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Closest Pair Problem
Input: Set of points S in the plane 
Output: The closest pair of points in S 
Naïve Solution: O(n2) time 
Divide-&-Conquer:  

T(n) = 2T(n/2) + M(n) 
M(n) = time to merge solutions to the two subproblems 
Only need to merge two strips on either side of vertical 
split 
Naïve Solutions: M(n) = O(n2) 
Sort the points by y-coordinate: M(n) = O(nlogn) 
Global sorting at the start: M(n) = O(n) 

Lower Bound: O(nlogn) time 
Randomized Algorithm: O(n) time [Rabin] 
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Post Office Problem

Preprocess: Given set S of points in the plane 
representing post offices. 

Input: Query point p. 

Output: Report the closest post office to p. 

4/1/10 



2 

COT 6936 4 

1-d Post Office Problem

Preprocessing: Build balanced BST on S.  
O(nlogn) 

Alternatively, build a sorted array on S. 

Query Algorithm: Given a value p, identify 
the smallest value larger than p and the 
largest value smaller than p and among the 
two pick the one that is closest to p.  

O(log n) 

4/1/10 

COT 6936 5 

2-d L  Post Office Problem

Lp = ((|ax-bx|)p + (|ay-by|)p)1/p 

L2 = Euclidean distance 

L  = max {|ax-bx|, |ay-by|} 

Preprocessing: Build Range Tree on S.  
O(nlogn) 

Query Algorithm: Given a value p, identify 
the closest point to the right of p and the 
closest point to the left of p and among the 
two pick the one that is closest to p.  

O(log n) 
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2-D Range Tree

Build the X-Tree, a balanced binary search tree on 
set S using the x-coordinates of the points.  

For each node in the X-Tree, build a Y-Tree, a 
balanced binary search tree on the set of points in 
the subtree of that node using the y-coordinates of 
the points.  

Application: Output all points with x-coordinates in 
range [A,B] and y-coordinates in range [C,D]. 

Application: Post office problem 

4/1/10 



3 

COT 6936 7 

Definitions

Examples:  
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Good Network Design

Small size 

Small weight 

Small degree 

Small diameter 

Highly connected, highly fault-tolerant 

Planar, low genus 

Small load factor 

SMALL DILATION 
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MST on 13,509 cities of US
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Definitions

 Dilation or Stretch Factor (t(N)) of a network N is the 
maximum amount by which the distance between some pair of 
vertices in the network is increased. 

 t-Spanner is a network with dilation at most t. 
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t = 10 

t = 1.25 t = 1.5 

t = 3 t = 5 

t = 2 

t-Spanner Networks: Examples 
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Application of Geometric Spanners

Network Design – Transportation, 
Communication 

Distributed Algorithms – Synchronizers 

Graphics – Model Simplification 

Pattern Recognition – Approx. Nearest 
Neighbors 

Robotics – Approximate Shortest Path 
Problems 

Approximation Algorithm design [Rao and 
Smith] 
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Design of t-Spanners

Theta graphs 

[Clarkson 87, Keil 88, Althofer et al. 93]  

Greedy algorithms 

[Bern 89, Althofer et al. 93] 

Well-separated pair decomposition 

[Callahan & Kosaraju 95] 
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Theta Graphs

t = 1/(cos  - sin ) 
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Algorithm GREEDY(G=(V, E),t)

 Sort E by non-decreasing weights 

 Initialize G’(V,E’) to be empty 

 for each edge e = (u, v)  E do 

  if (dG’(u, v) > t * wt(e)) then 

    Add edge e to E’ 

 output G’ 
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Well-Separated Pair Decomposition
Definition: [Callahan and Kosaraju, 95] 
Given a set, S, of n points in Rd, and s > 0, a WSPD is sequence 

of pairs of subsets of S, 
{A1, B1}, …, {Am, Bm}, s.t. 

1. Every pair of vertices {p, q} is in exactly one pair of the 
decomposition. 

2. Ai and Bi are well-separated for each i = 1, …, m 
3. m = O(n) 
4. The decomposition can be computed in O(nlogn) time. 
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t-Spanner Construction Using WSPD
[Arya, Das, Mount, Salowe, Smid, 95] 
1. Compute a WSPD with s = (4t + 4)/(t-1) 

2. For each well-separated pair (Ai, Bi)  
 add an arbitrary edge between Ai and Bi. 

3. Pruning Step: Remove unnecessary edges. 
Analysis 

Stretch factor = t 

Max degree = O(1) 

 Total weight = O(1) wt(MST) 
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Theorem
Given a set S of n sites in Rd, and a real number t > 1, there 
exists an efficient algorithm to construct a network G such 
that: 
 t(G)  t,  

wt(G) = O(1) . wt(MST), and 

maximum degree of G is O(1) 

[Gudmundsson, Levcopoulos, Narasimhan 00] 
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Comparison of Spanner Construction Methods

Theta Graphs: O(nlogn) time, O(n) space  

 [Arya, Das, Mount, Salowe, Smid 95] 

WSPD Spanners: O(nlogn) time, O(n) space 

 [Callahan & Kosaraju 95] 
Greedy Algorithms: Low weight guarantees 

 O(nlogn) time, O(n) space, O(1) wt(MST) weight 

 [Das, Heffernan, Narasimhan, Salowe 93, 94, 95,  

 Gudmundsson, Levcopoulos, Narasimhan ’00] 

4/1/10 

COT 6936 20 

Algorithm NewGREEDY(G=(V, E),t)

 Sort E by non-decreasing weights 

 Initialize G’(V,E’) to be empty 

 for each edge e = (u, v)  E do 

  if (dG’(u, v) > t(1+ ) * wt(e)) then 

    Add edge e to E’ 

 output G’ 
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Computing Stretch Factors

Input: A geometric graph N on a set S of n sites 

Output: Compute the stretch factor of N. 
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Approximate Stretch Factors
Input: A geometric graph N on a set S of n sites 

Output: Compute (approx) stretch factor of N. 

      

Reduction to O(n)  

shortest path queries. 

[Narasimhan, Smid ’01] 
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-APPROXIMATION ALGORITHM
Step 1: Using separation constant s = 4(2+ )/
 Compute a WSPD: (A1, B1), …, (Am, Bm) 
Step 2: For every well-separated pair (Ai, Bi) pick an 
 arbitrary pair of vertices (ai, bi) such that  
 ai  Ai, bi  Bi.  
Step 3: Return  
  maxi {dN(ai,bi)/|aibi|} 

[Narasimhan & Smid ’00] 
[Trivial Exact Algorithm using APSP] 
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PATH NETWORKS 
  O(nlogn) 

CYCLE NETWORKS 
  O(nlogn) 

TREE NETWORK 
  O(nlogn) 

PLANAR NETWORKS 
  O(nlogn) 

ARBITRARY NETWORKS 
  O(m + nlogn)                   [(1+ )-approx] 

Approximate Stretch Factors 
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GEOMETRIC ANALYSIS
 Input: Set S of n sites; Set E of edges joining sites; 

         Property P Satisfied by E 

 Output: wt(E)  ?? 

Theta Graph Property [Clarkson, Keil] 

Diamond Property [Das] 

Gap Property [Das, Narasimhan] 

Leapfrog Property [Das, Narasimhan] 

Isolation Property [Das, Narasimhan] 
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Spanner Networks with other Properties
Fault-Tolerance [Narasimhan, Smid] 

Small Degree  

 [Soares, Salowe, Das, Heffernan, Arya et al.] 

Small Diameter [Arya et al.]  
Bottleneck Spanners [Narasimhan, Smid]  

Steiner Spanners – “Banyans” [Rao, Smith] 

Tree Spanners & Planar Spanners [Arikati et al.] 

Probabilistic Embeddings [Bartal] 
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Experiments with Spanners
WSPD-based spanners followed by (approximate) greedy algorithm 
performs well.  

  [Narasimhan & Zachariasen ’00] 
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Problem

 Preprocess a geometric spanner network so 
that  approximate shortest path lengths 
between two query vertices can be reported 
efficiently (using subquadratic space). 
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Applications

Shortest path queries in polygonal domains 
with obstacles.  

Approximate closest pair. 

Computing approximate stretch factors of 
geometric graphs. 
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