COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2443; Phone: x3748

 giri@cs.fiu.eduhttp://www.cs.fiu.edu/~giri/teach/COT6936_S12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

Purpose of this class

- First course in algorithms is inadequate preparation for most PhD students
- Learn standard techniques
- Solve standard problems
- Learn basic analysis techniques
- Need to go beyond that!
- This course
- Model/formalize a problem
- Leverage existing solutions
- Create your own solutions

Expectations

- Attend class
- Do required reading before class
- Participate in class discussions
- Team work; discussion groups
- Solve practical research problems
- Make a presentation; write a report
- need a research component; may implement
- Write research paper
- No cell phones, SMS, or email during class

Evaluation

- Exam (1)
- Quizzes
- Homework Assignments

Semester Project
Class Participation

20\%
5\%
15\%
40\%
20\%

Semester Project \& Exam Schedule

- Milestones:
- By Jan 23: Meet with me and discuss project
- By Jan 30: Send me email with project team information and topic
- Feb 20: Short presentation giving intro to project, problem definition, notation, and background
- March 5: Take-home Exam
- April 16, 23: Final presentation of project
- April 24: Written report on project

Why should I care about Algorithms?

Cartoon from Intractability by Garey and Johnson

"I can't find an efficient algorithm, I guess I'm just too dumb."

Why are theoretical results useful?

"I can't find an efficient algorithm, because no such algorithm is possible!"

Cartoon from Intractability by Garey and Johnson

Why are theoretical results useful?

"I can't find an efficient algorithm, but neither can all these famous people."
Cartoon from Intractability by Garey and Johnson

What if efficient algorithms don't exist

- Find good approximation algorithms
- Quality of the solution is guaranteed
- Find good heuristic algorithms
- Understand nature of inputs in practice
- Perform many experiments after implementing

If you like Algorithms, nothing to worry about!

© Original Artist
Reproduction rights obtainable from www CartoonStock.com

"Calculus is my new Versace. I get a buzz from algorithms. What's going on with me. Raymond?

Classical (Theoretical) Algorithmic Model

- Input-output description provided
- Input provided \& stored in memory
- Output computed \& stored or output immediately
- Entire program stored in memory
- Algebraic Computation-Tree Model (Variants: indirection, floor function, square root)
- Space (?) and time (?) efficiency
- Deterministic and Sequential algorithms
- Worst-case analysis
- No other factors to consider

Find a "good" student

- Director of SCIS says to you: "Find me a good CS student."
- You ask: "What do you mean by good?"
- Director says: "S/he must be at least as good as at least half of our current students."

Naïve Solution

- Solution 1
- Email (or contact or inspect) N/2 + 1 students and pick best among them
- Too inefficient
- Solution 2
- Pick a random student
- May be wrong about $\frac{1}{2}$ the time
- Solution 3
- Pick r random students and pick best among them

Solution 3

- Prob of failure: $\frac{1}{2}$
- Prob of failure: $(1 / 2)^{r}$

Randomized algorithms

- Useful when you can tolerate failure
- 2 kinds of randomized algorithms
- Always fast, sometimes wrong (Monte Carlo)
- Always correct, sometimes slow (Las Vegas)
- Complexity classes: RP, BPP, ZPP, ...
- Focus of study
- Design
- Analysis
- Time, Failure probability, Performance, Tradeoffs

Applications of Randomized Algorithms

- Contention Resolution: network protocol, resource sharing
- Hashing
- Storage: multi-level storage management
- Packet Routing
- Load Balancing

Facility Location

- Given: Location of all fire-stations in Miami Output: Optimal location of next fire-station Strategy: find largest empty region

Achieving Height Diversity

- Given: Heights of all students in class
- Problem:
- Want to achieve diversity in heights
- Allowed to add a student. How to pick?
- Approach:
- Minimize the largest empty height range
- Solution:
- Find biggest empty height range and pick student in that range

Achieving Height Diversity: a variant

- Given: Heights of all students in class
- Problem:
- Want to achieve diversity in heights
- Allowed to remove a student. How to pick?
- Approach:
- Maximize the smallest empty height range
- Solution:
- Find smallest empty height range and pick one of two students

Heights of Students: What we know

- One problem is harder than the other!
- Which one and why? Homework!
- One has a lower bound!
- Relationship to EUP?
- The other can be solved faster, but with a different/stronger computational model!

Updating a Binary Counter

- How many bits are changed when a binary number is incremented?
- Worst-case?
- Average-case?
- Amortized analysis? Average cost over a worstcase sequence of operations.

Binary Counter: What we know

- Worst case per increment $=O$ (\# bits)
- Average case per increment = O(\# bits)
- Amortized complexity = ??

Other Algorithmic Models

- Practical problems
- Making spot decisions: ON-LINE Algorithms
- Often randomized
- Use current state
- Sophisticated: use past history
- Not having enough memory or computing power: STREAMING Algorithms

Practical Algorithmic Models

- Sequential Algorithms
- Worst-case / average-case analysis
- Amortized Analysis
- Parallel Algorithms
- On-line Algorithms
- Randomized Algorithms
- Streaming Algorithms
- External Memory Algorithms
- Limited space/time/power Algorithms
- Making use of cache: Cache-aware Algorithms

Experimental Algorithms

- How to do good experiments in practice?
- Testing for correctness
- Testing for performance
- Modeling inputs in practice
- Trying different input distributions
- Optimizing performance for special input distributions

Additional Topics

- Approximation Algorithms
- Computational Geometry
- Computational Biology
- String Algorithms
- Computational Finance
- Combinatorial Optimization
- Algorithmic Game Theory
- Heuristic Algorithms
- Problem Modeling and Transformations

Paging Algorithms

Here are 3 well-known paging algorithms

- Least Recently Used (LRU): evict item whose most recent request was furthest in the past
- First-in, First-out (FIFO): evict item that was brought in furthest in the past
- Least Frequently Used (LFU): evict item that has been requested least often
Which ones are good algorithms and why?
What is an optimal algorithm?

Drunken sailors and cabins

- A ship arrives at a port. 40 sailors go ashore for revelry. They return to the ship rather inebriated. Being unable to remember their cabin location, they find a random unoccupied cabin to sleep the night. How many sailors are expected to sleep in their own cabins?
- Variants? Generalizations?

Homework \#1 - is here!

- Achieving diversity in heights:
- Largest empty range problem
- Smallest empty range problem
- Which is harder and why?
- Binary Counter
- 2SAT
- Drunken Sailors problem
- How many sailors will sleep in their own cabins?
- ACM Programming Contest Problems

NP-Completeness

- Computers and Intractability: A Guide to the theory of NP-Completeness, by Garey and Johnson
- Compendium (100 pages) of NP-Complete and related problems

Polynomial-time computations

- An algorithm has (worst-case) time complexity $O(T(n))$ if it runs in time at most $c T(n)$ for some $c>0$ and for every input of length n. [Time complexity \approx worst-case.]
- An algorithm is a polynomial-time algorithm if its (worst-case) time complexity is $O(p(n))$, where $p(n)$ is some polynomial in n. [Polynomial in what?]
- Composition of polynomials is a polynomial. [What are the implications?]

The class P

- A problem is in $\ngtr>$ if there exists a polynomial-time algorithm for the problem. [\gg is therefore a class of problems, no \dagger algorithms.]
- Examples of problems in \ngtr
- DFS: Linear-time algorithm exists
- Sorting: $O(n \log n)$-time algorithm exists
- Bubble Sort: Quadratic-time algorithm $O\left(n^{2}\right)$
- APSP: Cubic-time algorithm $O\left(n^{3}\right)$

The class WP

- A problem is in if there exists a nondeterministic polynomial-time algorithm that solves the problem.
- [Alternative definition] A problem is in 2 p if there exists a (deterministic) polynomialtime algorithm that verifies a solution to the problem.
- All problems in p are in \mathbb{N}. [The converse is the big deal!]

TSP: Traveling Salesperson Problem

- Input:

- Weighted graph, G
- Length bound, B

Output:

- Is there a TSP tour in G of length at most B ?
- Is TSP in WP?
- YES. Easy to verify a given solution.
- Is TSP in ?
- OPEN!
- One of the greatest unsolved problems of this century!
- Same as asking: Is $\ngtr=2 p$?

So, what is WP-Complete?

- wp-Complete problems are the "hardest" problems in NP .
- We need to formalize the notion of "hardest".

Terminology

- Problem:
- An abstract problem is a function (relation) from a set I of instances of the problem to a set S of solutions.

$$
p: I \rightarrow S
$$

- An instance of a problem p is obtained by assigning values to the parameters of the abstract problem.
- Thus, describing set of all instances (i.e., possible inputs) and the set of corresponding outputs defines a problem.
- Algorithm:
- An algorithm that solves problem p must give correct solutions to all instances of the problem.
- Polynomial-time algorithm:

Terminology (Cont' d)

- Input Length:
- length of an encoding of an instance of the problem.
- Time and space complexities are written in terms of it.
- Worst-case time/space complexity of an algorithm
- Maximum time/space required by algorithm on any input of length n.
- Worst-case time/space complexity of a problem
- UPPER BOUND: worst-case time complexity of best existing algorithm that solves the problem.
- LOWER BOUND: (provable) worst-case time complexity of best algorithm (need not exist) that could solve the problem.
- LOWER BOUND \leq UPPER BOUND
- Complexity Class P :
- Set of all problems p for which polynomial-time algorithms exist

Terminology (Cont’d)

- Decision Problems:
- Problems for which the solution set is \{yes, no\}
- Example: Does a given graph have an odd cycle?
- Example: Does a given weighted graph have a TSP tour of length at most B?
- Complement of a decision problem:
- Problems for which the solution is "complemented".
- Example: Does a given graph NOT have an odd cycle?
- Example: Is every TSP tour of a given weighted graph of length > B?
- Optimization Problems:
- Problems where one is maximizing/minimizing an objective function.
- Example: Given a weighted graph, find a MST.
- Example: Given a weighted graph, find an optimal TSP tour.
- Verification Algorithms:
- Given a problem instance i and a certificate s, is s a solution for instance i?

Terminology (Cont' d)

- Complexity Class \ngtr :
- Set of all problems p for which polynomial-time algorithms exist.
- Complexity Class WD:
- Set of all problems p for which polynomial-time verification algorithms exist.
- Complexity Class ca-2p:
- Set of all problems p for which polynomial-time verification algorithms exist for their complements, i.e., their complements are in $2 p$.

Terminology (Cont' d)

- Reductions:

$$
p_{1} \rightarrow p_{2}
$$

- A problem p_{1} is reducible to p_{2}, if there exists an algorithm R that takes an instance i_{1} of p_{1} and outputs an instance i_{2} of p_{2}, with the constraint that the solution for i_{1} is YES if and only if the solution for i_{2} is YES.
- Thus, R converts YES (NO) instances of p_{1} to YES (NO) instances of p_{2}.
- Polynomial-time reductions: $p_{1} \xrightarrow{p} p_{2}$
- Reductions that run in polynomial time.
- If $p_{1} \xrightarrow{p} p_{2}$, then
-If p_{2} is easy, then so is p_{1}.
-If p_{1} is hard, then so is p_{2}.

$$
\begin{aligned}
& \mathrm{p}_{2} \in \boldsymbol{P} \Rightarrow \mathrm{p}_{1} \in \boldsymbol{P} \\
& \mathrm{p}_{1} \notin \boldsymbol{P} \Rightarrow \mathrm{p}_{2} \notin \boldsymbol{P}
\end{aligned}
$$

What are WP-Complete problems?

- These are the hardest problems in NP^{P}.
- A problem p is \mathbb{T}-Complete if
- there is a polynomial-time reduction from every problem in $2 p$ to p.
$-p \in m p$
- How to prove that a problem is vp -Complete?
- Cook's Theorem: [1972]
-The SAT problem is WP-Complete.
Steve Cook, Richard Karp, Leonid Levin

WP-Complete vs WP-Thard

- A problem p is up -Complete if
- there is a polynomial-time reduction from every problem in 2 p to p .
- $p \in m$
- A problem p is up-Hard if
- there is a polynomial-time reduction from every problem in 2 p to p .
- Remember: to prove problem p is 2 mp -Complete you have to reduce a 2 p -Complete problem to p .

The SAT Problem: an example

- Consider the boolean expression:
$C=(a \vee \neg b \vee c) \wedge(\neg a \vee d \vee \neg e) \wedge(a \vee \neg d \vee \neg c)$
- Is C satisfiable? [Does there exist a True/False assignments to the boolean variables a, b, c, d, e, such that C is True?]
- If there are n boolean variables, then there are 2^{n} different truth value assignments.
- However, a solution can be quickly verified!

The SAT (Satisfiability) Problem

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses.
- Question: Is C satisfiable?
- Let $C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- Where each $C_{i}=\left(y_{1}^{i} \vee y_{2}^{i} v \cdots \vee y_{k_{i}}^{i}\right)$
- And each $y_{j}^{i} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.
- Steve Cook showed that the problem of deciding whether a non-deterministic Turing machine T accepts an input w or not can be written as a boolean expression C_{T} for a SAT problem. The boolean expression will have length bounded by a polynomial in the size of T and w.
- How to now prove Cook's theorem? Is SAT in \%p?
- Can every problem in WPbe poly. reduced to it?

The problem classes and their relationships

More NP-Complete problems

3SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
- Let $C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- Where each $C_{i}=\left(y_{1}^{i} \vee y_{2}^{i} v y_{3}^{i}\right)$
- And each $y_{j}^{i} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.
3SAT is Ip-Complete.

3SAT is IP-Complete

- 3SAT is in 2 .
- SAT can be reduced in polynomial time to 3SAT.
- This implies that every problem in 20 can be reduced in polynomial time to 3SAT. Therefore, 3SAT is up-Complete.
- So, we have to design an algorithm such that:
- Input: an instance C of SAT
- Output: an instance C' of 3SAT such that satisfiability is retained. In other words, C is satisfiable if and only if C^{\prime} is satisfiable.

3SAT is NP-Complete

- Let C be a SAT instance with clauses $C_{1}, C_{2}, \ldots, C_{m}$ - Let C_{i} be a disjunction of $k>3$ literals.
$C_{i}=\quad y_{1} \vee y_{2} \vee \ldots \vee y_{k}$
- Rewrite C_{i} as follows:

$$
\begin{aligned}
C_{i}^{\prime}= & \left(y_{1} \vee y_{2} \vee z_{1}\right) \wedge \\
& \left(\neg z_{1} \vee y_{3} \vee z_{2}\right) \wedge \\
& \left(\neg z_{2} \vee y_{4} \vee z_{3}\right) \wedge \\
& \cdots \\
& \left(\neg z_{k-3} \vee y_{k-1} \vee y_{k}\right)
\end{aligned}
$$

- Claim: C_{i} is satisfiable if and only if C_{i}^{\prime} is satisfiable.

More WP-Complete problems?

2SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
- Let $C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- Where each $C_{i}=\left(y_{i}^{\prime} \vee v_{2}^{\prime}\right)$
- And each $y_{j}^{\prime} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n}, \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

$$
\text { 2SAT is in } P \text {. }
$$

2SAT is in P

- If there is only one literal in a clause, it must be set to true.
- If there are two literals in some clause, and if one of them is set to false, then the other must be set to true.
- Using these constraints, it is possible to check if there is some inconsistency.
- How? Homework: do not submit!

The CLIQUE Problem

- A clique is a completely connected subgraph.

CLIQUE

- Input: Graph G(V,E) and integer k
- Question: Does G have a clique of size k ?

CLIQUE is NP-Complete

- CLIQUE is in \%p.

- Reduce 3SAT to CLIQUE in polynomial time.
- $F=\left(x_{1} v-x_{2} v x_{3}\right)\left(\neg x_{1} v-x_{3} v x_{4}\right)\left(x_{2} v x_{3} v-x_{4}\right)\left(\neg x_{1} v-x_{2} v x_{3}\right)$

F is satisfiable if and only if G has a clique of size k where k is the number of clauses in F.

Vertex Cover

A vertex cover is a set of vertices that "covers" all the edges of the graph.

Examples

Vertex Cover (VC)

Input: Graph G, integer K
Question: Does G contain a vertex cover of size k?

- VC is in kP .
- polynomial-time reduction from CLIQUE to $V C$.
- Thus VC is kp -Complede.

Claim: G^{\prime} has a clique of size k ' if and only if G has a VC of size $k=n-k$ '

Hamiltonian Cycle Problem (HCP)

Input: Graph G

Question: Does G contain a hamiltonian cycle?

- HCP is in 2 p .
- There exists a polynomial-time reduction from 3SAT to HCP.
- Thus HCP is שp-Complete.

Shortest Path vs Longest Path

Input: Graph G with edge weights, vertices u and v, bound B
Question: Does G contain a shortest path from u to v of length at most B ?

Question: Does G contain a longest path from u to v of length at most B ?

Homework: Listen to Cool MP3:
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3

Perfect (2-D) Matching vs 3-D Matching

1. Input: Bipartite graph, $G(U, V, E)$

Question: Does G have a perfect matching?
2. Input: Sets U and V, and $E=$ subset of $U \times V$ Question: Is there a subset of E of size $|U|$ that covers U and V ? [Related to 1.]
3. Input: Sets $U, V, W, \& E=$ subset of $U \times V \times W$ Question: Is there a subset of E of size $|U|$ that covers U, V and W ?

Coping with NP-Completeness

- Approximation: Search for an "almost" optimal solution with provable quality.
- Randomization: Design algorithms that find "provably" good solutions with high prob and/or run fast on the average.
- Restrict the inputs (e.g., planar graphs), or fix some input parameters.
- Heuristics: Design algorithms that work "reasonably well".

Reading

- Read Background
- Algorithms \& Discrete Math Fundamentals
- Cormen, et al., Chapters 1-16, 22-25
- NP-Completeness
- Cormen et al., Chapter 34
- Appendix (p187-288) form Garey \& Johnson
- Next Class
- Approximation Algorithms
- Cormen et al., Chapter 35
- Kleinberg, Tardos, Chapter 11
- Books by Vazirani and Hochbaum/Shmoys

