
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Convex Hull: Graham Scan applet \qquad
http://www.personal.kent.edu/~rmuhamma/ Compgeometry/MyCG/ConvexHull/ \qquad GrahamScan/grahamScan.htm

- Main cost: sorting
\qquad
- $O(n \log n)$ \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Package Wrapping: Jarvis March

\qquad
Time complexity

- (Cost of iteration) X (\# iterations)

Each iteration: $O(n)$
Number of iterations $=O(n)$
Cost = O(nh) \qquad

- $h=\#$ of points on convex hull

3/30/10
COT 6936
8

Complexity of Convex Hull \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chan's Algorithm

Combines the benefits of both algorithms Partition points into n / m groups of size m Use Graham scan on each one

- $O((m \log m)(n / m))=O(n \log m)$

Merge the n / m convex hulls using a Jarvis march algorithm by treating each group as a "big point"

- Tangent between a point and a convex polygon with m points can be computed in $O(\log m)$ time
- $O((n / m)(\log m)(h))=O((n / m) h \log m)$ 3/30/10

Cot 6936
10

Chan's Algorithm

Time Complexity $=O(n \log m+(n / m) h \log m)$ If $m=h$, then time $=O(n \log h)$
How to guess h ?

```
- Linear Search
    - Time complexity = O(nh log h)
- Binary Search
    - Time complexity =O(n log}2 h
- Doubling Search (m=1, 2, 4, 8, ...)
    - Time Complexity = O(n log}2 h
- ???
3/30/10
COT 6936

\section*{Chan's Algorithm: More tricks}
\(\qquad\)
What if \(m=h^{2}\) ?
- Then \(O(n \log m)=O(n \log h)\)

So try: \(m=2,4,16,256, \ldots\)
- Analysis
\(\sum_{t=1}^{\lg \lg h} n 2^{t}=n \sum_{t=1}^{\lg \lg h} 2^{t} \leq n 2^{1+\lg \lg h}=2 n \lg h=O(n \log h)\),
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)```

