
On the Power of Randomizationin Online Algorithms�S. Ben-DavidTechnion, Haifa, IsraelA. BorodinyUniversity of Toronto, Toronto, CanadaR. KarpUniversity of California at BerkeleyandInternational Computer Science InstituteBerkeley, CaliforniaG. TardoszE�otv�os UniversityBudapest, HungaryA. WigdersonyHebrew University, Jerusalem, Israel�A previous version of this paper appeared in the 22nd ACM STOC ConferenceProceedingsyPart of this research was performed while these authors were visitors at the Interna-tional Computer Science InstitutezPart of this research was performed while this author was a visitor at the HebrewUniversity 1

AbstractAgainst an adaptive adversary, we show that the power of ran-domization in online algorithms is severely limited! We prove theexistence of an e�cient \simulation" of randomized online algorithmsby deterministic ones, which is best possible in general.The proof of the upper bound is existential. We deal with the issueof computing the e�cient deterministic algorithm, and show that thisis possible in very general cases.

1 Introduction and Overview of ResultsBeginning with the work of Sleator and Tarjan [17], there has recently beena development of what might be called a Theory of Online Algorithms. Theparticular algorithmic problems analyzed in the Sleator and Tarjan paper are\list searching" and \paging", both well studied problems. But the noveltyof their paper lies in a new measure of performance, later to be called the\competitive ratio", for online algorithms. This new approach, called \com-petitive analysis" in Karlin, Manasse, Rudolph and Sleator [11], seems tohave �rst been motivated by earlier attempts to understand the behaviour ofso-called self organizing or self adjusting data structures. But as evident inthe discussion provided by Karlin, et al [11] the issue transcends particularproblems in data structures or paging.Brie
y stated, competitive analysis attempts to �nesse the issue of whatrequest sequences are likely in such environments (ie. average case analysisbut one that has to account for distributions that re
ect phenomena suchas \locality of reference") by taking the following pessimistic approach inanalyzing the performance of an online algorithm: an online algorithm is goodonly if its performance on any sequence of requests is within some (desired)factor of the performance of the optimal o�ine algorithm. In particular, agood algorithm would certainly perform well in the presence of an unknowndistribution.Following these studies of speci�c algorithmic problems, Borodin, Linialand Saks [3] gave an abstract formulation (called task systems) and a formalde�nition for the study of this new measure. Manasse, McGeoch and Sleator[12] introduced another abstract formulation, called K-server problems. Inboth the task system and K-server models, an online player is presentedwith a sequence of requests which must be satis�ed by choosing amongst anallowable set of moves, each move having some nonnegative cost. (Raghavanand Snir [16] call these \games with moving costs".)We present a more general framework for studying online algorithms |the request-answer games. In such a game an adversary again makes a se-quence of requests, which are served (answered) one at a time by the onlinealgorithm. The added generality is that now an arbitrary real valued function3

determines the cost of any sequence of requests and answers. This frame-work includes previous ones (e.g. K-server games [12] and task systems [3])as special cases.An online algorithm is called c-competitive if cost(algorithm) �c�cost(adversary) + O(1), for every possible request sequence that is gen-erated.The Borodin, Linial and Saks [3] and Manasse, McGeoch and Sleator [12]papers primarily dealt with deterministic online algorithms, in which casethe de�nition of being c-competitive is a rather routine matter. However,it was soon realized (see Borodin, Linial and Saks [2], Raghavan and Snir[15], Fiat et al [7]) that randomization could possibly o�er the online playersigni�cantly more power; or perhaps one should say that the adversary nowhas relatively less power since the moves of the online player are no longercertain. In the case of randomized online algorithms, costs are taken tobe expected values of the associated random variables and the de�nition ofcompetitiveness becomes a more subtle issue, depending primarily on thenature of the adversary.The related results of Borodin, Linial and Saks [2] and Fiat et al [7]assume an oblivious adversary (following the terminology to be adopted hereand in the revised version of Raghavan and Snir [16]).Oblivious adversary: One who must construct the request sequence inadvance (based only on the description of the online algorithm but beforeany moves are made!), but pays for it optimally.The Fiat et al [7] paper provides a dramatic example of the advantageprovided by randomization against this adversary. Namely, they show thatfor the paging or cache problem with a cache of sizeK (ie. theK-server prob-lem on the uniform metric space), there is a randomized algorithm (relativeto any oblivious adversary) which achieves a competitive ratio of O(logK).(An optimal ratio of HK is developed in [14], where HK is the Kth har-monic number.) On the other hand, every deterministic algorithm can atbest achieve a ratio of K. (This is the lower bound demonstrated for anyK-server problem by Manasse, McGeoch and Sleator [12].)4

The K-server conjecture of Manasse, McGeoch and Sleator [12] (whichstates that for every K-server problem there is a deterministic online algo-rithm with competitive ratio K) is still open. Fiat, Rabani, and Ravid [8]have made substantial progress on this conjecture by showing that for ev-ery K server problem the competitive ratio is bounded by a (exponential)function of K. The "random walk" approach, initiated by [15] and furtherdeveloped in [5], [1], gave O(K)-competitive probabilistic algorithms for avariety of K-server problems, and possibly works for all of them. Recently,Grove [10] has been able to prove that the Harmonic algorithm given in [15] isO(2K) competitive for every K server problem. The interesting thing aboutthese algorithms is that they achieve the same performance even against thefollowing, much stronger, adaptive adversary.Adaptive online adversary: One who makes the next request basedon the algorithm's answers to previous ones, but serves it immediately.It is obvious that for deterministic algorithms, this adversary is equivalentto the oblivious one, since the algorithm's answers are completely predictable.To understand just how much randomization helps against it, we introducea yet stronger adversary (see also Raghavan and Snir [16]).Adaptive o�ine adversary: One who makes the next request basedon the algorithm's answers to previous ones, but serves them optimally atthe end.As might be conjectured , this adversary is so strong, that randomizationadds no power against it!Theorem 2.1 If there is a randomized algorithm that is �-competitive againstany adaptive o�ine adversary then there also exists an �-competitive deter-ministic algorithm.On the other hand, we can relate the performance of randomized algo-rithms against the three types of adversaries.Theorem 2.2 If G is a c-competitive randomized algorithm against anyadaptive online adversary, and there is a randomized d-competitive algorithm5

against any oblivious adversary, then G is a randomized (c � d)-competitivealgorithm against any adaptive o�ine adversary.Our Theorems 2.1 and 2.2 together imply a deterministic algorithmwhoseperformance is not much worse than the probabilistic ones. It shows that theresults of [1], [5], [10] have deterministic counterparts with at most quadrat-ically worse performance. In particular, using Grove [10] we obtain the bestknown deterministic competitive ratio for an arbitrary K-server system.Unfortunately, the proof of Theorem 2.1 only guarantees the existenceof a deterministic algorithm, and there is no general way to construct iteven when the probabilistic one is given. We attack this problem from twodirections.In the �rst, we show how to explicitly construct a deterministic algorithmin Theorem 2.1, for a class of games that includes all �nite K-server gamesand task systems. We lose a bit on performance: rather than a c-competitivealgorithmwhose existence is guaranteed, we construct a ((1+�)c)-competitivealgorithm, for every � � 0.In the second, we �nesse Theorem 2.1 altogether by explicitly construct-ing a deterministic algorithm in Theorem 2.2 with the same performance asthe guaranteed probabilistic one. This can be achieved whenever the proofof c-competitiveness of the assumed algorithm against an adaptive onlineadversary is based on a computable potential function. Observing that allknown proofs have this nature, this assumption at present does not lose muchgenerality.Though the game we de�ne is in�nite, every play terminates in a �nitenumber of moves (since our adversaries are restricted to generate �nite re-quest sequences). This allows our de�nitions to be consistent with most ofthe initial papers concerning competitive analysis. Alternatively, Raghavanand Snir [16] formulate the concept of competitiveness in terms of in�nitegames. They develop analogues of our Theorem 2.1 (using classical resultsconcerning determinacy in in�nite games | see Gale and Stewart [9], Martin[13]) and Theorem 2.2. Raghavan and Snir [16] discuss the relation betweenthese two approaches; in particular, they give a su�cient condition for when6

the alternative de�nitions of competitiveness are equivalent.2 De�nitions and ResultsWe study the performance of online algorithms in the general frameworkof request-answer games. In this game an online algorithm has to answera sequence of requests trying to minimize its cost (as determined by thesequence of requests and answers). The algorithm is online, in the sense thatit answers each request before seeing the following requests, and withoutknowing how long the sequence is. In some games, not all answer sequencesare allowed.A request-answer game consists of a request set R, a �nite answer set A,and the cost functions fn : Rn � An ! R [f1g for n = 0; 1; : : :. Let fdenote the union, over all nonnegative integers n, of the functions fn. Let us�x such a game.A deterministic online algorithm G is a sequence of functions gi : Ri ! Afor i = 1; 2; : : :. For any sequence of requests r = (r1; : : : ; rn) we de�neG(r) = (a1; : : : ; an) 2 An with ai = gi(r1; : : : ; ri) for i = 1; : : : ; n. The costof G on r is cG(r) = fn(r;G(r)). We will compare this to the optimal costfor the same sequence of requests: c(r) = minffn(r; a)ja 2 Ang.In this paper � and � will mean linear functions �; � : R ! R. (Someof the theorems generalize to nonlinear functions, but linear are the impor-tant ones). We call the deterministic algorithm G �-competitive if for everyrequest sequence r we have cG(r) � �(c(r)). In case �(x) = dx+ e for somed > 0, G is sometimes said to have competitive ratio d.A randomized online algorithm G is a probability distribution over de-terministic online algorithms Gx (x may be thought of as the coin tosses ofthe algorithm G). For any request sequence r the answer sequence G(r) andthe cost cG(r) are random variables. We call a randomized online algorithm�-competitive if for any r we have Ex(cGx(r)) � �(c(r)).Since we require good performance of a competitive algorithm for every7

request sequence r we can think of r as being given by an adversary. Theadversary serves the requests in the optimal way, so his cost is c(r). Todistinguish this kind of adversary from the following more powerful adversarywe call it an oblivious adversary.An adaptive adversary is one that makes requests depending on the algo-rithm's answers to previous requests. This adversary comes in two
avours,according to the way it serves its own requests. The adaptive o�ine ad-versary answers the requests optimally when the whole request sequence isknown. The adaptive online adversary however answers every request assoon as he makes it, before the algorithm does. For deterministic algorithmsadaptive adversaries are not more powerful than the oblivious ones since thealgorithm's moves can be foreseen. But for randomized algorithms it is worthintroducing the �-competitiveness against adaptive adversaries. We call the�-competitive algorithms �-competitive against any oblivious adversary forcontrast.An adaptive o�ine adversary Q is a sequence of functions qn : An ! R[fstopg, where n = 0; 1; : : : dQ and qdQ only takes the value \stop". For a de-terministic algorithm G and an adaptive adversary Q we de�ne the actual re-quest and answer sequences r(G;Q) = (r1; : : : rn) and a(G;Q) = (a1; : : : ; an)together with n = n(G;Q) recursively with ri+1 = qi(a1; : : : ; ai) for i =0; 1; : : : n�1, while a(G;Q) = G(r(G;Q)) and qn(a(G;Q)) = stop. Note thatthese objects are uniquely de�ned in the order r1; a1; r2; a2; : : : ; rn; an; n. Thevalue n = n(G;Q) is bounded by dQ for any G. We de�ne the cost of thealgorithm G against the adversary Q to be cG(Q) = fn(r(G;Q); a(G;Q)).The cost of the adaptive o�ine adversary Q against the algorithm G iscQ(G) = c(r(G;Q)).An adaptive online adversary S = (Q;P) is an o�ine adaptive adversaryQ, supplemented with a sequence P of functions pn : An ! A for n =0; 1; : : : ; dQ. Since r(G;S) is independent of P , we have r(G;S) = r(G;Q),a(G;S) = a(G;Q), and cG(S) = cG(Q). We can also de�ne the answersequence of the adversary S to be b(G;S) = (b1; : : : ; bn) where n = n(G;Q)and bi+1 = pi(a1; : : : ; ai) for i = 0; : : : ; n� 1. We de�ne the cost of S againstthe algorithm G to be cS(G) = fn(r(G;S); b(G;S)).We de�ne all these sequences and costs for a randomized algorithm G. In8

this case all these objects will be random variables.We call a randomized algorithm G �-competitive against any o�ine (re-spectively online) adaptive adversary if for any o�ine adaptive adversary Q(respectively online adaptive adversary S) we have Ex(cGx(Q)) �Ex(�(cQ(Gx))) (respectively Ex(cGx(S)) � Ex(�(cS(Gx)))). Note that �commutes with Ex.Remark We imposed the requirement that the answer set is �nite andthe number of requests an adaptive adversary can put to one algorithm isbounded to ensure that all the expected values exist. Thus for any givenrandomized algorithm and adversary there are only �nitely many possiblerequest and answer sequences, and therefore the expected values are justweighted averages. It is possible to ensure the same by having an in�niteanswer set, but for any request declaring only �nitely many answers \valid".Our �rst theorem says that the adaptive o�ine adversary is so strong,that randomization doesn't help against it.Theorem 2.1 If there is a randomized strategy that is �-competitive againstany o�ine adaptive adversary then there also exists an �-competitive deter-ministic algorithm.Proof: Consider the request-answer game as a two-person game betweentwo players R and A such that in every step R gives A a request which Aanswers. A position in the game is a pair (r,a). Call a position immediatelywinning for R if fn(r; a) > �(c(r)). Call a position (r; a) winning for R ifthere exists an adaptive rule for selecting requests, and a positive integer tsuch that, from the starting position (r; a), an immediately winning positionfor R will be reached within t steps regardless of how A plays. In particular,the initial position, in which r and a are both the empty string, is winningfor R if and only if there exists an adaptive o�ine adversary Q such that, forany deterministic algorithm G, cG(Q) > �(cQ(G)).Suppose for the purpose of contradiction that R has a winning strategycorresponding to Q. If G is a randomized algorithm distributed over deter-ministic algorithms Gx then, taking the expected value of this inequality9

over all the choices of Gx, one obtains Ex(cGx(Q)) > Ex(�(cQ(Gx))), whichgives E(cG(Q)) > E(�(cQ(G)). Therefore, no randomized algorithm can be�-competitive against the o�ine adaptive adversary Q. This contradicts ourassumption that there exists a randomized algorithm that is �-competitiveagainst any adaptive o�ine adversary. It follows that R does not have awinning strategy.To complete the proof, we show that, if R does not have a winning strat-egy, then A must have a winning strategy; i.e., a deterministic algorithmthat is �-competitive against every adaptive o�ine adversary. Note that aposition (r, a) is a winning position for R if and only if there exists a requestrn+1 such that, for every answer an+1, (rrn+1; aan+1) is again a winning po-sition for R. (The validity of the `if' part of this statement depends on the�niteness of A. For, if A were in�nite, it might be the case that, althougheach of the in�nitely many positions (rrn+1; aan+1)was winning for R, therewould be no �xed upper bound on the number of steps needed to force animmediately winning position from the starting position (r; a), and hence no(�nite) adversary would be able to force a win from that position.) Hence, if(r, a) is not a winning position for R then for every request rn+1 there existsan answer an+1 which is not a winning position for R. Thus, if any positionis not winning for R, A can counter any request by R with an answer thatwill lead to another position that is not winning for R; it follows that, if Aplays in this manner, an immediately winning position for R will never bereached. Thus, there is a winning strategy for A. |Next we relate the power of the three kinds of adversaries.Theorem 2.2 Suppose G is �-competitive against any online adaptive ad-versary and there is a �-competitive randomized algorithm against any obliv-ious adversary. Then G is � � �-competitive against any o�ine adaptiveadversary.Proof: Fix any adaptive o�ine adversary Q, and assume G is distributedover deterministic algorithms Gx. Our task is to prove Ex[cGx(Q)] �Ex[�(�(cQ(Gx))].Let H be a randomized algorithm which is �-competitive against any10

oblivious adversary. If y denotes the coin
ips of H, i.e. H = fHyg, then wehave for every n; r 2 Rn, Ey(cHy(r)) � �(c(r)).For each �xed y, de�ne an adaptive online adversary Sy = (Q;Py) in sucha way that for any deterministic online algorithm F , b(F; Sy) = Hy(r(F;Q)).This is a very simple-minded adaptive online adversary, who satis�es hisown requests according to Hy and independently of the answers of the onlinealgorithm F (i.e. all functions (py)i are constants). Intuitively, G is �-competitive against this online adversary which itself (when considered asan algorithm) is � -competitive against any o�ine adversary.As G is �-competitive against adaptive online adversaries, we have thatfor every �xed y, Ex[cGx(Sy)] � Ex[�(cSy(Gx))], and taking expectationsw.r.t y gives EyEx[cGx(Sy)] � EyEx[�(cSy(Gx))].For every y note that r(Gx; Sy) = r(Gx; Q) = rx. ThenEx[cGx(Q)] = EyEx[cGx(Sy)] � Ey[�(Ex[cSy(rx)])]= �(ExEy[cHy(rx)]) = �(Ex[cH(rx)]) � �(Ex[�(c(rx))])= Ex[�(�(cQ(Gx)))] |The algorithm RANDOM for theK server paging or cache problem showsthat the bound of Theorem 2.2 is best possible in general. For as observedby Karlin (see Raghavan and Snir [16]), d is HK for paging (McGeoch andSleator [14]), c is K for RANDOM against any adaptive on line adversary(Raghavan and Snir [15]) and the optimal adaptive o� line adversary canforce a ratio of KHK (Karlin).In fact, Theorem 2.2 is tight in the following stronger sense: for any pairof positive numbers � and � with 1 � � � �, and any C less than ��, onecan construct a request-answer game such that� there is an algorithm G that is �-competitive against any online adap-tive adversary and �-competitive against any oblivious adversary;� for every algorithm K, there is an adaptive o�-line adversary againstwhich K's competitive ratio is at least C.11

Given �, � and C, the request-answer game is de�ned in terms of a pos-itive integer parameter t, and positive real quantities m and M determinedby the following pair of simultaneous equations:� = (2t� 2)m+M + 12t� = 1 + (2t� 1)M2 + (2t� 2)m. The parameter t is chosen su�ciently large that M � max(m2; C). Thisis possible since, by inspection of the equations, we see that, as t tends toin�nity, m tends to � amd M tends to ��. The request-answer game isspeci�ed as follows:� The request set R is equal to the answer set A. Each of these setsconsists of t disjoint pairs of elements. The two elements of any pairare called mates.� The cost of the request-sequence-answer sequence pair (r1; r2; : : : ; rn),(a1; a2; : : : ; an) is completely determined by a1 and r2, as follows: ifa1 = r2 then the cost is 1; if a1 is the mate of r2 then the cost is M ;otherwise, the cost is m.The algorithm G simply draws its �rst answer, a1, from the uniformdistribution over A; its other answers are irrelevant. To see that G is �-competitive against any oblivious adversary note that, no matter how theadversary chooses r2, G's cost will be 1 with probability 12t, M with proba-bility 12t and m with probability 2t�2t , giving an expected cost of (2t�2)m+M+12t ,which is equal to �. Since the oblivious adversary's cost is at least 1, G is�-competitive. To see that G is �-competitive against any adaptive on-lineadversary, note that, regardless of how the adversary chooses its �rst answerb1, there will be exactly a 12t chance that a1 = b1 and a 12t chance that a1 andb1 will be mates. A simple case analysis shows that the adversary does bestto choose r2 equal to a1 when a1 = b1, and to the mate of a1 in all other cases.With this policy the adversary's expected cost per step is 2+(2t+2)m2t and G's12

expected cost per step is 1+(2t�1)M2t , giving a competitive ratio of 1+(2t�1)M2+(2t�2)m ,which is equal to �. Finally, regardless of how an on-line algorithm choosesa1, an adaptive o�-line algorithm can set its �rst answer, b1, and its secondrequest r2, equal to the mate of a1. Thus, the algorithm's cost will alwaysbe M and the adversary's cost will always be 1, giving a competitive ratio ofM , which is at least C.Corollary 2.1 If there exists an �-competitive randomized strategy againstany adaptive online adversary and a �-competitive randomized online strat-egy against any oblivious adversary, then there exists an � � �-competitivedeterministic strategy.Corollary 2.2 If there exists an �-competitive randomized strategy againstany adaptive online adversary, then it is � ��-competitive against any adap-tive o�ine adversary and thus there is a deterministic ���-competitive strat-egy.Corollary 2.3 Consider the metric space de�ned by arbitrarily placing nnodes on a circle. For any K < n, there is a deterministic 4K2 competitivealgorithm for the K server problem de�ned on this metric space.Proof: This corollary follows immediately from Corollary 2.2 and the ran-domized 2K competitive algorithm of Coppersmith, et al. [5].The corollaries above prove the existence of a good deterministic onlinealgorithm. We now turn to the question of constructing a deterministicalgorithm from given randomized ones. In general, Deng and Mahajan [6]show that Theorem 2.1 and Corollary 2.1 cannot be made constructive. Inparticular, they show that there is a request-answer game for which thereis a 1-competitive randomized computable online strategy, but there is no�-competitive computable deterministic online algorithm for any � > 0.However, the following sections show that in many important cases, there isa constructive version of Corollary 2.1.13

3 A Constructive Version of Corollary 2.1De�nition 3.1 Let G be a randomized online algorithm. (It helps to thinkof G as playing against an adaptive online adversary. After n steps, r 2 Rndenotes the requests so far, a 2 An the algorithm's answers, and b 2 An theadversary's answers.) Call a family � = f�n : Rn � An � An ! Rgn�0 anaugmented potential function for a function � : R! R and the randomizedonline algorithm G, if the following holds:1) �0 = 02) For every n and con�guration (r; a; b) 2 Rn � An � An, �n(r; a; b) ��(fn(r; b))� fn(r; a).3) For every n, and every con�guration (r; a; b) 2 Rn � An � An, everyrn+1 2 R; bn+1 2 A, and an+1 distributed on A according to gn+1(rrn+1; a)we haveE[�n+1(rrn+1; aan+1; bbn+1)] � �n(r; a; b).We can think of an augmented potential function as being composed of a\residue part", �(fn(r; b))� fn(r; a), minus a pure potential function whichre
ects the di�erence between the con�gurations of the online player and thatof the adversary. Potential functions play an essential role in the analysis ofdeterministic and randomized online algorithms. Theorem 1 of Manasse,McGeoch and Sleator [12] suggests the following observation:Lemma 3.1 Algorithm G is �-competitive against any adaptive online ad-versary if and only if there exists an augmented potential function for � andG.Proof: Let G be distributed over deterministic algorithms fGxg. For any�xed adaptive online adversary S, let nx = n(Gx; S); rx = r(Gx; S); ax =a(Gx; S) and bx = b(Gx; S).if: Let � = f�ng be a potential function for � and G. First observe that for14

every S, Ex[�nx(rx; ax; bx)] � 0. This follows from property (3) and inductionon dQ when S = (Q;P). Now �x S. From property (2) we getEx[cGx(Q)]� �(Ex[cQ(Gx)])= Ex[fnx(rx; ax)� �(fnx(rx; bx))]� �Ex[�nx [rx; ax; bx]]� 0:only if: Assume G is �-competitive against online adversaries. Informally,�(r; a; b) will be supS [CG(S)� �(CS(G))] with costs updated as if the gamestarts at this con�guration, as S ranges over all adaptive online adversariesthat reach this con�guration against G. |Theorem 3.1 If � = f�ng is an augmented potential function for � anda randomized online algorithm G, and H is a randomized online algorithmthat is �-competitive against any oblivious adversary, then the following de-terministic algorithm M = fmng is � � �-competitive against an adaptiveo�ine adversary. Asssume we de�ned k1; k2; : : : ;mn, (and hence M(r) forall r 2 Rn), and let r0 = rt 2 Rn+1. Then mn+1(r0) is chosen to satisfyEy[�n+1(r0;M(r)mn+1(r0);Hy(r0))]� Ey[�n(r;M(r);Hy(r))]Proof: Note thatmn+1(r0) exists, since we can construct an online adversarySr0;y = (Q(r0);Hy) which asks the sequence r0 and serves it using Hy. � is apotential function for � and G.By induction on n, the con�guration (r;M(r);Hy(r)) is reachable whenG plays against Hy. By property (3)Ex[�n+1(r0;M(r)(gn+1)x(r0);Hy(r0))]� �n(r;M(r);Hy(r))Taking expectations w.r.t y on both sides, mn+1(r0) can be chosen to be(gn+1)x(r0) for the value of x which maximizes the potential �n+1.This proves inductively that for each n, r 2 Rn, Ey[�n(r;M(r);Hyr))] �0, and by property (2) that M is a deterministic online algorithm that is �-competitive against the (randomized) adaptive online adversary S = (Q;H).15

As in the proof of Theorem 2.2, the fact that H is �-competitive againstany oblivious adversary implies that M is � � �-competitive against anyadaptive o�ine adversary. Of course, since M is deterministic, there is nodi�erence between oblivious and adaptive adversaries. |Corollary 3.1 In the statement of Theorem 3.1, if � is computable andif G and H are computable algorithms (i.e. for every con�guration and re-quest the algorithms answer is a computable probabilistic function), then Mis computable.Corollary 3.1 is somewhat imprecise in that we have not speci�ed a pre-cise notion of computability (say, for real valued functions). We claim thecorollary holds for any reasonable notion. The complexity of M (i.e. its nextanswer function) is obviously determined by the complexity of computing theexpected value of the potential function relative to some �xed randomizedalgorithm H (which may be G itself). We claim that all potential functionspresently used in the analysis of randomized online algorithms are indeed ef-�ciently computable (for example, see Raghavan and Snir [15], Coppersmith,et al [5], Berman, Karlo� and Tardos [1], Grove [10]). More speci�cally,for all of the above K server algorithms, when applied to a v node graph,the expected value of the given potential function can be computed with costbounded by a low degree polynomial in v and K. In particular, using Grove's[10] proof, we can construct an e�cient deterministic O(4K) competitive al-gorithm for all K server systems.4 A Constructive Version of Theorem 2.1In this section we assume that the cost functions fn satisfy two special prop-erties: monotonicity and locality. Monotonicity means that extending arequest-answer sequence cannot cause the cost to decrease; more formally,the requirement is that for all n; r 2 Rn; t 2 R; a 2 An; b 2 A we havefn+1(rt; ab) � fn(r; a). Locality means that, for every positive real numberh, only �nitely many request sequences are of cost less than or equal to h;more formally, for all h, fr : c(r) � hg is �nite. All K-server games and16

task systems satisfy the monotonicity property. All K-server games on �nitegraphs, or on in�nite graphs of bounded degree with �nite edge costs, canbe formulated so as to satisfy the locality property.Let r; a and r0; a0 be elements of the union, over all n, of Rn � An. Thediscrepancy at (r; a; r0; a0) is de�ned as�((r; a); (r0; a0)) = f(rr0; aa0)� f(r; a)� f(r0; a0)The diameter of the game F is de�ned asD(F) = supfj�((r; a); (r0; a0))j : (r; a) 2 [n (Rn �An)and (r0; a0) 2 [n (Rn �An)gThe diameter puts an upper bound on how much the sequence of past re-quests and answers can a�ect the incremental cost of a request-answer se-quence. The diameter is �nite, for example, in K-server games on �nitegraphs.Theorem 4.1 Let F be a game with a �nite diameter D(F), a �nite set R ofpossible requests and a computable cost function satisfying the monotonicityand locality properties. Assume there exists a randomized online algorithmthat is �-competitive against every o�ine adaptive adversary. Then for every� > 0, there is a computable deterministic online algorithm that is ((1+�)�)-competitive against every o�ine adaptive adversary.Proof: Since there is a randomized online algorithm that is �-competitiveagainst any o�ine adaptive adversary, Theorem 2.1 establishes that there isa deterministic online algorithm that is �-competitive against any o�ineadaptive adversary. For any positive real number H, let RH be the set ofall request sequences r such that, for every pre�x r0 of r such that r0 6= r,c(r0) � H. By the locality property RH is a �nite set, and, by monotonicityand the computability of the cost function, and the �niteness of the requestset R, the request sequences in RH can be e�ectively listed. Thus, for each H,there is a computable deterministic online algorithmAH that is �-competitiveagainst any adaptive o�ine adversary that is required to choose its request17

sequence from the �nite set RH . For any request sequence r 2 RH , let AH(r)be the answer sequence produced by algorithm AH in response to r.The required (1+�)�-competitive algorithm involves a parameter H givenby H = (2+�)D(F)� . The algorithm decomposes any request sequence r as theconcatenation of subsequences r(1); r(2); � � � ; r(t), where r(1) is the longestpre�x of r in RH, r(2) is the longest pre�x in RH of the su�x of r obtainedby deleting the pre�x r(1), and so forth. The answer sequence producedby the algorithm is then AH(r(1)); AH(r(2)); � � � ; AH(r(t)). The algorithmoperates by repeatedly simulating the algorithm AH; however, as soon as therequest sequence is no longer in RH the algorithm starts over, as if it hadnot received any previous requests.Let c(i) = c(r(i)). Let r = r(1); r(2); � � � ; r(t). By the properties of thediameter D(F), we have:c(r) � c(r(1)) + i=tXi=2(c(r(i))�D(F))On the other hand, by the �-competitiveness of AH and the de�nition ofthe diameter D(F), the cost incurred by the algorithm is at most �(c(1)) +Pi=ti=2(�(c(i)) +D(F)). Also, by the de�nition of the decomposition of r intor(1); r(2); � � � ; r(t), c(i) � H; i = 1; 2; : : : ; t � 1. Putting the inequalitiestogether, we �nd that the algorithm is (1 + �)�-competitive. |Returning to the example of a K server problem on a �nite graph (saywith minimumdistance = 1), we observe that AH can be constructed initiallywith cost O(KKH). Then the complexity of the resulting algorithm is dom-inated by the O(Kn2), n � KH, dynamic programming cost (see Chrobak,et al [4]) for computing each c(r0).5 AcknowledgementsWe thank Sandy Irani for helping with the construction showing that Theo-rem 2.2 is tight. 18

References[1] P. Berman, H.J. Karlo�, and G. Tardos. A competitive three-server algo-rithms. First Annual ACM-SIAM Symposium on Discrete Algorithms,pages 280{290, Jan 1990.[2] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm formetrical task systems. To appear in JACM.[3] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm formetrical task systems. Proceedings of the 19th Annual ACM Symposiumon Theory of Computing, pages 373{382, New York City, NY,May 1987.[4] M. Chrobak, H. Karlo�, T. Payne, and S. Vishwanathan. New resultson server problems. First Annual ACM-SIAM Symposium on DiscreteAlgorithms, pages 291{300, Jan 1990. To appear in SIAM Journal onDiscrete Mathematics.[5] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. Random walkson weighted graphs, and applications to on-line algorithms. Proceedingsof the 22nd Annual ACM Symposium on Theory of Computing, pages369{378, Baltimore, Maryland, May 1990.[6] X. Deng, and S. Mahajan. Randomization vs computability in onlineproblems. Proceedings of the 23rd Annual ACM Symposium on Theoryof Computing, New Orleans, May 1991.[7] A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D. Sleator, and N.E.Young. Competitive paging algorithms. Technical Report CMU-CS-88-196, School of Computer Science, Carnegie Mellon University, 1988. Toappear in Journal of algorithms.[8] A. Fiat, Y. Rabani, and Y. Ravid. Competitive K Server Algorithms.Proceedings of the 31st Annual IEEE Symposium on Foundations ofComputer Science, pages 454{463, St. Louis, Oct. 1990.[9] D. Gale and F.M. Stewart. In�nite games with perfect information.In W.H. Kuhn and A.W. tucker, Editors, Contributions to the Theoryof Games Vol. II, Annals of Mathematics Studies, 28, pages 245{266.Princeton University Press, Princeton, New Jersey, 1953.19

[10] E. Grove. The harmonic k-server algorithm is competitive. Proceedingsof the 23rd Annual ACM Symposium on Theory of Computing, May1991.[11] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitivesnoopy caching. Algorithmica, 3(1):79{119, 1988.[12] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algo-rithms for on-line problems. Journal of Algorithms, 11:208{230, 1990.[13] D.A. Martin. Borel determinacy. Annals of Math., 102:363{371, 1975.[14] L.A. McGeoch and D.D. Sleator. A strongly competitive randomizedpaging algorithm. Technical Report CMU-CS89-122, School of Com-puter Science, Carnegie Mellon University, 1989. To appear in Algorith-mica.[15] P. Raghavan and M. Snir. Memory vs. randomization in on-line algo-rithms. In ICALP, Italy, July 1989. 16th ICALP, LNCS 372, Springer-Verlag, 19687{703.[16] P. Raghavan and M. Snir. Memory vs. randomization in on-line algo-rithms. Revised version of ICALP paper.[17] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update andpaging rules. CACM, 28(2):202{208, 1985.
20

