
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Local Search

Best response dynamics: Each agent is continually prepared to improve its solution in response to changes made by other agents

- How do we know a Nash Equilibrium exists?
- Is there a strategy that will lead to Nash Equilibrium?
- Does the best response dynamics strategy always result in a Nash Equilibrium?
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Results
- Nash Equilibrium always exists
- Best-response dynamics always leads to a set
of paths that form a Nash Equilibrium
solution
- For every instance, there is a Nash
Equilibrium solution for which total cost to
all agents exceeds that of social optimum by
at most a factor of H(k)
cor ${ }^{\text {3sssio }}$

Random Walks

- Let $G=(V, E)$ be an undirected graph with n
vertices and m edges. Let $N(v)$ be the
neighbors of v in G.
- Random walk on G :
- Starts at vertex v_{0}
- At each step it proceeds to a randomly chosen
neighbor, i.e., from vertex v proceeds to one of
the vertices in $N(v)$ with prob $1 /|N(v)|$

${ }^{3 / 2310}$
\qquad

Typical questions

- Hitting time (First Passage time): $\mathrm{H}_{\mathrm{uv}}=$ the expected number of steps to get from vertex u to vertex v
Commute time: $\mathrm{C}_{\mathrm{uv}}=\mathrm{H}_{\mathrm{uv}}+\mathrm{H}_{\mathrm{vu}}$ $C_{\mathrm{u}}=$ expected number of steps in a walk that starts at u and ends upon visiting every vertex at least once
Cover time: $C(G)=\max _{u} C_{u}$

3/23/10
COT 6936

Chain graphs		
$\begin{aligned} & -\mathrm{H}_{\mathrm{uv}}=? ? \\ & C\left(L_{n}\right)=? ? \end{aligned}$	${ }^{\text {u }}$	

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Connection to Resistive Networks		
- $C_{u v}=2 \mathrm{mR}$		

