
\qquad
\qquad
\qquad
\qquad
\qquad

```
Massive Data Sets
Examples of large persistent data sets
- WalMart Transaction data (1 PB?)
- Sloan Digital Sky Survey (100 TB)
- Web (over a Trillion pages; over 1 PB of text)
- CERN (expected to produce ~40 TB/sec)
Large data sets with time-sensitive data
- Financial tickers data
- Credit Card usage traffic
- Network Traffic: Telecom \& ISP traffic
- Sensor data
3/23/10 cot 6936 2
```

```
Important Issues for Stream Algorithms
Key parameters
- Amount of memory available; window size
- Per-item processing time; # of Passes on data
- Tolerance to error
What is needed?
- Summarizations, synposes, sketches
- Randomization and sampling
- Pattern Discovery
- Anomaly Detection
- Clustering and Classifications
    3/23/10 cot6936
```

Streaming Model of Computation
- $N=\#$ of items seen so far, window size - amount of memory available - $\varepsilon=$ error tolerance - Memory usage $=$ poly $(1 / \varepsilon, \log N)$ - Query Time $=$ poly $(1 / \varepsilon, \log N)$
${ }_{32310}$ cores\%

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad


```
Warm up Problems
Given stream of values, find mean.
    - Easy.
    - Maintain sum of all values and number of items
Given stream, find standard deviation.
    - Not so hard
Given stream of bits and window size N,
count number of 1s in window
- Space and time?
- Naïve: Store the window: requires N bits
    - Can you do better?
    3/23/10
                                    COT }693
```


Problem: Finding Missing Labels

Packets arrive in random order, each is labeled from set $\{1, \ldots, n\}$.
Assume that one packet is missing.
Find the label of the missing packet.
Bit vector of length n

- Space O(n)

Maintain sum of labels and subtract from N

- Space O(log n)

3/23/10
COT 6936

Problem: Finding Missing Numbers

Same as problem 1, but there may be up to k missing numbers.
Instead of sum of numbers, we maintain k different functions of the numbers seen.
\qquad

- Decoding is not so easy
- Needs factoring polynomials
- Randomized algorithms
- $O\left(k^{2} \log n\right)$
- O(k $\log k \log n)$

3/23/10
COT 6936
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem: Find number of unique items
- Simple hashing scheme to do counting
- Space $=O(\mathrm{~m})$
- Time $=O(1)$ per item in stream

\qquad

Problem: Find fraction of rare items
Rarity $r[t]=\left|\left\{j \mid c_{+}[j]=1\right\}\right| / u$

- Number of items in stream that are rare (i.e., \qquad appear only once)
Problem: Counting
- Given a stream of bits, at every time instant,
maintain count of number of 1s in last N
elements
- Deterministic algorithms
$\cdot \Theta(\mathrm{N})$ bits of memory to answer in O(1) time [Why?]

Problem: Counting

How well can you approximate with o(N) memory? [Datar et al. SIAM J C 2002]

- Use histogram techniques
- Build time-based histograms in which every bucket represents a contiguous time interval
- Idea: Use uniform buckets
- Problem: 1s may not be distributed uniformly
- Solution: Use non-uniform buckets
- Results
- $\mathrm{O}\left((1 / \varepsilon) \log ^{2} \mathrm{~N}\right)$ bits $\quad \Omega\left((1 / \varepsilon) \log ^{2}(\mathrm{~N} \varepsilon)\right)$
- ($1+\varepsilon$)-approximate count in O(1) time

3/23/10
COT 6936
13
Other problems

- COUNTING: Given a stream of bits, at every
time instant, maintain count of number of 1 s
in last N elements
SUM: Given a stream of positive integers in
range [O..R], at every time instant, maintain
sum of last N elements
Clustering
- K-Means
- Constant-factor approximation, $O(n k$ log k) time,
O(k) space, single pass [Charikar et al. 1997]
- K-Medians
- Constant-factor approximation, O(nk log k) time,
O(n^{ε}) space, single pass [Guha et al. 2002]

