Discrete Optimization 2010 Lecture 12 TSP, SAT & Outlook

Marc Uetz University of Twente

m.uetz@utwente.nl

Lecture 12: sheet 1 / 29

Marc Uetz Discrete Optimization

Outline

2 Randomization & Derandomization for MAXSAT

- Discrete Optimization
- Online Optimization
- Algorithmic Game Theory

Outline

1 Approximation Algorithms for the TSP

2 Randomization & Derandomization for MAXSAT

- **3** Outlook on Further Topics
 - Discrete Optimization
 - Online Optimization
 - Algorithmic Game Theory

The TSP is Really Hard

Symmetric TSP: Given undirected, complete graph G = (V, E), nonnegative integer edge lengths c_e , $e \in E$, find a Hamiltonian cycle (a tour visiting each vertex) of minimum length (asymmetric TSP: directed graph, so $c_{ij} \neq c_{ji}$ is possible)

Theorem

For any constant $\alpha > 1$, there cannot exist an α -approximation algorithm for the (symmetric) TSP, unless $\mathcal{P}=\mathcal{NP}$.

Proof: Exercise.

Metric and Euclidean TSP

• Metric TSP: The distance function c on the edges is required to be a metric. That is, the \triangle -inequality holds

 $c_{ik} \leq c_{ii} + c_{ik}$

2 Euclidean TSP: The nodes are points in \mathbb{R}^2 and the metric is given by Euclidean distances

$$c_{ij} = c_{ji} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Lecture 12: sheet 5 / 29

The Symmetric TSP: Overview of Results

Theorems on TSP

Q General TSP: No α -approximation algorithm unless $\mathcal{P}=\mathcal{NP}$

O Metric TSP:

- There is a simple 2-approximation algorithm (Double-Tree Algorithm)
- There is a simple 3/2-approximation algorithm (Christofides Tree-Matching Algorithm 1976)
- Second Seco

Facts on Euler Tours

Definition

An Euler tour is a closed walk in a graph or multigraph (also parallel edges allowed) that traverses each edge exactly once.

Theorem (Euler 1741) \rightarrow Bridges of Königsberg

An Euler tour exists if and only if each node has even degree. Moreover, it can be found in O(n + m) time.

Proofs

• Claim 1: Eulertour always exists

Proof: in both cases there are no odd-degree nodes in the (multi)graph in which we compute an Euler tour

- Claim 2: Shortcutting works, even in linear time Proof: Walk along the Euler tour, as soon as a node is seen for the second time, store last visited node *i*, continue along Euler tour, as soon as next unvisited node *j* is seen, introduce shortcut {*i*, *j*}. This is linear time, O(*n*).
- Claim 3: A perfect matching exists on odd-degree nodes, computable in poly-time
 Proof: Recall that we assume (w.l.o.g.) a complete graph. And, we must have an even number of odd-degree nodes in the MST, as 2|E| = ∑_v d(v), for any graph. We can use Edmonds Matching Algorithm to compute it.

shortcut onto nodes of M

This result of shortcutting the TSP-OPT tour onto only nodes of M contains exactly two matchings, say M_1 and M_2

So $c(M_1) + c(M_2) \leq \mathsf{TSP}\text{-}\mathsf{OPT}$ But $c(M) \leq c(M_1), c(M_2)$, as M is min-cost matching, so

$$c(M) \leq rac{1}{2} \Big(c_{\mathrm{t}}(M_1) + c(M_2) \Big) \leq rac{1}{2} \mathsf{TSP} ext{-}\mathsf{OPT}$$

Outline

Approximation Algorithms for the TSP

2 Randomization & Derandomization for MAXSAT

- Outlook on Further Topics
 - Discrete Optimization
 - Online Optimization
 - Algorithmic Game Theory

'Good' Solutions for Satisfiability

Given a SAT formula in conjunctive normal form, $F = C_1 \wedge C_2 \wedge \cdots \wedge C_m$, on *n* boolean variables x_1, \ldots, x_n

How many of the m clauses are satisfiable at least?

Theorem

There exists a truth assignment fulfilling at least $\frac{1}{2}$ of the clauses

Proof:

- Let $x_j = true$ with probability $\frac{1}{2}$, for each x_j independently
- Show E[number fulfilled clauses $] \ge \frac{1}{2}m$
- So $\exists x \in \{true, false\}^n$ that fulfills $\geq \frac{1}{2}m$ clauses (otherwise expectation can't be that large)

Proof of the Claim

We show even more:

If each clause has at least k literals (variables or their negation), then the expected number of fulfilled clauses is at least

$$\left(1-\left(\frac{1}{2}\right)^k\right)m$$

(as any clause must have at least 1 literal, the claim follows, and e.g. for 3-SAT, that is at least $\frac{7}{8} = 87.5\%$ of the clauses)

Proof:

A clause with $\ell \ge k$ literals is false with probability $\frac{1}{2}^{\ell} \le \frac{1}{2}^{k}$

Hence, E[#true clauses $] = \sum_{i=1}^{m} P(C_i = true) \ge \sum_{i=1}^{m} (1 - \frac{1}{2}^k) = (1 - \frac{1}{2}^k)m$

Randomized Algorithm for Max-SAT

Max-SAT

Given formula F, find a truth assignment x maximizing # of fulfilled clauses

Max-SAT is (strongly) \mathcal{NP} -hard (SAT: $\exists x \text{ fulfilling} \geq m \text{ clauses?}$)

What we have:

Randomized Algorithm

• Let $x_j = true$ with probability $\frac{1}{2}$, $x_j = false$ otherwise

- $\bullet\,$ if randomization $\in \mathsf{O}(\,1\,)$ time, this is a linear time algorithm
- produces a solution x that is reasonably good in expectation (# fulfilled clauses $\geq \frac{1}{2}m \geq \frac{1}{2}OPT$, as $OPT \leq m$)

But can we also find such x in poly-time?

Lecture 12: sheet 15 / 29

Derandomization by Conditional Expectations

Let X := # of true clauses by algorithm (X = random variable) $E[X] = \frac{1}{2} \underbrace{E[X|x_1 = true]}_{(1)} + \frac{1}{2} \underbrace{E[X|x_1 = false]}_{(2)}$

Note that (1) and (2) can be computed easily (in time O(*nm*)), as $E[X] = \sum_{i} P(C_i = true)$, for example: $C_i = (x_1 \lor x_2 \lor \bar{x_7})$ $P(C_i = true | x_1 = true) = 1$ $P(C_i = true | x_1 = false) = 1 - P(C_i = false | x_1 = false) = \frac{3}{4}$ If (1) \geq (2), then (1) $\geq E[X]$, fix $x_1 = true$ (else, fix $x_1 = false$)

Assuming (1) \geq (2), next step would be to fix x_2 by the larger of $E[X|x_1 = true, x_2 = true]$ and $E[X|x_1 = true, x_2 = false]$, etc.

Keeping x_1 and x_2 fixed, do the same with x_3 , etc.... thus get fixed x fulfilling at least $E[X] \ge \frac{1}{2}m$ clauses, in O(n^2m) time.

Lecture 12: sheet 16 / 29

Computing Conditional Expectations: Example

Clauses	nothing	x_1 false	x_1 true	x_1 true	x_1 true	
	fixed			x_2 false	x_2 true	
(x_1)	0.5	0.	1.	1.	1.	1
$(\overline{x_2})$	0.5	0.5	0.5	1.	0.	
(x_3)	0.5	0.5	0.5	0.5	0.5	
$(\overline{x_4})$	0.5	0.5	0.5	0.5	0.5	
(x_1, x_2)	0.75	0.5	1.	1.	1.	
$(\overline{x_3}, \overline{x_4})$	0.75	0.75	0.75	0.75	0.75	
$(\overline{x_1}, x_3)$	0.75	1.	0.5	0.5	0.5	
$(x_1, \overline{x_2}, x_3)$	0.875	0.75	1.	1.	1.	
$(\overline{x_1}, \overline{x_2}, x_4)$	0.875	1.	0.75	1.	0.5	
$(\overline{x_1}, x_2, \overline{x_3}, x_4)$	0.9375	1.	0.875	0.75	1.	
Expected value	6.9375	6.5	7.325	8.	6.75	

TSP Randomization Outlook

Derandomization by Conditional Expectations: Example

Clauses	nothing	x_1 false	x_1 true	x_1 true	x_1 true
	fixed			x_2 false	x_2 true
(x_1)	0.5	0.	1.	1.	1.
$(\overline{x_2})$	0.5	0.5	0.5	1.	0.
(x_3)	0.5	0.5	0.5	0.5	0.5
$(\overline{x_4})$	0.5	0.5	0.5	0.5	0.5
(x_1, x_2)	0.75	0.5	1.	1.	1.
$(\overline{x_3}, \overline{x_4})$	0.75	0.75	0.75	0.75	0.75
$(\overline{x_1}, x_3)$	0.75	1.	0.5	0.5	0.5
$(x_1, \overline{x_2}, x_3)$	0.875	0.75	1.	1.	1.
$(\overline{x_1}, \overline{x_2}, x_4)$	0.875	1.	0.75	1.	0.5
$(\overline{x_1}, x_2, \overline{x_3}, x_4)$	0.9375	1.	0.875	0.75	1.
Expected value	6.9375	6.5	7.325	8.	6.75

Lecture 12: sheet 18 / 29

Marc Uetz

Discrete Optimization

1/2-approximation for MaxCut

MaxCut

Given undirected graph G = (V, E), find a subset $W \subseteq V$ of the nodes of G such that $\delta(W) = \delta(V \setminus W)$ is maximal.

MaxCut is (strongly) \mathcal{NP} -complete.

Theorem

There exists a randomized 1/2-approximation algorithm, which can (easily) be derandomized to yield a 1/2-approximation algorithm.

Outline

Approximation Algorithms for the TSP

2 Randomization & Derandomization for MAXSAT

- Outlook on Further Topics
 - Discrete Optimization
 - Online Optimization
 - Algorithmic Game Theory

TSP	Randomization	Outlook	Discrete Opt.	Online Opt.	AGT
Approximation	Algorith	ms			

- LP-based Algorithms with Clever Rounding Schemes (for example, Shmoys & Tardos 1993)
- 0.878-Approximation for MAXCUT using Semidefinite Programming Relaxation (Goemans & Williamson 1994)
- The PTAS for Euclidean TSP (Arora 1996)
- The PCP-Theorem (alternative characterization of NP)

Integer Linear Programming

- Separation & Optimization are equivalent (Grötschel, Lovasz, Schrijver 1981)
- Column Generation Algorithms (Dual of adding cuts - namely adding variables)
- Dantzig & Wolfe Decomposition (Problem reformulation - then column generation)

An example, the **Ski Rental problem**: go skiing for *n* days, should I rent for \$1 per day (with sunshine) of buy a pair of skis right away for \$11?

Competitive Analysis

Online Algorithm $\leq \alpha$ Offline Optimum

Buying a pair of skis only after having spent 10\$ for rent, we pay never more than twice the optimum. (2-competitive algorithm)

And, no algorithm can be better than 3/2-competitive (no matter if $\mathcal{P}=\mathcal{NP}$ or not).

Algorithmic Game Theory (AGT)

- Assume I have a (poly-time) algorithm that routes all daily traffic on Dutch highways, avoiding congestion
- Great, but nobody will listen: Drivers behave selfishly, only in their own interest

Price of Anarchy is α if Selfish Equilibrium = α System Optimum ($\alpha \ge 1$)

Mechanism Design: Define incentives (e.g., taxation), such that Selfish Equilibrium \approx System Optimum

Example: Price of Anarchy

Sending one (splittable) unit of flow

- System optimum: Total latency = 1/2 + 1/4 = 3/4
- Nash equilibrium: Total latency = 1
- \Rightarrow Price of Anarchy PoA $\ge 4/3$
- Roughgarden/Tardos (2002) show

PoA \leq 4/3 \forall networks \forall linear functions ℓ

Example, cont.: Do they need 42nd street?

- Before: Nash = OPT, total latency = 3/2
- After: OPT = 3/2 (still), but Nash total latency = 2

New York Times, December 25, 1990 What if they closed 42nd street? by Gina Kolata

Lecture 12: sheet 26 / 29

Example: Private Information & Mechanism Design

An example

- Single machine, jobs $j \in \{1, \ldots, n\}$ = agents
- Processing times *p_j* public knowledge
- Weights w_j private information to job j (job j's type)

• Interpretation: $w_j = \text{job } j$'s individual cost for waiting

Task

- Schedule jobs, but reimburse for disutility of waiting
- Problem: We do not know w_j 's and jobs may lie...

Theorem. If (and only if) $S_j \downarrow$ with $w_j \uparrow$, payments can be defined such that all jobs will tell their true w_j (in equilibrium)

Example: Complexity of Nash

Nash (1951)

A (mixed) Nash equilibrium always exists. Proof uses Brouwers fixed point theorem. Consequence: If we can find Brouwer fixed points (efficiently), we can find Nash equilibria (efficiently).

Question: \exists efficient algorithm to find a Nash equilibrium?

Daskalakis, Goldberg, Papadimitriou (2005)

If we can compute Nash equilibrium (efficiently), we can find Brouwer Fixed points (efficiently).

Consequence: Computing Nash Equilibria is (PPAD) hard.

Thanks for coming

Please fill in the questionnaires, now