SPRING 2010: COT 6936 TorIiCS IN ALGORITHMS
NOTES ON ONLINE ALGORITHMS
GIRI NARASIMHAN

These notes are compiled from a variety of sources. See the following refer-
ences: [Manasse et al., 1990]. As with the previous notes, this is an evolving
document. So, please revisit and download this document every so often so
that you see the most updated version.

1 An optimal offline algorithm

Let Copr(o,S) be a function whose value is the cost of a minimum-cost
algorithm that handles request sequence o and ends up in state S. Note
that the state of the system is simply the location of the servers, i.e., the
set of vertices in which the servers are located. Assuming that the servers
are initially in set Sy, we can write a recursive description of Copr(o,.S) as
follows:

_[o, if §=.9
Copr(e, 5) = { undefined, otherwise.

ming Copr(o,T) +d(T,S), if vis covered in S
undefined, otherwise.

Corr(o.5) - {

Note that d(T,S) is the cost of a transition from state 7" to state S. Also,
note that the state T that causes the minimum to be reached is the state
after request ¢ — 1.

The above recurrence can be computed using a dynamic programming
(DP) algorithm. As with all DP algorithms, you will need a table — in this
case one with |o| + 1 rows (one for each prefix of o) and (Z) columns (one
for each possible state). The minimum value entry in the last row is the cost
of a minimum-cost algorithm for the request sequence o. As with most DP
algorithms, this algorithm can be modified to store the state in the previous
row that caused any given entry to be determined. The time required to
determine any given entry is proportional to the number of entries in the
previous row, i.e., the number of columns in the matrix. I will leave it to you
to figure out the time complexity of the entire algorithm.

References

Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive
algorithms for server problems. J. Algorithms, 11(2):208-230, 1990.

