

Graph Bisection

- Construct adjacency matrix A
- Construct Laplacian L = D A

4/6/10

- L is positive semi-definite (PSD); has non-neg eigenvalues; has smallest eigenvalue = 0
- Second eigenvector provides information about bisection.
 - Signs of 2nd eigenvector give a good bisection

COT 6936

 <u>Extreme case</u>: Connected components have constant values in 2nd eigenvector

Graph Bisection (Continued) Eigenvalues indicate strength of bisection How to get bisections with n/2 vertices? Use median value in second eigenvector How to get k partitions? Perform bisections recursively Use more eigenvectors

Spectral Clustering: Strategy

- Given data points and a distance function, construct a weighted graph
- Let A be its adjacency matrix; let D be diagonal matrix with degrees along diagonal
- Construct Laplacian L (PSD, non-neg eigenv.)
 - Unnormalized: L = D A
 - Normalized symmetric: L = D^{-1/2}LD^{1/2}
 - Random Walk: L = D⁻¹L
- Matrix L_k has cols = first k eigenvectors of L

6

Cluster rows of Lk.

Spectral Clustering

- Need distance measure (need not be a metric), i.e., triangle inequality not needed
- Not Model-based
- Global method
- Turns discrete problem into continuous

4/6/10 COT 6936