COT 6936: Topics in Algorithms

Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/COT6936_S12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

Purpose of this class

- First course in algorithms is inadequate preparation for most PhD students
 - Learn standard techniques
 - Solve standard problems
 - Learn basic analysis techniques
 - Need to go beyond that!
- This course
 - Model/formalize a problem
 - Leverage existing solutions
 - Create your own solutions

Expectations

- Attend class
- Do required reading <u>before</u> class
- Participate in class discussions
- Team work; discussion groups
- Solve practical research problems
- Make a presentation; write a report

 need a research component; may implement
- Write research paper
- No cell phones, SMS, or email during class

Evaluation

•	Exam (1)	20%
•	Quizzes	5%
•	Homework Assignments	15%
•	Semester Project	40%
•	Class Participation	20%

Semester Project & Exam Schedule

- Milestones:
 - By Jan 23: Meet with me and discuss project
 - By Jan 30: Send me email with project team information and topic
 - Feb 20: Short presentation giving intro to project, problem definition, notation, and background
 - March 5: Take-home Exam
 - April 16, 23: Final presentation of project
 - April 24: Written report on project

Why should I care about Algorithms?

"I can't find an efficient algorithm, I guess I'm just too dumb."

Why are theoretical results useful?

"I can't find an efficient algorithm, because no such algorithm is possible!"

Cartoon from Intractability by Garey and Johnson COT 6936 7

Why are theoretical results useful?

"I can't find an efficient algorithm, but neither can all these famous people."

Cartoon from Intractability by Garey and Johnson

What if efficient algorithms don't exist

- Find good approximation algorithms
 Quality of the solution is guaranteed
- Find good heuristic algorithms
- Understand nature of inputs in practice
- Perform many experiments after implementing

If you like Algorithms, nothing to worry about!

"Calculus is my new Versace. I get a buzz from algorithms. What's going on with me, Raymond? I'm scared."

Classical (Theoretical) Algorithmic Model

- Input-output description provided
- Input provided & stored in memory
- Output computed & stored or output immediately
- Entire program stored in memory
- Algebraic Computation-Tree Model (Variants: indirection, floor function, square root)
- Space (?) and time (?) efficiency
- Deterministic and Sequential algorithms
- Worst-case analysis
- No other factors to consider

Find a "good" student

- Director of SCIS says to you: "Find me a good CS student."
- You ask: "What do you mean by good?"
- Director says: "S/he must be at least as good as at least half of our current students."

Naïve Solution

- Solution 1
 - Email (or contact or inspect) N/2 + 1 students and pick best among them
 - Too inefficient
- Solution 2
 - Pick a random student
 - May be wrong about $\frac{1}{2}$ the time
- Solution 3
 - Pick r random students and pick best among them

Solution 3

- Prob of failure: $\frac{1}{2}$
- Prob of failure: (1/2)^r

Randomized algorithms

- Useful when you can tolerate failure
- 2 kinds of randomized algorithms
 - Always fast, sometimes wrong (Monte Carlo)
 - Always correct, sometimes slow (Las Vegas)
- Complexity classes: RP, BPP, ZPP, ...
- Focus of study
 - Design
 - Analysis
 - Time, Failure probability, Performance, Tradeoffs

Applications of Randomized Algorithms

- Contention Resolution: network protocol, resource sharing
- Hashing
- Storage: multi-level storage management
- Packet Routing
- Load Balancing

Facility Location

- Given: Location of all fire-stations in Miami
- Output: Optimal location of next fire-station
- Strategy: find largest empty region

Achieving Height Diversity

- Given: Heights of all students in class
- Problem:
 - Want to achieve diversity in heights
 - Allowed to add a student. How to pick?
- Approach:
 - Minimize the largest empty height range
- Solution:
 - Find biggest empty height range and pick student in that range

Achieving Height Diversity: a variant

- Given: Heights of all students in class
- Problem:
 - Want to achieve diversity in heights
 - Allowed to remove a student. How to pick?
- Approach:
 - Maximize the smallest empty height range
- Solution:
 - Find smallest empty height range and pick one of two students

Heights of Students: What we know

- One problem is harder than the other!
- Which one and why? Homework!
- One has a lower bound!
 - Relationship to EUP?
- The other can be solved faster, but with a different/stronger computational model!

Updating a Binary Counter

- How many bits are changed when a binary number is incremented?
 - Worst-case?
 - Average-case?
 - Amortized analysis? Average cost over a worstcase sequence of operations.

Binary Counter: What we know

- Worst case per increment = O(# bits)
- Average case per increment = O(# bits)
- Amortized complexity = ??

Other Algorithmic Models

- Practical problems
 - Making spot decisions: ON-LINE Algorithms
 - Often randomized
 - Use current state
 - Sophisticated: use past history
 - Not having enough memory or computing power: <u>STREAMING Algorithms</u>

Practical Algorithmic Models

- Sequential Algorithms
 - Worst-case / average-case analysis
 - Amortized Analysis
- Parallel Algorithms
- On-line Algorithms
- Randomized Algorithms
- Streaming Algorithms
- External Memory Algorithms
- Limited space/time/power Algorithms
- Making use of cache: Cache-aware Algorithms

Experimental Algorithms

- How to do good experiments in practice?
 - Testing for correctness
 - Testing for performance
 - Modeling inputs in practice
 - Trying different input distributions
 - Optimizing performance for special input distributions

Additional Topics

- Approximation Algorithms
- Computational Geometry
- Computational Biology
 - String Algorithms
- Computational Finance
- Combinatorial Optimization
- Algorithmic Game Theory
- Heuristic Algorithms
- Problem Modeling and Transformations

Paging Algorithms

Here are 3 well-known paging algorithms

- Least Recently Used (LRU): evict item whose most recent request was furthest in the past
- First-in, First-out (FIFO): evict item that was brought in furthest in the past
- Least Frequently Used (LFU): evict item that has been requested least often
- Which ones are good algorithms and why?
- What is an optimal algorithm?

Drunken sailors and cabins

- A ship arrives at a port. 40 sailors go ashore for revelry. They return to the ship rather inebriated. Being unable to remember their cabin location, they find a random unoccupied cabin to sleep the night. <u>How many sailors</u> <u>are expected to sleep in their own cabins</u>?
- Variants? Generalizations?

Homework #1 - is here!

- Achieving diversity in heights:
 - Largest empty range problem
 - Smallest empty range problem
 - Which is harder and why?
- Binary Counter
- · 2SAT
- Drunken Sailors problem
 - How many sailors will sleep in their own cabins?
- ACM Programming Contest Problems

NP-Completeness

- Computers and Intractability: A Guide to the theory of NP-Completeness, by Garey and Johnson
 - Compendium (100 pages) of NP-Complete and related problems

Polynomial-time computations

- An algorithm has (worst-case) time complexity O(T(n)) if it runs in time at most cT(n) for some c > 0 and for <u>every</u> input of length n. [Time complexity ≈ worst-case.]
- An algorithm is a polynomial-time algorithm if its (worst-case) time complexity is O(p(n)), where p(n) is some polynomial in n. [Polynomial in what?]
- Composition of polynomials is a polynomial. [What are the implications?]

The class **P**

- A problem is in *P* if there exists a polynomial-time algorithm for the problem.
 [*P* is therefore a class of problems, not algorithms.]
- Examples of problems in *P*
 - DFS: Linear-time algorithm exists
 - *Sorting:* O(n log n)-time algorithm exists
 - **Bubble Sort:** Quadratic-time algorithm O(n²)
 - APSP: Cubic-time algorithm O(n³)

- A problem is in *m* if there exists a nondeterministic polynomial-time algorithm that solves the problem.
- [Alternative definition] A problem is in *m* if there exists a (deterministic) polynomialtime algorithm that verifies a solution to the problem.
- All problems in pare in *m*. [The converse is the big deal!]

TSP: Traveling Salesperson Problem

- Input:
 - Weighted graph, G
 - Length bound, B
- Output:
 - Is there a TSP tour in G of length at most B?
- Is TSP in *mp*?
 - YES. Easy to verify a given solution.
- Is TSP in ₽?
 - OPEN!
 - One of the greatest unsolved problems of this century!
 - Same as asking: <u>Is p = 17</u>?

So, what is *MP-Complete*?

- *MP-Complete* problems are the "hardest" problems in *MP*.
- We need to formalize the notion of "hardest".

Terminology

- Problem:
 - An <u>abstract problem</u> is a function (relation) from a set I of instances of the problem to a set S of solutions. $p: I \rightarrow S$
 - An <u>instance</u> of a problem p is obtained by assigning values to the parameters of the abstract problem.
 - Thus, describing set of all instances (i.e., possible inputs) and the set of corresponding outputs defines a problem.
- Algorithm:
 - An algorithm that solves problem *p* must give correct solutions to all instances of the problem.
- Polynomial-time algorithm:

- Input Length:
 - length of an <u>encoding</u> of an instance of the problem.
 - Time and space complexities are written in terms of it.
- Worst-case time/space complexity of an algorithm
 - Maximum time/space required by algorithm on any input of length n.
- Worst-case time/space complexity of a problem
 - UPPER BOUND: worst-case time complexity of best existing algorithm that solves the problem.
 - LOWER BOUND: (provable) worst-case time complexity of best algorithm (need not exist) that could solve the problem.
 - LOWER BOUND ≤ UPPER BOUND
- Complexity Class *P*:
 - Set of all problems *p* for which polynomial-time algorithms exist

- Decision Problems:
 - Problems for which the solution set is {yes, no}
 - Example: Does a given graph have an odd cycle?
 - Example: Does a given weighted graph have a TSP tour of length at most B?
- Complement of a decision problem:
 - Problems for which the solution is "complemented".
 - Example: Does a given graph NOT have an odd cycle?
 - Example: Is every TSP tour of a given weighted graph of length > B?
- Optimization Problems:
 - Problems where one is maximizing/minimizing an objective function.
 - Example: Given a weighted graph, find a MST.
 - Example: Given a weighted graph, find an optimal TSP tour.
- Verification Algorithms:
 - Given a problem instance i and a certificate s, is s a solution for instance i?

- Complexity Class *P*:
 - Set of all problems p for which polynomial-time algorithms exist.
- Complexity Class *mp*:
 - Set of all problems *p* for which polynomial-time verification algorithms exist.
- Complexity Class co-12 :
 - Set of all problems p for which polynomial-time verification algorithms exist for their complements, i.e., their complements are in *MP*.

• Reductions: $p_1 \rightarrow p_2$

- A problem p_1 is reducible to p_2 , if there exists an algorithm R that takes an instance i_1 of p_1 and outputs an instance i_2 of p_2 , with the constraint that the solution for i_1 is YES if and only if the solution for i_2 is YES.
- Thus, R converts YES (NO) instances of p_1 to YES (NO) instances of $p_2.$
- Polynomial-time reductions: $p_1 \xrightarrow{p} p_2$
 - Reductions that run in polynomial time.

• If
$$p_1 \xrightarrow{P} p_2$$
, then
-If p_2 is easy, then so is p_1 . $p_2 \in \mathcal{P} \implies p_1 \in \mathcal{P}$
-If p_1 is hard, then so is p_2 . $p_1 \notin \mathcal{P} \implies p_2 \notin \mathcal{P}$

What are *MP-Complete* problems?

- These are the hardest problems in *7*
- A problem p is *MP-Complete* if
 - there is a polynomial-time reduction from <u>every</u> problem in *mp* to p.
 - $p \in \mathcal{HP}$
- How to prove that a problem is *MP-Complete*?
 - Cook's Theorem: [1972]

-The <u>SAT</u> problem is *MP-Complete*.

Steve Cook, Richard Karp, Leonid Levin

NP-Complete VS NP-Hard

- A problem p is *MP-Complete* if
 - there is a polynomial-time reduction from <u>every</u> problem in *m* to p.
 - $p \in \mathcal{HP}$
- A problem p is *MP-Hand* if
 - there is a polynomial-time reduction from <u>every</u> problem in *mp* to p.
- <u>Remember</u>: to prove problem p is *MP-Complete* you have to reduce a *MP-Complete* problem to p.

The SAT Problem: an example

- Consider the boolean expression:
 C = (a v ¬b v c) ∧ (¬a v d v ¬e) ∧ (a v ¬d v ¬c)
- Is C satisfiable? [Does there exist a True/False assignments to the boolean variables a, b, c, d, e, such that C is True?]
- If there are n boolean variables, then there are 2ⁿ different truth value assignments.
- However, a solution can be quickly verified!

The SAT (Satisfiability) Problem

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses.
- Question: Is C satisfiable?
 - Let $C = C_1 \wedge C_2 \wedge \dots \wedge C_m$
 - Where each $C_i = (y_1^i \vee y_2^i \vee \cdots \vee y_{k_i}^i)$
 - And each $y_{j}^{i} \in \{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, ..., x_{n}, \neg x_{n}\}$
 - We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.
- Steve Cook showed that the problem of deciding whether a non-deterministic Turing machine T accepts an input w or not can be written as a boolean expression C_T for a SAT problem. The boolean expression will have length bounded by a polynomial in the size of T and w.
 - How to now prove Cook's theorem? Is SAT in *TP*?
 - Can every problem in *P* be poly. reduced to it ?

The problem classes and their relationships

More *MP-Complete* problems

<u>35AT</u>

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most <u>three</u> literals.
- Question: Is C satisfiable?
 - Let $C = C_1 \wedge C_2 \wedge \dots \wedge C_m$
 - Where each $C_i = (y_1^i \vee y_2^i \vee y_3^i)$
 - And each $\mathcal{Y}_{j}^{i} \in \{\mathbf{x}_{1}, \neg \mathbf{x}_{1}, \mathbf{x}_{2}, \neg \mathbf{x}_{2}, ..., \mathbf{x}_{n}, \neg \mathbf{x}_{n}\}$
 - We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

3SAT is *MP-Complete*

- 3SAT is in 17.
- SAT can be reduced in polynomial time to 3SAT.
- This implies that every problem in *P* can be reduced in polynomial time to 3SAT. Therefore, 3SAT is *P*-*Complete*.
- So, we have to design an algorithm such that:
 - Input: an instance C of SAT
 - Output: an instance C' of 3SAT such that satisfiability is retained. In other words, C is satisfiable if and only if C' is satisfiable.

3SAT is *MP-Complete*

- Let C be a SAT instance with clauses $C_1, C_2, ..., C_m$
- Let C_i be a disjunction of k > 3 literals.

 $C_i = \gamma_1 \vee \gamma_2 \vee \dots \vee \gamma_k$

Rewrite C_i as follows:

$$C'_{i} = (y_{1} \lor y_{2} \lor z_{1}) \land (\neg z_{1} \lor y_{3} \lor z_{2}) \land (\neg z_{2} \lor y_{4} \lor z_{3}) \land$$

$$(\neg \mathbf{z}_{k-3} \lor \mathbf{y}_{k-1} \lor \mathbf{y}_{k})$$

 Claim: C_i is satisfiable if and only if C'_i is satisfiable.

More *MP-Complete* problems?

<u>25AT</u>

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most <u>three</u> literals.
- Question: Is C satisfiable?
 - Let $C = C_1 \wedge C_2 \wedge \dots \wedge C_m$
 - Where each $C_i = (y_1^i \vee y_2^i)$
 - And each $y_j^i \in \{x_1, \neg x_1, x_2, \neg x_2, ..., x_n, \neg x_n\}$
 - We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

2SAT is in partial particular pa

- If there is only one literal in a clause, it must be set to true.
- If there are two literals in some clause, and if one of them is set to false, then the other must be set to true.
- Using these constraints, it is possible to check if there is some inconsistency.
- How? Homework: do not submit!

The CLIQUE Problem

• A clique is a completely connected subgraph.

<u>CLIQUE</u>

- Input: Graph G(V,E) and integer k
- Question: Does G have a clique of size k?

CLIQUE is *MP-Complete*

- CLIQUE is in 72.
- Reduce 3SAT to CLIQUE in polynomial time.
- $F = (x_1 \vee \neg x_2 \vee x_3) (\neg x_1 \vee \neg x_3 \vee x_4) (x_2 \vee x_3 \vee \neg x_4) (\neg x_1 \vee \neg x_2 \vee x_3)$

F is satisfiable if and only if G has a clique of size k where k is the number of clauses in F.

 \circ

Vertex Cover

A vertex cover is a set of vertices that "covers" all the edges of the graph.

Vertex Cover (VC)

Input: Graph G, integer k

Question: Does G contain a vertex cover of size k?

- VC is in *m*.
- polynomial-time reduction from CLIQUE to VC.
- Thus VC is *MP-Complete*.

Claim: G'has a clique of size k'if and only if G has a VC of size k = n - k'

Hamiltonian Cycle Problem (HCP)

Input: Graph G Question: Does G contain a hamiltonian cycle?

- HCP is in *MP*.
- There exists a polynomial-time reduction from 3SAT to HCP.
- Thus HCP is MP-Complete.

Shortest Path vs Longest Path

- Input: Graph G with edge weights, vertices u and v, bound B
- Question: Does G contain a shortest path from u to v of length at most B?

Question: Does G contain a longest path from u to v of length at most B?

Homework: Listen to Cool MP3:

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3

Perfect (2-D) Matching vs 3-D Matching

- Input: Bipartite graph, G(U,V,E)
 Question: Does G have a perfect matching?
- 2. Input: Sets U and V, and E = subset of U×V Question: Is there a subset of E of size |U| that covers U and V? [Related to 1.]
- 3. Input: Sets U,V,W, & E = subset of U×V×W Question: Is there a subset of E of size |U| that covers U, V and W?

Coping with NP-Completeness

- Approximation: Search for an "almost" optimal solution with provable quality.
- Randomization: Design algorithms that find "provably" good solutions with high prob and/or run fast on the average.
- Restrict the inputs (e.g., planar graphs), or fix some input parameters.
- Heuristics: Design algorithms that work "reasonably well".

Reading

- Read Background
 - Algorithms & Discrete Math Fundamentals
 - Cormen, et al., Chapters 1-16, 22-25
 - NP-Completeness
 - Cormen et al., Chapter 34
 - Appendix (p187-288) form Garey & Johnson
- Next Class
 - Approximation Algorithms
 - Cormen et al., Chapter 35
 - Kleinberg, Tardos, Chapter 11
 - Books by Vazirani and Hochbaum/Shmoys