in food F_i: Problem: Supply daily nutrients at minimum cost • Min $\Sigma_i b_i x_i$ • $\sum_{i} a_{ij} x_i \ge c_i$ for $1 \le j \le n$ • x_i ≥ 0 2/11/10 COT 6936

Transportation Problem • Ports (Production Units): P₁,...,P_m • Port/production capacity: s₁,...,s_m • Markets (Consumption Units): M₁,...,M_n • Min daily market need: r₁,...,r_n • Cost of transporting to M_k from port P_i: a_{ik} • Problem: Meet market need at minimum transportation cost Multicommodity versions

Assignment Problem

- · Workers: b₁,...,b_n
- Jobs: g₁,...,g_m
- Value of assigning person b_i to job g_k: a_{ik}
- Problem: Choose job assignment with maximum value

The General Assignment Problem generalizes the Bipartite Matching Problem

2/11/10 COT 6936 7

Bandwidth Allocation Problem

- Maximize revenue by allocating bandwidth to connections along two routes without exceeding bandwidth capacities
- Max $3(x_{AB}+x_{AB}') + 2(x_{BC}+x_{BC}') + 4(x_{AC}+x_{AC}')$ s.t.

$$x_{AB} + x_{AB}' + x_{BC} + x_{BC}' \le 10$$

$$x_{AB} + x_{AB}' + x_{AC} + x_{AC}' \le 12$$

$$x_{BC} + x_{BC}' + x_{AC} + x_{AC}' \le 8$$

 $x_{AB} + x_{BC}' + x_{AC}' \le 6;$ $x_{AB} + x_{AB}' \ge 2;$ $x_{BC} + x_{BC}' \ge 2$

 $x_{AB}' + x_{BC} + x_{AC}' \le 13;$ $x_{AC} + x_{AC}' \ge 2$

 $x_{AB}' + x_{BC}' + x_{AC} \le 11;$ & all nonneg constraints

2/11/10 COT 6936 9

Standard LP Maximize $\sum c_k x_k$ [Objective Function] Subject to $\sum a_{ik}x_k \le b_i$ [Constraints] and $x_k \ge 0$ [Nonnegativity Constraints] Matrix formulation of LP Maximize c^Tx Subject to Ax≤b and x ≥ 0 2/11/10 COT 6936 Converting to standard form Min $-2x_1 + 3x_2$ Subject to $x_1 + x_2 = 7$ $x_1 - 2x_2 \le 4$ x₁ ≥ 0 Max $2x_1 - 3x_2$ Subject to $x_1 + x_2 \le 7$ $-x_1 - x_2 \le -7$ $-x_1 - 2x_2 \le 4$ $-x_1 \ge 0$ 2/11/10 COT 6936 11 Converting to standard form • Max $2x_1$ - $3x_2$ Subject to $x_1 + x_2 \le 7$ $-x_1 - x_2 \le -7$ $x_1 - 2x_2 \le 4$ $x_1 \ge 0$ Max $2x_1 - 3(x_3 - x_4)$ Subject to $x_1 + x_3 - x_4 \le 7$ $-x_1 - (x_3 - x_4) \le -7$ $x_1 - 2(x_3 - x_4) \le 4$

 $x_{1, x_{3}, x_{4} \ge 0}$

COT 6936

12

Conv	erting to Standard for	n
	x ₂ + 3x ₃ Subject to	
$x_1 + x_2 - x_3 \le 7$	7	
$-x_1 - x_2 + x_3 \le$		
$x_1 - 2x_2 - 2x_3$ $x_1, x_2, x_3 \ge 0$	<u> </u>	
1, 2, 3		
2/11/10	COT 6936	13
	Slack Form	
• Max 2x ₁ - 3	x ₂ + 3x ₃ Subject to	
$x_1 + x_2 - x_3 \le 7$	7	
$-x_1 - x_2 + x_3 \le$		
$x_1 - 2x_2 - 2x_3$ $x_1, x_2, x_3 \ge 0$	<u> </u>	
	$x_2 + 3x_3$ Subject to	
$x_1 + x_2 - x_3 + x_4$		
-x ₁ - x ₂ + x ₃ +	$x_5 = -7$	
$x_1 - 2x_2 - 2x_3$		
X ₁ , X ₂ , X ₃ , X ₄ ,	x ₅ , x ₆ ≥ 0	14
2.2.0	CO. 0000	14
	Duality	
	Duality	
· Max c ^T x	[Primal]	
Subject to /	AX ≤ b	
and × ≥ 0		
. AAin . Th	[N]]	
· Min y ^T b	[Dual]	
Subject to y	n z c	

COT 6936

15

2/11/10

Understanding Duality

- Maximize $x_1 + 6x_2$ subject to constraints:
 - $x_1 \le 200$ (1) $x_2 \le 300$ (2) $x_1 + x_2 \le 400$ (3)

How were mutipliers determined?

- · x₁, x₂ ≥ 0 • (100,300) is feasible; y₁, ue = 1900. Optimum?
- Adding 1 times (1) + 6 times (2) gives us $x_1 + 6x_2 \le 2000$
- Adding 1 times (3) + 5 times (2) gives us
 - $x_1 + 6x_2 \le 1900$
 - "Certificate of Optimality" for solution (100,300)

Understanding Duality

- Maximize x₁ + 6x₂ subject to:
 - $\cdot x_1 \leq 200 \qquad (y_1)$
 - $\cdot \quad x_2 \le 300 \qquad (y_2)$
 - $x_1 + x_2 \le 400$ (y₃)
 - $x_1 + x_2 \le 400$ ($x_1, x_2 \ge 0$
- Different choice of multipliers gives us different bounds. We want smallest bound.
- Minimize $200y_1 + 300y_2 + 400y_3$ subject to:
 - $y_1 + y_3 \ge 1$ • $y_2 + y_3 \ge 6$
- (x₁) (x₂)
 - (x_2) [(0,5,1)]

[(100,300)]

17

18

• y₁, y₂ ≥ 0

COT 6936

Duality Principle

- Primal feasible values < dual feasible values
- Max primal value = min dual value
- Duality Theorem: If a linear program has a bounded optimal value then so does its dual and the two optimal values are equal.

2/11/10

COT 6936

Visualizing Duality

- Shortest Path Problem
 - Build a physical model and between each pair of vertices attach a string of appropriate length
 - To find shortest path from s to t, hold the two vertices and pull them apart as much as possible without breaking the strings
 - This is exactly what a dual LP solves!
 - · Max x_s-x_t
 - subject to $|x_u-x_v| \le w_{uv}$ for every edge (u.v)
 - The taut strings correspond to the shortest path, i.e., they have no slack

2/11/10 COT 6936 19

Simplex Algorithm

- · Start at v, any vertex of feasible region
- while (there is neighbor v' of v with better objective value) do

set v = v'

- Report v as optimal point and its value as optimal value
- · What is a
 - Vertex?, neighbor?
- · Start vertex? How to pick next neighbor?

COT 6936

2/11/10

Steps of Simplex Algorithm

 In order to find next neighbor from arbitrary vertex, we do a change of origin (pivot)

Initial LP: $\max 2x_1 + 5x_2$				Current vertex: {(@, ®) (origin). Objective value: 0.		
$2x_1 - x_2$				Move: increase x_2 .		
	<	9	(2)	(5) is released, (3) becomes tight. Stop at x ₂ = 3.		
	5	3		New vertex $\{(3), (3)\}$ has local coordinates (y_1, y_2)		
	≥ 0	(4)	$y_1 = x_1, y_2 = 3 + x_1 - x_2$			
	2	0	(5)	$y_1 = x_1, y_2 = 3 + x_1 - x_2$		

Initial LP:	Current vertex: {(4), (5)} (origin).		
$\max 2x_1 + 5x_2$	Objective value: 0.		
$2x_1 - x_2 \le 4$ (1)	Move: increase x_2 ,		
$x_1 + 2x_2 \le 9$ (2)	$\textcircled{5}$ is released, $\textcircled{3}$ becomes tight. Stop at $x_2 = 3$.		
$-x_1 + x_2 \le 3$ (3)	New vertex $\{(3), (3)\}$ has local coordinates (y_1, y_2) :		
$x_1 \ge 0$ (4)			
$x_2 \ge 0$ (5)	$y_1 = x_1, y_2 = 3 + x_1 - x_2$		
Rewritten LP:	Current vertex: {(4), (3)}.		
$\max 15 + 7y_1 - 5y_2$	Objective value: 15.		
$y_1 + y_2 \le 7$ (I)	Move: increase y_1 .		
$3y_1 - 2y_2 \le 3$ (2)	④ is released, ② becomes tight. Stop at y ₁ = 1.		
$y_2 \ge 0$ (3)	New vertex $\{(2), (3)\}$ has local coordinates (z_1, z_2) :		
$y_1 \ge 0$ ④			
$-y_1 + y_2 \le 3$ (5)	$z_1 = 3 - 3y_1 + 2y_2, z_2 = y_2$		

Rewritten LP: $\max 15 + 7y_1 - 5y_2$ $y_1 + y_2 \le 7$ ① $3y_1 - 2y_2 \le 3$ ② $y_2 \ge 0$ ③ $y_1 \ge 0$ ④ $-y_1 + y_2 \le 3$ ⑤ Rewritten LP: $\max 22 - \frac{\pi}{6}z_1 - \frac{1}{6}z_2$	Current vertex: $\{ \oplus, \otimes \}$. Objective value: 15. Move: increase y_1 . \oplus is released. \oplus becomes tight. New vertex $\{ \oplus, \otimes \}$ has local correct vertex $\{ \oplus, \otimes \}$ has local correct vertex: $\{ \oplus, \otimes \}$. Objective value: 22.	ordinates (z_1, z_2) :	
$\max_{z_2 - \frac{\pi}{3} z_1 - \frac{\pi}{3} z_2} - \frac{1}{4} z_1 + \frac{5}{8} z_2 \le 6$ (I)	Optimal: all $c_1 < 0$.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Solve $\mathfrak{D},\mathfrak{F}$ (in original LP) to $(x_1,x_2)=(1,4).$	get optimal solution	
2/11/10	COT 6936	25	

Polynomial-time algorithms for LP

- Simplex is not poly-time in the worst-case
- Khachiyan's ellipsoid algorithm is a polynomial-time algorithm
 - "LP is in 2"
- Karmarkar's interior-point algorithm
- Good implementations for LP exist
 - Works very well in practice
 - More competitive than the poly-time methods for $\ensuremath{\mathsf{LP}}$

2/11/10 COT 6936 27

Network Flow Problem Max Σ_v f(s,v) Subject to for each edge e f(e) ≤ c(e) f(u,v) = -f(v,u)for each u,v in set of vertices $\Sigma_{v} f(u,v) = 0$ for each u in $V - \{s,t\}$ f(e) ≥ 0 for each edge e Min-Cost Network Flow Problem Min Σ_e a(e)f(e) Subject to f(e) ≤ c(e) for each edge e f(u,v) = -f(v,u)for each u,v in set of vertices $\Sigma_{v} f(u,v) = 0$ for each u in $V - \{s,t\}$ $\Sigma_{v} f(s,v) = F$ f(e) ≥ 0 for each edge e 2/11/10 COT 6936 Vertex Cover as an LP? For vertex v, create variable x, - Takes value 0 if it is not in vertex cover - Takes value 1 if it is in vertex cover • For edge (u,v), create constraint $x_u + x_v \ge 1$ • Objective function: $\sum x_v$ Additional constraints: x_v ≤ 1

· DOES THIS WORK?

{O,1} 2/11/10

• Doesn't work because x_v needs to be from

COT 6936

Integer Linear Programming • LP with integral solutions • NP-hard • If A is a totally unimodular matrix (TUM), then the LP solution is always integral. • A TUM is a matrix for which every nonsingular submatrix has determinant 0, +1 or -1. • A TUM is a matrix for which every nonsingular submatrix has integral inverse.

2/11/10

COT 6936

11