
\qquad

Birthday Paradox
Probability that m balls are put in distinct bins is
$\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{m-1}{n}\right)=\prod_{j=1}^{m-1}\left(1-\frac{j}{n}\right)$.
211100

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Birthday Paradox

- To achieve probability $\geq \frac{1}{2}$, we need:
- $m^{2} / 2 n \geq \ln 2$ \qquad
- $m \geq \operatorname{sqrt}\{2 n \ln 2\}$
- In a room with at least 23 people, the probability that at least two people have the
\qquad same birthday is more than $\frac{1}{2}$.

Balls and Bins Model

- Throw m balls into n bins
- Location of each ball chosen independently
and uniformly at random
Interesting questions to ask
- How many balls in a bin on the average?
- How many bins are empty?
- How many balls in the fullest bin?
- How many bins are expected to have >1 ball in it? - Applications: Hashing with Chaining $\begin{aligned} & \text { Birthday } \\ & \text { Paradox }\end{aligned}$

1/12/10
COT 6936

Average Size of a Chain in Hash Table

- Let $N=\#$ of possible hash values
- Let $\mathrm{k}=$ \# items stored in the hash table

Probability that exactly i out of k items hash to the same value is
\qquad $p_{i}=\binom{k}{i}(N-1)^{k-i} N^{-k}$.

Maximum Load
$\qquad\binom{n}{j}\left(\frac{1}{n}\right)^{j} \leq \frac{1}{j!} \leq\left(\frac{e}{j}\right)^{j}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Maximum Load: most balls in any bin

\qquad

- Prob that one of n bins has at least $j=(3 \ln$ $n / \ln \ln n$) balls is \qquad

$$
n\left(\frac{e}{j}\right)^{j} \leq n\left(\frac{e \ln \ln n}{3 \ln n}\right)^{3 \ln n / \ln \ln n}
$$

$$
\leq n\left(\frac{\ln \ln n}{3 \ln n}\right)^{3 \ln n / \ln \ln n}
$$

$$
=e^{\ln n}\left(e^{\ln \ln \ln n-\ln \ln n}\right)^{3 \ln n / \ln \ln n}
$$

$$
=e^{-2 \ln n+3(\ln n)(\ln \ln \ln n) / \ln \ln n}
$$

$$
\leq \frac{1}{n}
$$

2/11/10
COT 6936

Power of Two Choices

- Each ball comes with $d=2$ possible bins, each chosen independently at random
Ball is placed in the least full bin among the d choices
- ties broken arbitrarily
- MAGICALLY, with high prob:
- MAX LOAD $=\ln \ln n / \ln 2+O(1)$
- Down from $\Theta(\ln n / \ln \ln n)($ when $d=1)$
- In general, when $\mathrm{d} \geq 2$,
- MAXLOAD $=\ln \ln n / \ln d+\theta(1)$

2/11/10
Applications

- Hashing with 2-way chaining
- 2 hash function applied to each data item
- Item inserted in shorter of two chains
- Dynamic Resource Allocation
- Choosing a server among servers in a network
- Choosing a disk to store an entity
- Choosing a printer to serve a print job
2/11/10

