

Closest Pair Problem

- Input: Set of points S in the plane
 Output: The closest pair of points in S
 Naïve Solution: O(n²) time
 Divide-&-Conquer:

 T(n) = 2T(n/2) + M(n)
 - M(n) = time to merge solutions to the two subproblems
 Only need to merge two strips on either side of vertical
 - split

2

- Naïve Solutions: M(n) = O(n²)
- Sort the points by y-coordinate: M(n) = O(nlogn)
- Global sorting at the start: M(n) = O(n)
- Lower Bound: O(nlogn) time
- Randomized Algorithm: O(n) time [Rabin]

1-d Post Office Problem

- Preprocessing: Build balanced BST on S.
 O(nlogn)
- Alternatively, build a sorted array on S.
- Query Algorithm: Given a value p, identify the smallest value larger than p and the largest value smaller than p and among the two pick the one that is closest to p.

COT 6936

• O(log n)

4/1/10

4/1/10

2-d L_{∞} Post Office Problem

- $L_p = ((|a_x-b_x|)^p + (|a_y-b_y|)^p)^{1/p}$
- L₂ = Euclidean distance
- L_∞ = max {|a_x-b_x|, |a_y-b_y|}
- Preprocessing: Build Range Tree on S.
 O(nlogn)
- Query Algorithm: Given a value p, identify the closest point to the right of p and the closest point to the left of p and among the two pick the one that is closest to p.
 O(log n)

COT 6936

2-D Range Tree

- Build the X-Tree, a balanced binary search tree on set S using the x-coordinates of the points.
- For each node in the X-Tree, build a Y-Tree, a balanced binary search tree on the set of points in the subtree of that node using the y-coordinates of the points.
- Application: Output all points with x-coordinates in range [A,B] and y-coordinates in range [C,D].

COT 6936

Application: Post office problem

4/1/10

6

5

Good	Network Design	
 Small size Small weight Small degree Small diameter Highly connecte Planar, low genu Small load facto SMALL DILATI 	or	
4/1/10	COT 6936	8

Definitions

 Dilation or Stretch Factor (†(N)) of a network N is the maximum amount by which the distance between some pair of vertices in the network is increased.

$$t(N) = \max_{a,b \in N} \left\{ \frac{d_N(a,b)}{|ab|} \right\}$$

COT 6936

10

+-Spanner is a network with dilation at most t.

4/1/10

Application of Geometric Spanners

- Network Design Transportation, Communication
- Distributed Algorithms Synchronizers
- Graphics Model Simplification
- Pattern Recognition Approx. Nearest Neighbors
- Robotics Approximate Shortest Path Problems
- Approximation Algorithm design [Rao and Smith]

	Theorem	
exists an efficient that: ■ t(G) ≤ t, =wt(G) = O(1) · wt(/ =maximum degree of		
4/1/10	COT 6936	18

	GEOMETR	IC ANALYSIS	
	<u>Input</u> : Set S of n sites; Set E c Property P Satisfied b <u>Output</u> : wt(E) ≤ ??	5 0 5	
-	Theta Graph Property [Clarkson Diamond Property [Das] Gap Property [Das, Narasimhan Leapfrog Property [Das, Narasi Isolation Property [Das, Narasi] [mhan]	
	4/1/10 CC	DT 6936	25

	Exp	periments with Spanner	S
•	performs well. [Narasimho	panners followed by (approximate) gree an & Zachariasen '00]	
	4/1/10	COT 6936	27

Problem

Preprocess a geometric spanner network so that approximate shortest path lengths between two query vertices can be reported efficiently (using subquadratic space).

28

4/1/10 COT 6936

Applications Shortest path queries in polygonal domains with obstacles. Approximate closest pair. Computing approximate stretch factors of geometric graphs.