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The TSP is Really Hard

Symmetric TSP: Given undirected, complete graph G = (V ,E ),
nonnegative integer edge lengths ce , e 2 E , find a Hamiltonian
cycle (a tour visiting each vertex) of minimum length
(asymmetric TSP: directed graph, so cij 6= cji is possible)

Theorem

For any constant ↵ > 1, there cannot exist an ↵-approximation
algorithm for the (symmetric) TSP, unless P=NP.

Proof: Exercise.
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Metric and Euclidean TSP

1 Metric TSP: The distance function c on the edges is required
to be a metric. That is, the 4-inequality holds

cik  cij + cjk
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2 Euclidean TSP: The nodes are points in R2 and the metric is
given by Euclidean distances

cij = cji =
q

(xi � xj)2 + (yi � yj)2
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The Symmetric TSP: Overview of Results

Theorems on TSP
1 General TSP: No ↵-approximation algorithm unless P=NP

2 Metric TSP:
There is a simple 2-approximation algorithm
(Double-Tree Algorithm)
There is a simple 3/2-approximation algorithm
(Christofides Tree-Matching Algorithm 1976)

3 Euclidean TSP: 9 PTAS, i.e. for any given " > 0, there is a
(1 + ")-approximation algorithm (Arora, Mitchell 1996)
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Facts on Euler Tours

Definition

An Euler tour is a closed walk in a graph or multigraph (also
parallel edges allowed) that traverses each edge exactly once.

ET

Theorem (Euler 1741) ! Bridges of Königsberg

An Euler tour exists if and only if each node has even degree.
Moreover, it can be found in O( n + m ) time.

Lecture 12: sheet 7 / 29 Marc Uetz Discrete Optimization



TSP Randomization Outlook

2-approximation: The Double-Tree Algorithm
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3/2-approximation: Tree-Matching Algorithm

(1)

(2)

(3)
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Proofs

Claim 1: Eulertour always exists
Proof: in both cases there are no odd-degree nodes in the
(multi)graph in which we compute an Euler tour

Claim 2: Shortcutting works, even in linear time
Proof: Walk along the Euler tour, as soon as a node is seen
for the second time, store last visited node i , continue along
Euler tour, as soon as next unvisited node j is seen, introduce
shortcut {i , j}. This is linear time, O( n ).

Claim 3: A perfect matching exists on odd-degree
nodes, computable in poly-time
Proof: Recall that we assume (w.l.o.g.) a complete graph.
And, we must have an even number of odd-degree nodes in
the MST, as 2|E | =

P
v d(v), for any graph. We can use

Edmonds Matching Algorithm to compute it.
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Claim 4: Cost of Matching c(M)  1/2 Cost of TSP OPT

Proof:
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This result of shortcutting the TSP-OPT tour onto only nodes of
M contains exactly two matchings, say M1 and M2

So c(M1) + c(M2)  TSP-OPT

But c(M)  c(M1), c(M2), as M is min-cost matching, so
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‘Good’ Solutions for Satisfiability

Given a SAT formula in conjunctive normal form,
F = C1 ^ C2 ^ · · · ^ Cm, on n boolean variables x1, . . . , xn

How many of the m clauses are satisfiable at least?

Theorem

There exists a truth assignment fulfilling at least 1
2 of the clauses

Proof:

1 Let xj = true with probability 1
2 , for each xj independently

2 Show E [number fulfilled clauses] � 1
2m

3 So 9 x 2 {true, false}n that fulfills � 1
2m clauses

(otherwise expectation can’t be that large)
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Proof of the Claim

We show even more:

If each clause has at least k literals (variables or their negation),
then the expected number of fulfilled clauses is at least
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(as any clause must have at least 1 literal, the claim follows, and
e.g. for 3-SAT, that is at least 7

8 = 87.5% of the clauses)

Proof:
A clause with ` � k literals is false with probability 1

2
`  1
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k

Hence, E [#true clauses] =
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Randomized Algorithm for Max-SAT

Max-SAT

Given formula F , find a truth assignment x maximizing # of
fulfilled clauses

Max-SAT is (strongly) NP-hard (SAT: 9 x fulfilling � m clauses?)

What we have:

Randomized Algorithm

For (j = 1, . . . , n)
Let xj = true with probability 1

2 , xj = false otherwise

if randomization 2 O( 1 ) time, this is a linear time algorithm

produces a solution x that is reasonably good in expectation
(# fulfilled clauses � 1

2m � 1
2OPT , as OPT  m)

But can we also find such x in poly-time?
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Derandomization by Conditional Expectations

Let X := # of true clauses by algorithm (X = random variable)
E [X ] = 1

2 E [X |x1 = true]| {z }
(1)

+1
2 E [X |x1 = false]| {z }

(2)

Note that (1) and (2) can be computed easily (in time O( nm )), as
E [X ] =

P
i P(Ci = true), for example: Ci = (x1 _ x2 _ x̄7)

P(Ci = true|x1 = true) = 1
P(Ci = true|x1 = false) = 1� P(Ci = false|x1 = false) = 3

4

If (1) � (2), then (1) � E [X ], fix x1 = true (else, fix x1 = false)

Assuming (1) � (2), next step would be to fix x2 by the larger of
E [X |x1 = true, x2 = true] and E [X |x1 = true, x2 = false], etc.

Keeping x1 and x2 fixed, do the same with x3, etc.. . . thus get
fixed x fulfilling at least E [X ] � 1

2m clauses, in O( n2m ) time.
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Computing Conditional Expectations: Example
!"#$%&'()*+$%,-./0)*+/1.-.+/#&)!"%'2-#-.+/3
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Derandomization by Conditional Expectations: Example
!"#$%&'()*'+#,-.$/0#1/., 23)4.,-/1/.,#&)!"%'51#1/.,6
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1/2-approximation for MaxCut

MaxCut

Given undirected graph G = (V ,E ), find a subset W ✓ V of the
nodes of G such that �(W ) = �(V \ W ) is maximal.

MaxCut is (strongly) NP-complete.

Theorem

There exists a randomized 1/2-approximation algorithm, which can
(easily) be derandomized to yield a 1/2-approximation algorithm.
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Approximation Algorithms

LP-based Algorithms with Clever Rounding Schemes
(for example, Shmoys & Tardos 1993)

0.878-Approximation for MaxCut using Semidefinite
Programming Relaxation
(Goemans & Williamson 1994)

The PTAS for Euclidean TSP
(Arora 1996)

The PCP-Theorem
(alternative characterization of NP)
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Integer Linear Programming

Separation & Optimization are equivalent
(Grötschel, Lovasz, Schrijver 1981)

Column Generation Algorithms
(Dual of adding cuts - namely adding variables)

Dantzig & Wolfe Decomposition
(Problem reformulation - then column generation)
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Online Optimization

An example, the Ski Rental problem: go skiing for n days,

should I rent for $1 per day (with sunshine)

of buy a pair of skis right away for $11?

Competitive Analysis

Online Algorithm  ↵ O✏ine Optimum

Buying a pair of skis only after having spent 10$ for rent, we pay
never more than twice the optimum. (2-competitive algorithm)

And, no algorithm can be better than 3/2-competitive
(no matter if P=NP or not).
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Algorithmic Game Theory (AGT)

Assume I have a (poly-time) algorithm that routes all daily
tra�c on Dutch highways, avoiding congestion

Great, but nobody will listen: Drivers behave selfishly, only in
their own interest

Price of Anarchy is ↵ if

Selfish Equilibrium = ↵ System Optimum (↵ � 1)

Mechanism Design: Define incentives (e.g., taxation), such that

Selfish Equilibrium ⇡ System Optimum
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Example: Price of Anarchy

t

(x) = 1 l

(x) = x   l

s

Figure 3: A Simple Bad Example

lower link (with a total latency of 1) while the minimum-latency flow spreads flow evenly
across the two links, thereby incurring a cost of 3

4 . Thus, � = 4
3 in this simple instance as

well. (In the next section we will prove that this is the worst possible ratio for instances
with linear latency functions.)

Unfortunately, the ratio can be much worse when non-linear latency functions are allowed.
For a positive integer p, consider modifying the example of Figure 3 by giving the lower link
a latency function of �(x) = xp (everything else remains unchanged). The flow at Nash
equilibrium again places the entire unit on the lower link, incurring a cost of 1, while the
optimal flow assigns (p + 1)�1/p units to the lower link and the remainder to the upper link.
This solution has a total latency of 1 � p · (p + 1)�(p+1)/p, which tends to 0 as p ! �.
Thus, assuming only continuity and monotonicity of the edge latency functions, � cannot be
bounded above (even as a function of the network size).

On the other hand, this example does not rule out interesting bicriteria results. Toward
this end, we compare the cost of a flow at Nash equilibrium to an optimal flow feasible for
increased rates. In the example above, an optimal flow feasible for rate r � 1 assigns the
additional flow to the upper link, now incurring a cost that tends to r � 1 as p ! �. In
particular, for any p an optimal flow feasible for twice the rate (r = 2) has total latency at
least that of the flow at Nash equilibrium (feasible for the original rates). Our main result
of this section is a proof of the generalization of this result to any network with continuous,
nondecreasing edge latencies.

Theorem 3.1 If f is a flow at Nash equilibrium for (G, r, �) and f � is feasible for (G, 2r, �),
then C(f)  C(f �).

Proof : Suppose f, f � satisfy the hypotheses of the theorem. For i = 1, . . . , k, let Li(f) be
the latency of an si-ti flow path (of f), so that C(f) =

P
i Li(f)ri (see Lemma 2.3). We seek

a set of latency functions �̄ that on one hand approximates the original ones (in the sense
that the cost of a flow with respect to latency functions �̄ is close to its original cost) and, on
the other hand, allows us to easily lower bound the cost (with respect to �̄) of any feasible
flow. With this goal in mind, we define new latency functions �̄ as follows:

�̄e(x) =

�
�e(fe) if x  fe

�e(x) if x � fe.

Figure 4 illustrates this construction.

12

Sending one (splittable) unit of flow

System optimum: Total latency = 1/2 + 1/4 = 3/4

Nash equilibrium: Total latency = 1

) Price of Anarchy PoA � 4/3

Roughgarden/Tardos (2002) show

PoA  4/3 8 networks 8 linear functions `
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Example, cont.: Do they need 42nd street?
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(b) After

Figure 1: Braess’s Paradox. The addition of an intuitively helpful link can negatively impact
all of the users of a congested network.

of and extensions to this tra�c model have been studied (see for example [1, 11, 16, 21, 32,
33, 34, 35, 41, 43, 47, 49]).

In the past several decades, much of the work on this tra�c model has been inspired by
a “paradox” first discovered by Braess [6] and later reported by Murchland [31] (see also [2]
for a non-technical account). The essence of Braess’s Paradox is captured by the example
shown in Figure 1, where the edges are labeled with their latency functions (each a function
of the link congestion x). Suppose one unit of tra�c needs to be routed from s to t in the
first network of Figure 1. In the unique flow at Nash equilibrium, which coincides with the
optimal flow, half of the tra�c takes the upper path and the other half travels along the
lower path, and thus all agents are routed on a path of latency 3

2 . Next suppose a fifth
edge of latency 0 (independent of the congestion) is added to the network, with the result
shown in Figure 1(b). The optimal flow is una�ected by this augmentation (there is no way
to use the new link to decrease the total latency) while in the new (unique) flow at Nash
equilibrium, all tra�c follows path s ! v ! w ! t; here, the latency experienced by each
individual agent is 2. Thus, the intuitively helpful (or at least innocuous) action of adding
a new zero-latency link may negatively impact all of the agents!

Motivated by the discovery of Braess’s Paradox and evidence of similarly counterintuitive
and counterproductive tra�c behavior following the construction of new roads in congested
cities [25, 31], researchers attempted to classify networks in which the addition of a single link
could degrade network performance [18, 51], discovered new types of “paradoxes” [12, 15, 20,
48, 50], and proved that detecting Braess’s Paradox (even in its worst-possible manifestation)
is algorithmically di�cult [42]. In a related model with finitely many agents, each controlling
a strictly positive amount of flow, Korilis et al. [26, 27] studied strategies for adding new
edges and/or capacity to a network that guarantee an improvement in network performance.

In contrast to this previous work, we are interested in quantifying the di�erence in social
welfare between equilibrium and optimal tra�c flows. To the best of our knowledge, the only
previous work with this goal is the paper of Koutsoupias and Papadimitriou [28]; however,

4

Before: Nash = OPT, total latency = 3/2

After: OPT = 3/2 (still), but Nash total latency = 2

New York Times, December 25, 1990

What if they closed 42nd street? by Gina Kolata
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Example: Private Information & Mechanism Design

An example

Single machine, jobs j 2 {1, . . . , n} = agents

Processing times pj public knowledge

Weights wj private information to job j (job j ’s type)

Interpretation: wj = job j ’s individual cost for waiting

Task

Schedule jobs, but reimburse for disutility of waiting

Problem: We do not know wj ’s and jobs may lie. . .

Theorem. If (and only if) Sj # with wj ", payments can be
defined such that all jobs will tell their true wj (in equilibrium)
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Example: Complexity of Nash

Nash (1951)

A (mixed) Nash equilibrium always exists. Proof uses Brouwers
fixed point theorem. Consequence: If we can find Brouwer fixed
points (e�ciently), we can find Nash equilibria (e�ciently).

Question: 9 e�cient algorithm to find a Nash equilibrium?

Daskalakis, Goldberg, Papadimitriou (2005)

If we can compute Nash equilibrium (e�ciently), we can find
Brouwer Fixed points (e�ciently).

Consequence: Computing Nash Equilibria is (PPAD) hard.
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Thanks for coming

Please fill in the questionnaires, now

Lecture 12: sheet 29 / 29 Marc Uetz Discrete Optimization


	Approximation Algorithms for the TSP
	Randomization & Derandomization for MAXSAT
	Outlook on Further Topics
	Discrete Optimization
	Online Optimization
	Algorithmic Game Theory


