
\qquad
\qquad
\qquad
\qquad
\qquad

Closest Pair Problem

Input: Set of points S in the plane
Output: The closest pair of points in S \qquad
Naïve Solution: $O\left(n^{2}\right)$ time
Divide-\&-Conquer:

- $T(n)=2 T(n / 2)+M(n)$
- $M(n)=$ time to merge solutions to the two subproblems
- Only need to merge two strips on either side of vertical split
- Naïve Solutions: $M(n)=O\left(n^{2}\right)$
- Sort the points by y-coordinate: $M(n)=O(n l o g n)$
- Global sorting at the start: $M(n)=O(n)$

Lower Bound: $O(n \operatorname{logn})$ time
Randomized Algorithmion $\mathrm{O}_{\mathrm{on}}(n)$ time [Rabin]

Post Office Problem

Preprocess: Given set S of points in the plane representing post offices.
Input: Query point p.
Output: Report the closest post office to p.

1-d Post Office Problem

Preprocessing: Build balanced BST on S.

- O(nlogn)
- Alternatively, build a sorted array on S.

Query Algorithm: Given a value p, identify the smallest value larger than p and the largest value smaller than p and among the two pick the one that is closest to p.

- O(log n)

4/1/10
COT 6936

2-d L_{∞} Post Office Problem

- $L_{p}=\left(\left(\left|a_{x}-b_{x}\right|\right)^{p}+\left(\left|a_{y}-b_{y}\right|\right)^{p}\right)^{1 / p}$
- $L_{2}=$ Euclidean distance
- $L_{\infty}=\max \left\{\left|a_{x}-b_{x}\right|,\left|a_{y}-b_{y}\right|\right\}$

Preprocessing: Build Range Tree on S.

- O(nlogn)

Query Algorithm: Given a value p, identify the closest point to the right of p and the closest point to the left of p and among the two pick the one that is closest to p.

- O(llog n)

COT 6936

2-D Range Tree

Build the X-Tree, a balanced binary search tree on set S using the x-coordinates of the points. \qquad
For each node in the X-Tree, build a Y-Tree, a balanced binary search tree on the set of points in \qquad the subtree of that node using the y-coordinates of the points.
Application: Output all points with x-coordinates in range $[A, B]$ and y-coordinates in range $[C, D]$.
Application: Post office problem

\qquad

Good Network Design
- Small size
- Small weight
- Small degree
- Small diameter
- Highly connected, highly fault-tolerant
- Planar, low genus
Small load factor
SMALL DILATION

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Application of Geometric Spanners

\qquad
Network Design - Transportation, Communication \qquad
Distributed Algorithms - Synchronizers \qquad
Graphics - Model Simplification
Pattern Recognition - Approx. Neares \dagger \qquad
Neighbors
Robotics - Approximate Shortest Path \qquad Problems

Approximation Algorithm design [Rao and Smith]

COT 6936 12

Design of t-Spanners

- Theta graphs

[Clarkson 87, Keil 88, Althofer et al. 93]

- Greedy algorithms
[Bern 89, Althofer et al. 93]
- Well-separated pair decomposition \qquad
[Callahan \& Kosaraju 95]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Well-Separated Pair Decomposition

Definition: [Callahan and Kosaraju, 95]
Given a set, S, of n points in R^{d}, and $s>0$, a WSPD is sequence of pairs of subsets of S,

$$
\left\{A_{1}, B_{1}\right\}, \ldots,\left\{A_{m}, B_{m}\right\} \text {, s.t. }
$$

1. Every pair of vertices $\{p, q\}$ is in exactly one pair of the decomposition.
2. A_{i} and B_{i} are well-separated for each $i=1, \ldots, m$
3. $m=O(n)$
4. The decomposition can be computed in $O(n \log n)$ time.

t-Spanner Construction Using WSPD
[Arya, Das, Mount, Salowe, Smid, 95]
1. Compute a WSPD with $s=(4 t+4) /(t-1)$
2. For each well-separated pair $\left(A_{i}, B_{i}\right)$
add an arbitrary edge between A_{i} and B_{i}.
3. Pruning Step: Remove unnecessary edges.
Analysis
Stretch factor $=t$
Max degree $=O(1)$
Total weight $=O(1)$ wt(MST)
cor 6936

Theorem

Given a set S of n sites in R^{d}, and a real number $t>1$, there exists an efficient algorithm to construct a network G such that:

- $+(G) \leq \dagger$,
${ }^{*} w t(G)=O(1) \cdot w t(M S T)$, and
"maximum degree of G is $O(1)$
[Gudmundsson, Levcopoulos, Narasimhan 00]

Comparison of Spanner Construction Methods
- Theta Graphs: O(nlogn) time, O(n) space
[Arya, Das, Mount, Salowe, Smid 95]
WSPD Spanners: O(nlogn) time, $O(n)$ space
[Callahan \& Kosaraju 95]
Greedy Algorithms: Low weight guarantees
O(nlogn) time, O(n) space, O(1) wt(MST) weight
[Das, Heffernan, Narasimhan, Salowe 93, 94, 95,
Gudmundsson, Levcopoulos, Narasimhan '00]
4/1/10

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Algorithm NewGREEDY(G=(V, E),t)

\qquad
Sort E by non-decreasing weights
Initialize $G^{\prime}\left(V, E^{\prime}\right)$ to be empty
for each edge $e=(u, v) \in E$ do
if $\left(d_{G}(u, v)>t(1+\varepsilon)^{*} w t(e)\right)$ then
Add edge e to E^{\prime}
output $G^{\prime} \quad$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Computing Stretch Factors \qquad
Input: A geometric graph N on a set S of n sites Output: Compute the stretch factor of N . \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\quad Approximate Stretch Factors

\qquad

ε-APPROXIMATION ALGORITHM

\qquad
Step 1: Using separation constant $s=4(2+\varepsilon) / \varepsilon$ Compute a WSPD: $\left(A_{1}, B_{1}\right), \ldots,\left(A_{m}, B_{m}\right)$
Step 2: For every well-separated pair (A_{i}, B_{i}) pick an arbitrary pair of vertices $\left(a_{i}, b_{i}\right)$ such that
\qquad $a_{i} \in A_{i}, b_{i} \in B_{i}$.

Step 3: Return

$\max _{i}\left\{d_{N}\left(a_{i}, b_{i}\right) /\left|a_{i} b_{i}\right|\right\}$
[Narasimhan \& Smid '00]
[Trivial Exact Algorithm using APSP]

4/1/10 COT 6936

Approximate Stretch Factors

PATH NETWORKS
O (nlogn)
CYCLE NETWORKS
$O(n \operatorname{logn})$
TREE NETWORK
O(nlogn)

- PLANAR NETWORKS

O(nlogn)

- ARBITRARY NETWORKS
$O(m+n \log n)$ [(1+e)-approx]

4/1/10
COT 6936

GEOMETRIC ANALYSIS
Input: Set S of n sites; Set E of edges joining sites:
Property P Satisfied by E
Output: wt(E) s ??
:---
Diamond Property [Das]
Gap Property [Das, Narasimhan]
Leapfrog Property [Das, Narasimhan]
Isolation Property [Das, Narasimhan]

\qquad
Spanner Networks with other Properties
Fault-Tolerance [Narasimhan, Smid]
Small Degree
[Soares, Salowe, Das, Heffernan, Arya et al.]
Small Diameter [Arya et al.]
Bottleneck Spanners [Narasimhan, Smid]
Steiner Spanners - "Banyans" [Rao, Smith]
Tree Spanners \& Planar Spanners [Arikati et al.]
Probabilistic Embeddings [Bartal]
cot 6936
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Experiments with Spanners WSPD-based spanners followed by (approximate) greedy algorithm [Narasimhan \& Zachariasen '00]
Cот 6936

Problem
Preprocess a geometric spanner network so
that approximate shortest path lengths
between two query vertices can be reported
efficiently (using subquadratic space).

\qquad

Applications
- Shortest path queries in polygonal domains
with obstacles.
- Approximate closest pair.
-
Computing approximate stretch factors of geometric graphs.

