CS195-5 : Introduction to Machine Learning Lecture 25

Greg Shakhnarovich

November 13, 2006

Announcements

- Plan for problem sets:
- PS 5 due 11/22 (before Thanksgiving break)
- PS 6 due 12/8
- PS 7: no grade, solutions will be available on 12/13

Review: hiearchical clustering

Allgomerative clustering:

- Start with N singleton clusters
- At each level merge two clusters

- Single linkage: $D(A, B)=\min _{\mathbf{a} \in A, \mathbf{b} \in B} D(\mathbf{a}, \mathbf{b})$
- Average linkage: $D(A, B)=\frac{1}{|A||B|} \sum_{\mathbf{a} \in A} \sum_{\mathbf{b} \in B} D(\mathbf{a}, \mathbf{b})$
- Complete linkage: $D(A, B)=\max _{\mathbf{a} \in A, \mathbf{b} \in B} D(\mathbf{a}, \mathbf{b})$

Spectral clustering

- Suppose we have a $N \times N$ distance matrix
- We can represent the data as a graph:
- N vertices,
- edges corresponding to nearest neighbors.

Random walk model

- Assign weights to edges:

$$
W_{i j}= \begin{cases}\exp \left(-\beta\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right) & \text { if } \mathbf{x}_{i} \text { and } \mathbf{x}_{j} \text { connected } \\ 0 & \text { otherwise }\end{cases}
$$

- The weight of a path $\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \rightarrow \ldots \rightarrow \mathbf{x}_{n}$ is

$$
W_{12} \cdot W_{23} \cdots W_{n-1, n}=\exp \left(-\beta \sum_{i=1}^{n-1}\left\|\mathbf{x}_{i}-\mathbf{x}_{i+1}\right\|\right)
$$

Spectral clustering: intuition

- The idea behind spectral clustering: imagine a random walk with probability of step $i \rightarrow j$ given by the transition matrix \mathbf{P}

$$
P_{i j}=\frac{W_{i j}}{\sum_{l} W_{i l}} .
$$

- If we start within a cluster, we will likely remain within that cluster for a long time.

Properties of the random walk

- If we start at i_{0}, where will we end up after t steps?

$$
\begin{aligned}
& i_{1} \sim P_{i_{0} i_{1}} \\
& i_{2} \sim \sum_{i_{1}} P_{i_{0} i_{1}} P_{i_{1} i_{2}}
\end{aligned}
$$

Properties of the random walk

- If we start at i_{0}, where will we end up after t steps?

$$
\begin{aligned}
& i_{1} \sim P_{i_{0} i_{1}} \\
& i_{2} \sim \sum_{i_{1}} P_{i_{0} i_{1}} P_{i_{1} i_{2}}=\left(\mathbf{P}^{2}\right)_{i_{0} i_{2}}
\end{aligned}
$$

Properties of the random walk

- If we start at i_{0}, where will we end up after t steps?

$$
\begin{aligned}
i_{1} & \sim P_{i_{0} i_{1}} \\
i_{2} & \sim \sum_{i_{1}} P_{i_{0} i_{1}} P_{i_{1} i_{2}}=\left(\mathbf{P}^{2}\right)_{i_{0} i_{2}} \\
i_{3} & \sim \sum_{i_{2}}\left(\mathbf{P}^{2}\right)_{i_{0} i_{2}} P_{i_{2} i_{3}}=\left(\mathbf{P}^{3}\right)_{i_{0} i_{3}}
\end{aligned}
$$

Properties of the random walk

- If we start at i_{0}, where will we end up after t steps?

$$
\begin{aligned}
& i_{1} \sim P_{i_{0} i_{1}} \\
& i_{2} \sim \sum_{i_{1}} P_{i_{0} i_{1}} P_{i_{1} i_{2}}=\left(\mathbf{P}^{2}\right)_{i_{0} i_{2}} \\
& i_{3} \sim \sum_{i_{2}}\left(\mathbf{P}^{2}\right)_{i_{0} i_{2}} P_{i_{2} i_{3}}=\left(\mathbf{P}^{3}\right)_{i_{0} i_{3}} \\
& \ldots \\
& i_{t} \sim\left(\mathbf{P}^{t}\right)_{i_{0} i_{t}}
\end{aligned}
$$

Transition matrix decomposition

- Recall that $P_{i j}=W_{i j} / \sum_{j} W i j$.
- Let \mathbf{W} be the weight matrix, and \mathbf{D} be the diagonal matrix, $D_{i j}=\sum_{j} W_{i j}$. We have

$$
\mathbf{P}=\mathbf{D}^{-1} \mathbf{W}
$$

- We will focus on a symmetric matrix

$$
\mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}
$$

It can be decomposed using its eigenvectors $\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}$ corresponding to eigenvalues $\left|\lambda_{1}\right| \geq \ldots \geq\left|\lambda_{N}\right|$

$$
\mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}=\lambda_{1} \mathbf{z}_{1} \mathbf{z}_{1}^{T}+\ldots+\lambda_{N} \mathbf{z}_{N} \mathbf{z}_{N}^{T}
$$

Eigendecomposition

$$
\mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}=\lambda_{1} \mathbf{z}_{1} \mathbf{z}_{1}^{T}+\ldots+\lambda_{N} \mathbf{z}_{N} \mathbf{z}_{N}^{T}
$$

Eigenvector/value: $\mathbf{A z}=\lambda \mathbf{z}$

- The eigenvectors are orthogonal, i.e., $z_{i}^{T} z_{j}=0$ for $i \neq j$.
- Assume the graph is connected; the random walk then is ergodic-there is non-zero probability of getting from any \mathbf{x}_{i} to any \mathbf{x}_{j} (in some number of steps).
- Spectral graph theory: the largest eigenvalue is always $\lambda_{1}=1$, and $\left|\lambda_{n}\right|<1$ for $n=2, \ldots, N$.

Random walk distribution

$$
\left(\mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}\right)^{t}=\left(\mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}\right) \cdots\left(\mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}\right)=\mathbf{D}^{\frac{1}{2}} \mathbf{P}^{t} \mathbf{D}^{-\frac{1}{2}}
$$

- Thus,

$$
\begin{aligned}
\mathbf{P}^{t} & =\mathbf{D}^{-\frac{1}{2}}\left(\mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}\right)^{t} \mathbf{D}^{\frac{1}{2}} \\
& =\mathbf{D}^{-\frac{1}{2}}\left(\lambda_{1} \mathbf{z}_{1} \mathbf{z}_{1}^{T}+\ldots+\lambda_{N} \mathbf{z}_{N} \mathbf{z}_{N}^{T}\right)^{t} \mathbf{D}^{\frac{1}{2}} \\
& =\mathbf{D}^{-\frac{1}{2}}\left(\lambda_{1}^{t} \mathbf{z}_{1} \mathbf{z}_{1}^{T}+\ldots+\lambda_{N}^{t} \mathbf{z}_{N} \mathbf{z}_{N}^{T}\right) \mathbf{D}^{\frac{1}{2}}
\end{aligned}
$$

- Since $\lambda_{1}=1$, and $\left|\lambda_{i}\right| \leq 1$, when $t \rightarrow \infty$ we get

$$
\mathbf{P}^{\infty}=\mathbf{D}^{-\frac{1}{2}}\left(\mathbf{z}_{1} \mathbf{z}_{1}^{T}\right) \mathbf{D}^{\frac{1}{2}}
$$

Finite number of steps

$$
\mathbf{P}^{\infty}=\mathbf{D}^{-\frac{1}{2}}\left(\mathbf{z}_{1} \mathbf{z}_{1}^{T}\right) \mathbf{D}^{\frac{1}{2}}
$$

- Assuming the graph is ergodic, in the limit the distribution does not depend on the starting point!
- When t is very large (but finite), we can focus on the largest correction:

$$
\mathbf{P}^{t} \approx \mathbf{P}^{\infty}+\mathbf{D}^{-\frac{1}{2}}\left(\lambda_{2}^{2} \mathbf{z}_{2} \mathbf{z}_{2}^{T}\right) \mathbf{D}^{\frac{1}{2}}
$$

- $\left(\mathbf{z}_{2} \mathbf{z}_{2}^{T}\right)_{i j}=z_{2 i} z_{2 j}$, so the probability of starting in \mathbf{x}_{i} and ending in \mathbf{x}_{j} is a little bit increased if $\operatorname{sign}\left(z_{2 i}\right)=\operatorname{sign}\left(z_{2 j}\right)$, and decreased otherwise. \Rightarrow Cluster based on the sign of $z_{2 i}$

Example

Data \& Graph, 5-NN

Example

Data \& Graph, 5-NN

2nd eigenvalue (sorted)

Example

Beyond binary clustering

- When $k>2$:
- Let $\mathbf{Z}_{i}=\left[z_{1 i}, \ldots, z_{k i}\right]^{T}$.
- Apply k-means clustering on $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{k}$.

Graph, 20-NN

Z

Clustering

Parameters of spectral clustering

- Two parameters (in addition to k):
- Neighborhood size (\# of nearest neighbors)
- Distance falloff parameter β.

2-NN
5-NN
15-NN

More examples, from [Ng et al '01]

Dimensionality reduction

- The dimensionality of observations is dictated by the number/type of sensors, and could be quite arbitrary.
- The intrinsic dimensionality is a property of the generating process \Rightarrow assumption that the data lie on (or near) a subspace.

Dimensionality reduction vs. clustering

- Dimensionality reduction and clustering are both about recovering simple structure that "explains" the data.
- Clustering: discrete explanation (cluster labels)
- Dimensionality reduction: continuous explanation (underlying subspace).
- In both cases, the structure is represented by hidden variables that need to be recovered.

Criteria

- Recall clustering objective: minimize distortion within clusters.
- Objective in dimensionality reduction: find k-dim. subspace \mathcal{M} in \mathbb{R}^{d}, and define a projection $\mathbf{x} \in \mathbb{R}^{d} \rightarrow \mathbf{x}^{\prime} \in \mathcal{M}$, such that the residual $\left\|\mathbf{x}^{\prime}-\mathbf{x}\right\|$ is minimized.

Next time

PCA;

Feature selection.

