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Symmetric TSP: Given undirected, complete graph G = (V, E),
nonnegative integer edge lengths ¢, e € E, find a Hamiltonian
cycle (a tour visiting each vertex) of minimum length
(asymmetric TSP: directed graph, so cjj # cji is possible)

For any constant o > 1, there cannot exist an a-approximation
algorithm for the (symmetric) TSP, unless P=N"P.

Proof: Exercise.



@ Metric TSP: The distance function ¢ on the edges is required
to be a metric. That is, the AA-inequality holds

Cik < ¢jj + Cik

@ Euclidean TSP: The nodes are points in R? and the metric is
given by Euclidean distances

CU=Cji=\/(Xi—Xj)2+(yf—yj)2



© General TSP: No a-approximation algorithm unless P=NP

@ Metric TSP:

o There is a simple 2-approximation algorithm
(Double-Tree Algorithm)

o There is a simple 3/2-approximation algorithm
(Christofides Tree-Matching Algorithm 1976)

© Euclidean TSP: 4 PTAS, i.e. for any given ¢ > 0, there is a
(1 + €)-approximation algorithm (Arora, Mitchell 1996)




An Euler tour is a closed walk in a graph or multigraph (also
parallel edges allowed) that traverses each edge exactly once.

ET

S —

An Euler tour exists if and only if each node has even degree.
Moreover, it can be found in O(n+ m) time.




(1) Compute MST (min. spanning tree)

>—I—’/3- MST < Top

(2) 2 MST =1 Euler tour ET (poly-time)

ET < 2TSP

(3) Shortcutting (use A-inequality!)

Tour < 2TSP



(1) Compute MST (min. spanning tree)

(2) (a) Compute minimum weight perfect
Matching M on odd degree nodes

M <72 TSP

(b) Compute ET ET <3/2 TSP

(3) Shortcutting (use A-inequality!)

Tour < 3/2TSP
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Proofs

e Claim 1: Eulertour always exists
Proof: in both cases there are no odd-degree nodes in the
(multi)graph in which we compute an Euler tour

e Claim 2: Shortcutting works, even in linear time
Proof: Walk along the Euler tour, as soon as a node is seen
for the second time, store last visited node /, continue along
Euler tour, as soon as next unvisited node j is seen, introduce
shortcut {/,/}. This is linear time, O(n).

e Claim 3: A perfect matching exists on odd-degree
nodes, computable in poly-time
Proof: Recall that we assume (w.l.0.g.) a complete graph.
And, we must have an even number of odd-degree nodes in
the MST, as 2|E| = )", d(v), for any graph. We can use
Edmonds Matching Algorithm to compute it.
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Proof:

o> N

shortcut onto nodes of M

This result of shortcutting the TSP-OPT tour onto only nodes of
M contains exactly two matchings, say My and M

So ¢(My) + ¢(Mp) < TSP-OPT
But ¢(M) < ¢(M1), c(M,), as M is min-cost matching, so

(M) < %(C(Ml) + c(Mz)) < %TSP-OPT O
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Given a SAT formula in conjunctive normal form,
F=GCGANGA---NCpy, on n boolean variables xi, ..., x,

How many of the m clauses are satisfiable at least?

There exists a truth assignment fulfilling at least % of the clauses

Proof:
© Let x; = true with probability %, for each x; independently
@ Show E[number fulfilled clauses] > Im

© So 3 x € {true, false}" that fulfills > 1m clauses
(otherwise expectation can't be that large) O
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Proof of the Claim

We show even more:

If each clause has at least k literals (variables or their negation),
then the expected number of fulfilled clauses is at least

) )

(as any clause must have at least 1 literal, the claim follows, and
e.g. for 3-SAT, that is at least § = 87.5% of the clauses)

Proof: , )
A clause with ¢ > k literals is false with probability % < %

Hence, E[#true clauses] = >, P(C; = true) > > (1 — %k)

(1—1m
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Given formula F, find a truth assignment x maximizing # of
fulfilled clauses

Max-SAT is (strongly) N'P-hard (SAT: 3 x fulfilling > m clauses?)
What we have:

e For (j=1,...,n)

o Let x; = true with probability 3, x; = false otherwise

e if randomization € O( 1) time, this is a linear time algorithm

@ produces a solution x that is reasonably good in expectation
(# fulfilled clauses > m > 10PT, as OPT < m)

But can we also find such x in poly-time?
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Derandomization by Conditional Expectations

Let X := # of true clauses by algorithm (X = random variable)
E[X] =1 E[X|x1 = true] +3 E[X|x = false]

(1) )

Note that (1) and (2) can be computed easily (in time O( nm)), as
E[X] =", P(C; = true), for example: C; = (x1 V x2 V 57)

P(Ci = Ix1 = )=1
P(Ci = Ix1 = false) = 1 — P(C; = false|x; = false) = 3
If (1) > (2), then (1) > E[X], fix x; = (else, fix x; = false)

Assuming (1) > (2), next step would be to fix xo by the larger of
E[X|x1 =  Xp = | and E[X|x1 = , xp = false], etc.

Keeping x; and x» fixed, do the same with x3, etc.... thus get
fixed x fulfilling at least E[X] > im clauses, in O(n?m) time.
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Computing Conditional Expectations: Example

Clauses nothing | x;false xjtrue | zitrue zjtrue
fixed rofalse xotrue
(z1) 0.5 0. 1. 1. 1.
(T2) 0.5 0.5 0.5 1. 0.
(z3) 0.5 0.5 0.5 0.5 0.5
(T3) 0.5 0.5 0.5 0.5 0.5
(z1,22) 0.75 0.5 1. 1. 1.
(T3, 71) 0.75 0.75 0.75 0.75 0.75
(T1, x3) 0.75 1. 0.5 0.5 0.5
(z1,T3, x3) 0.875 0.75 1. 1. 1.
(TT,Tz,24) |0.875 |1 0.75 | 1. 0.!
(T1,x2,T3,24) | 0.9375 | 1. 0.875 [0.75 1.
Ezpected value | 6.9375 | 6.5 7.325 | 8. 6.75
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Clauses nothing | zifalse  zjtrue | xptrue  2qtrue
fixed rofalse  motrue
(2) 05 |0 T |1 i
(T2) 0.5 0.5 0.5 1. 0.
(3) 0.5 0.5 05 0.5 0.5
(77) 05 {05 05 |05 05
(x1a) o fos 1 |1 1
(T3.77) 0.75 0.75 075 |07 075
(TT.23) 0.75 1. 0.5 0.5 0.5
(21, 7z,23) 0875 075 L 1 L
(T1,T2,24) | 0875 | L 075 | L 0.5
(7, 42, T3,24) | 0.9375 |1 0875 |0.75 1.
Exrpected value | 6.9375 | 6.5 7325 |8 6.75

6.9375

xy false

6.5

&y true

6.75
x4 false
7.5
x4 true
9. 8.



Given undirected graph G = (V/, E), find a subset W C V of the
nodes of G such that 6(W) = §(V \ W) is maximal.

MaxCut is (strongly) N'P-complete. |

There exists a randomized 1/2-approximation algorithm, which can
(easily) be derandomized to yield a 1/2-approximation algorithm.




o
(2]
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@ LP-based Algorithms with Clever Rounding Schemes
(for example, Shmoys & Tardos 1993)

@ 0.878-Approximation for MAXCUT using Semidefinite
Programming Relaxation
(Goemans & Williamson 1994)

@ The PTAS for Euclidean TSP
(Arora 1996)

@ The PCP-Theorem
(alternative characterization of N'P)



@ Separation & Optimization are equivalent
(Grotschel, Lovasz, Schrijver 1981)

@ Column Generation Algorithms
(Dual of adding cuts - namely adding variables)

o Dantzig & Wolfe Decomposition
(Problem reformulation - then column generation)



An example, the Ski Rental problem: go skiing for n days,
should | rent for $1 per day (with sunshine)
of buy a pair of skis right away for $11?
Competitive Analysis

Online Algorithm < «a Offline Optimum
Buying a pair of skis only after having spent 10$ for rent, we pay
never more than twice the optimum. (2-competitive algorithm)

And, no algorithm can be better than 3/2-competitive
(no matter if P=N"P or not).



@ Assume | have a (poly-time) algorithm that routes all daily
traffic on Dutch highways, avoiding congestion

@ Great, but nobody will listen: Drivers behave selfishly, only in
their own interest

Price of Anarchy is « if

Selfish Equilibrium = a System Optimum (a>1)

Mechanism Design: Define incentives (e.g., taxation), such that

Selfish Equilibrium ~ System Optimum



I(x) =x

System optimum: Total latency = 1/2+1/4 = 3/4
Nash equilibrium: Total latency = 1

= Price of Anarchy PoA > 4/3
Roughgarden/Tardos (2002) show

PoA < 4/3V networks V linear functions ¢




() Before (b) After

@ Before: Nash = OPT, total latency = 3/2
o After: OPT = 3/2 (still), but Nash total latency = 2

What if they closed 42nd street? by Gina Kolata I



http://query.nytimes.com/gst/fullpage.html?res=9C0CE7D81530F936A15751C1A966958260
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Exa

Single machine, jobs j € {1,...,n} = agents

Processing times p; public knowledge

Weights w; private information to job j (job j's type)

Interpretation: w; = job j's individual cost for waiting J

Schedule jobs, but reimburse for disutility of waiting

@ Problem: We do not know w;'s and jobs may lie. ..

Theorem. If (and only if) S; | with w; T, payments can be
defined such that all jobs will tell their true w; (in equilibrium)




A (mixed) Nash equilibrium always exists. Proof uses Brouwers
fixed point theorem. Consequence: If we can find Brouwer fixed
points (efficiently), we can find Nash equilibria (efficiently).

Question: 3 efficient algorithm to find a Nash equilibrium? J

If we can compute Nash equilibrium (efficiently), we can find
Brouwer Fixed points (efficiently).

Consequence: Computing Nash Equilibria is (PPAD) hard.
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