
1

4/1/10 COT 6936 1

COT 6936: Topics in Algorithms

Giri Narasimhan
ECS 254A / EC 2443; Phone: x3748

giri@cs.fiu.edu
http://www.cs.fiu.edu/~giri/teach/COT6936_S10.html

https://online.cis.fiu.edu/portal/course/view.php?id=427

COT 6936 2

Closest Pair Problem
Input: Set of points S in the plane
Output: The closest pair of points in S
Naïve Solution: O(n2) time
Divide-&-Conquer:

T(n) = 2T(n/2) + M(n)
M(n) = time to merge solutions to the two subproblems
Only need to merge two strips on either side of vertical
split
Naïve Solutions: M(n) = O(n2)
Sort the points by y-coordinate: M(n) = O(nlogn)
Global sorting at the start: M(n) = O(n)

Lower Bound: O(nlogn) time
Randomized Algorithm: O(n) time [Rabin]

4/1/10

COT 6936 3

Post Office Problem

Preprocess: Given set S of points in the plane
representing post offices.

Input: Query point p.

Output: Report the closest post office to p.

4/1/10

2

COT 6936 4

1-d Post Office Problem

Preprocessing: Build balanced BST on S.
O(nlogn)

Alternatively, build a sorted array on S.

Query Algorithm: Given a value p, identify
the smallest value larger than p and the
largest value smaller than p and among the
two pick the one that is closest to p.

O(log n)

4/1/10

COT 6936 5

2-d L Post Office Problem

Lp = ((|ax-bx|)p + (|ay-by|)p)1/p

L2 = Euclidean distance

L = max {|ax-bx|, |ay-by|}

Preprocessing: Build Range Tree on S.
O(nlogn)

Query Algorithm: Given a value p, identify
the closest point to the right of p and the
closest point to the left of p and among the
two pick the one that is closest to p.

O(log n)
4/1/10

COT 6936 6

2-D Range Tree

Build the X-Tree, a balanced binary search tree on
set S using the x-coordinates of the points.

For each node in the X-Tree, build a Y-Tree, a
balanced binary search tree on the set of points in
the subtree of that node using the y-coordinates of
the points.

Application: Output all points with x-coordinates in
range [A,B] and y-coordinates in range [C,D].

Application: Post office problem

4/1/10

3

COT 6936 7

Definitions

Examples:

4/1/10

Good Network Design

Small size

Small weight

Small degree

Small diameter

Highly connected, highly fault-tolerant

Planar, low genus

Small load factor

SMALL DILATION

4/1/10 COT 6936 8

MST on 13,509 cities of US

4/1/10 COT 6936 9

4

COT 6936 10

Definitions

 Dilation or Stretch Factor (t(N)) of a network N is the
maximum amount by which the distance between some pair of
vertices in the network is increased.

 t-Spanner is a network with dilation at most t.

4/1/10

t = 10

t = 1.25 t = 1.5

t = 3 t = 5

t = 2

t-Spanner Networks: Examples

4/1/10 11 COT 6936

COT 6936 12

Application of Geometric Spanners

Network Design – Transportation,
Communication

Distributed Algorithms – Synchronizers

Graphics – Model Simplification

Pattern Recognition – Approx. Nearest
Neighbors

Robotics – Approximate Shortest Path
Problems

Approximation Algorithm design [Rao and
Smith]

4/1/10

5

COT 6936 13

Design of t-Spanners

Theta graphs

[Clarkson 87, Keil 88, Althofer et al. 93]

Greedy algorithms

[Bern 89, Althofer et al. 93]

Well-separated pair decomposition

[Callahan & Kosaraju 95]

4/1/10

COT 6936 14

Theta Graphs

t = 1/(cos - sin)

4/1/10

COT 6936 15

Algorithm GREEDY(G=(V, E),t)

 Sort E by non-decreasing weights

 Initialize G’(V,E’) to be empty

 for each edge e = (u, v) E do

 if (dG’(u, v) > t * wt(e)) then

 Add edge e to E’

 output G’

4/1/10

6

COT 6936 16

Well-Separated Pair Decomposition
Definition: [Callahan and Kosaraju, 95]
Given a set, S, of n points in Rd, and s > 0, a WSPD is sequence

of pairs of subsets of S,
{A1, B1}, …, {Am, Bm}, s.t.

1. Every pair of vertices {p, q} is in exactly one pair of the
decomposition.

2. Ai and Bi are well-separated for each i = 1, …, m
3. m = O(n)
4. The decomposition can be computed in O(nlogn) time.

4/1/10

COT 6936 17

t-Spanner Construction Using WSPD
[Arya, Das, Mount, Salowe, Smid, 95]
1. Compute a WSPD with s = (4t + 4)/(t-1)

2. For each well-separated pair (Ai, Bi)
 add an arbitrary edge between Ai and Bi.

3. Pruning Step: Remove unnecessary edges.
Analysis

Stretch factor = t

Max degree = O(1)

 Total weight = O(1) wt(MST)

4/1/10

COT 6936 18

Theorem
Given a set S of n sites in Rd, and a real number t > 1, there
exists an efficient algorithm to construct a network G such
that:
 t(G) t,

wt(G) = O(1) . wt(MST), and

maximum degree of G is O(1)

[Gudmundsson, Levcopoulos, Narasimhan 00]

4/1/10

7

COT 6936 19

Comparison of Spanner Construction Methods

Theta Graphs: O(nlogn) time, O(n) space

 [Arya, Das, Mount, Salowe, Smid 95]

WSPD Spanners: O(nlogn) time, O(n) space

 [Callahan & Kosaraju 95]
Greedy Algorithms: Low weight guarantees

 O(nlogn) time, O(n) space, O(1) wt(MST) weight

 [Das, Heffernan, Narasimhan, Salowe 93, 94, 95,

 Gudmundsson, Levcopoulos, Narasimhan ’00]

4/1/10

COT 6936 20

Algorithm NewGREEDY(G=(V, E),t)

 Sort E by non-decreasing weights

 Initialize G’(V,E’) to be empty

 for each edge e = (u, v) E do

 if (dG’(u, v) > t(1+) * wt(e)) then

 Add edge e to E’

 output G’

4/1/10

COT 6936 21

Computing Stretch Factors

Input: A geometric graph N on a set S of n sites

Output: Compute the stretch factor of N.

4/1/10

8

COT 6936 22

Approximate Stretch Factors
Input: A geometric graph N on a set S of n sites

Output: Compute (approx) stretch factor of N.

Reduction to O(n)

shortest path queries.

[Narasimhan, Smid ’01]

4/1/10

COT 6936 23

-APPROXIMATION ALGORITHM
Step 1: Using separation constant s = 4(2+)/
 Compute a WSPD: (A1, B1), …, (Am, Bm)
Step 2: For every well-separated pair (Ai, Bi) pick an
 arbitrary pair of vertices (ai, bi) such that
 ai Ai, bi Bi.
Step 3: Return
 maxi {dN(ai,bi)/|aibi|}

[Narasimhan & Smid ’00]
[Trivial Exact Algorithm using APSP]

4/1/10

COT 6936 24

PATH NETWORKS
 O(nlogn)

CYCLE NETWORKS
 O(nlogn)

TREE NETWORK
 O(nlogn)

PLANAR NETWORKS
 O(nlogn)

ARBITRARY NETWORKS
 O(m + nlogn) [(1+)-approx]

Approximate Stretch Factors

4/1/10

9

COT 6936 25

GEOMETRIC ANALYSIS
 Input: Set S of n sites; Set E of edges joining sites;

 Property P Satisfied by E

 Output: wt(E) ??

Theta Graph Property [Clarkson, Keil]

Diamond Property [Das]

Gap Property [Das, Narasimhan]

Leapfrog Property [Das, Narasimhan]

Isolation Property [Das, Narasimhan]

4/1/10

COT 6936 26

Spanner Networks with other Properties
Fault-Tolerance [Narasimhan, Smid]

Small Degree

 [Soares, Salowe, Das, Heffernan, Arya et al.]

Small Diameter [Arya et al.]
Bottleneck Spanners [Narasimhan, Smid]

Steiner Spanners – “Banyans” [Rao, Smith]

Tree Spanners & Planar Spanners [Arikati et al.]

Probabilistic Embeddings [Bartal]

4/1/10

COT 6936 27

Experiments with Spanners
WSPD-based spanners followed by (approximate) greedy algorithm
performs well.

 [Narasimhan & Zachariasen ’00]

4/1/10

10

COT 6936 28

Problem

 Preprocess a geometric spanner network so
that approximate shortest path lengths
between two query vertices can be reported
efficiently (using subquadratic space).

4/1/10

COT 6936 29

Applications

Shortest path queries in polygonal domains
with obstacles.

Approximate closest pair.

Computing approximate stretch factors of
geometric graphs.

4/1/10

