COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2443; Phone: x3748

 giri@cs.fiu.eduhttp://www.cs.fiu.edu/~giri/teach/COT6936_S12.html https://online.cis.fiu.edu/portal/course/view.php?id=XXX

Expectations

- Attend class
- Do required reading before class
- Participate in class discussions
- Team work; discussion groups
- Solve practical research problems
- Make a presentation; write a report
- need a research component; may implement
- Write research paper
- No cell phones, SMS, or email during class

Evaluation

- Exam (1)
- Quizzes
- Homework Assignments

Semester Project
Class Participation

20\%
5\%
15\%
40\%
20\%

Semester Project \& Exam Schedule

- Milestones:
- By Jan 23: Meet with me and discuss project
- By Jan 30: Send me email with project team information and topic
- Feb 20: Short presentation giving intro to project, problem definition, notation, and background
- March 5: Take-home Exam
- April 16, 23: Final presentation of project
- April 24: Written report on project

Homework \#1

- Achieving diversity in heights:
- Largest empty range problem
- Smallest empty range problem
- Which is harder and why?
- Binary Counter
- How many bits were changed when a binary counter is incremented from O to N ?
- Drunken Sailors problem
- How many sailors will sleep in their own cabins?
- ACM Programming Contest Problems

Reading

- Read Background
- Algorithms \& Discrete Math Fundamentals
- Cormen, et al., Chapters 1-16, 22-25
- NP-Completeness
- Cormen et al., Chapter 34
- Appendix (p187-288) form Garey \& Johnson
- Next Class
- Approximation Algorithms
- Cormen et al., Chapter 35
- Kleinberg, Tardos, Chapter 11
- Books by Vazirani and Hochbaum/Shmoys

What are WP-Complete problems?

- These are the hardest problems in NP^{P}.
- A problem p is \mathbb{T}-Complete if
- there is a polynomial-time reduction from every problem in $2 p$ to p.
$-p \in m p$
- How to prove that a problem is vp -Complete?
- Cook's Theorem: [1972]
-The SAT problem is VP-Complete.
Steve Cook, Richard Karp, Leonid Levin

The SAT Problem: an example

- Consider the boolean expression:
$C=(a \vee \neg b \vee c) \wedge(\neg a \vee d \vee \neg e) \wedge(a \vee \neg d \vee \neg c)$
- Is C satisfiable? [Does there exist a True/False assignments to the boolean variables a, b, c, d, e, such that C is True?]
- If there are n boolean variables, then there are 2^{n} different truth value assignments.
- However, a solution can be quickly verified!

The SAT (Satisfiability) Problem

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses.
- Question: Is C satisfiable?
- Let $C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- Where each $C_{i}=\left(y_{1}^{i} \vee y_{2}^{i} v \cdots \vee y_{k_{i}}^{i}\right)$
- And each $y_{j}^{i} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.
- Steve Cook showed that the problem of deciding whether a non-deterministic Turing machine T accepts an input w or not can be written as a boolean expression C_{T} for a SAT problem. The boolean expression will have length bounded by a polynomial in the size of T and w.
- How to now prove Cook's theorem? Is SAT in \%p?
- Can every problem in WPb poly. reduced to it?

The problem classes and their relationships

More NP-Complete problems

3SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
- Let $C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- Where each $C_{i}=\left(y_{1}^{i} \vee y_{2}^{i} \vee y_{3}^{i}\right)$
- And each $\quad y_{j}^{i} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.
3SAT is Ip-Complede.

3SAT is IP-Complete

- 3SAT is in 2 .
- SAT can be reduced in polynomial time to 3SAT.
- This implies that every problem in 20 can be reduced in polynomial time to 3SAT. Therefore, 3SAT is up-Complete.
- So, we have to design an algorithm such that:
- Input: an instance C of SAT
- Output: an instance C' of 3SAT such that satisfiability is retained. In other words, C is satisfiable if and only if C^{\prime} is satisfiable.

3SAT is NP-Complete

- Let C be a SAT instance with clauses $C_{1}, C_{2}, \ldots, C_{m}$ - Let C_{i} be a disjunction of $k>3$ literals.
$C_{i}=\quad y_{1} \vee y_{2} \vee \ldots \vee y_{k}$
- Rewrite C_{i} as follows:

$$
\begin{aligned}
C_{i}^{\prime}= & \left(y_{1} \vee y_{2} \vee z_{1}\right) \wedge \\
& \left(\neg z_{1} \vee y_{3} \vee z_{2}\right) \wedge \\
& \left(\neg z_{2} \vee y_{4} \vee z_{3}\right) \wedge \\
& \cdots \\
& \left(\neg z_{k-3} \vee y_{k-1} \vee y_{k}\right)
\end{aligned}
$$

- Claim: C_{i} is satisfiable if and only if C_{i}^{\prime} is satisfiable.

More WP-Complete problems?

2SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
- Let $C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- Where each $C_{i}=\left(y_{1}^{i} \vee y_{2}^{i}\right)$
- And each $y_{j}^{i} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

$$
\text { 2SAT is in } P \text {. }
$$

2SAT is in P

- If there is only one literal in a clause, it must be set to true.
- If there are two literals in some clause, and if one of them is set to false, then the other must be set to true.
- Using these constraints, it is possible to check if there is some inconsistency.
- How? Homework: do not submit!

The CLIQUE Problem

- A clique is a completely connected subgraph.

CLIQUE

- Input: Graph G(V,E) and integer k - Question: Does G have a clique of size k ?

CLIQUE is NP-Complete

- CLIQUE is in \%p.

- Reduce 3SAT to CLIQUE in polynomial time.
- $F=\left(x_{1} v-x_{2} v x_{3}\right)\left(\neg x_{1} v-x_{3} v x_{4}\right)\left(x_{2} v x_{3} v-x_{4}\right)\left(\neg x_{1} v-x_{2} v x_{3}\right)$

F is satisfiable if and only if G has a clique of size k where k is the number of clauses in F.

Vertex Cover

A vertex cover is a set of vertices that "covers" all the edges of the graph.

Examples

Vertex Cover (VC)

Input: Graph G, integer K
Question: Does G contain a vertex cover of size k?

- VC is in kP .
- polynomial-time reduction from CLIQUE to $V C$.
- Thus VC is kp -Complete.

Claim: G^{\prime} has a clique of size k ' if and only if G has a VC of size $k=n-k$ '

Hamiltonian Cycle Problem (HCP)

Input: Graph G

Question: Does G contain a hamiltonian cycle?

- HCP is in 2 p .
- There exists a polynomial-time reduction from 3SAT to HCP.
- Thus HCP is שp-Complete.

Shortest Path vs Longest Path

Input: Graph G with edge weights, vertices u and v, bound B
Question: Does G contain a shortest path from u to v of length at most B ?

Question: Does G contain a longest path from u to v of length at most B ?

Homework: Listen to Cool MP3:
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3

Perfect (2-D) Matching vs 3-D Matching

1. Input: Bipartite graph, $G(U, V, E)$

Question: Does G have a perfect matching?
2. Input: Sets U and V, and $E=$ subset of $U \times V$ Question: Is there a subset of E of size $|U|$ that covers U and V ? [Related to 1.]
3. Input: Sets $U, V, W, \& E=$ subset of $U \times V \times W$ Question: Is there a subset of E of size $|U|$ that covers U, V and W ?

Coping with NP-Completeness

- Approximation: Search for an "almost" optimal solution with provable quality.
- Randomization: Design algorithms that find "provably" good solutions with high prob and/or run fast on the average.
- Restrict the inputs (e.g., planar graphs), or fix some input parameters.
- Heuristics: Design algorithms that work "reasonably well".

Optimization Problems

- Problem:
- A problem is a function (relation) from a set I of instances of the problem to a set S of solutions.
- $p: I \rightarrow S$
- Decision Problem:
- Problem with S = \{TRUE, FALSE\}
- Optimization Problem:
- Problem with a mapping from set S of solutions to a positive rational number called the solution value
- $p: I \rightarrow S \rightarrow m(I, S)$

Optimization Versions of NP-Complete Problems

- TSP

- CLIQUE
- Vertex Cover \& Set Cover
- Hamiltonian Cycle
- Hamiltonian Path
- SAT \& 3SAT
- 3-D matching

Optimization Versions of NP-Complete Problems

- Computing a minimum TSP tour is NP-hard (every problem in NP can be reduced to it in polynomial time)
- BUT, it is not known to be in NP
- If a problem P is NP-Complete, then its optimization version is NP-hard (i.e., it is at least as hard as any problem in NP, but may not be in NP)
- Proof by contradiction!

Performance Ratio

- Approximation Algorithm A
- A(I)
- Optimal Solution
- OPT(I)
- Performance Ratio on input I for minimization problems
$-R_{A}(I)=\max \{A(I) / O P T(I), O P T(I) / A(I)\}$
- Performance Ratio of approximation algorithm A
$-R_{A}=\inf \left\{r \geq 1 \mid R_{A}(I) \leq r\right.$, for all instances $\}$ 1/23/12

Metric Space

- It generalizes concept of Euclidean space
- Set with a distance function (metric) defined on its elements
- $D: M \times M \Rightarrow R$ (assigns a real number to distance between every pair of elements from the metric space M)
- $D(x, y)=0$ iff $x=y$
- $D(x, y) \geq 0$
- $D(x, y)=D(y, x)$
- $D(x, y)+D(y, z) \geq D(x, z)$

Examples of metric spaces

- Euclidean distance
- L ${ }_{p}$ metrics
- Graph distances
- Distance between elements is the length of the shortest path in the graph

TSP

- TSP in general graphs cannot be approximated to within a constant (Why?)
- What is the approach?
- Prove that it is hard to approximate!
- TSP in general metric spaces holds promise!
- NN heuristic [Rosenkrantz, et al. 77]
- NN(I) $\leq \frac{1}{2}\left(\right.$ ceil $\left.\left(\log _{2} n\right)+1\right)$ OPT(I)
- 2-OPT, 3-OPT, k-OPT, Lin-Kernighan Heuristic
- Can TSP in general metric spaces be approximated to within a constant?

TSP in Euclidean Space

- TSP in Euclidean space can be approximated.
- MST Doubling (DMST) Algorithm
- Compute a MST, M
- Double the MST to create a tour, T_{1}
- Modify the tour to get a TSP tour, T
- Theorem: DMST is a 2 -approximation algorithm for Euclidean metrics, i.e., DMST(I) < 2 OPT(I)
- Analysis:
- $L(T) \leq L\left(T_{1}\right)=2 L(M) \leq 2 L\left(T_{\text {OPT }}\right)$
- Is the analysis tight?

Example of MST Doubling Algorithm

(a)

(d)

(b)

(e)

Example of Christofides Algorithm

(a)

(d)

(b)

(e)

COT 6936

(c)

TSP in Euclidean Metric

- Improved algorithms

- MM(I) < 3/2 OPT(I) [Christofides]
- Christofides observed that DMST has 4 stages:
- Find MST
- Double all edges
- Find Eulerian tour of resulting graph
- Convert Eulerian tour into TSP tour
- He modified step 2 to the following
- Add a matching of odd degree vertices
- PTAS(I) < ($1+\varepsilon$) OPT(I)[Arora]

TSP Approximation Algorithm

Theorem: The MST doubling algorithm is a 2 approximation algorithm for inputs from any metric space.

Vertex Cover

- Find the smallest set of vertices that are adjacent to all edges in the graph.
- Approximation Algorithm:
- Initialize vertex cover $C=$ empty set
- while (an edge remains in the graph)
- Choose arbitrary edge $e=(u, v)$
- Add u and v to vertex cover C
- Remove all edges incident on u or v
- Output set C
- Analysis: $|C| \leq 2\left|C_{\text {OPT }}\right|$
[Is this tight?]

Greedy Vertex Cover

- Algorithm
- While graph G has at least one edge
- Pick vertex v of highest degree in G and add to VC
- Remove all edges incident on v in G
- Analysis
$-|V C| \leq \log n\left|V C_{\text {OPT }}\right|$
[Is this tight?]

Greedy Vertex Cover: Analysis

- Pay \$1 for each vertex picked
- If vertex v was chosen in an iteration, then each edge e deleted in that iteration was covered with $\operatorname{cost}(e)=\$ 1 / \operatorname{deg}(v)$
- Thus, in each iteration, picking vertex with max degree is same as picking vertex with least average cost per incident edge
- Size of VC picked = sum of edge costs
- Goal is to bound sum of edge costs

Greedy Vertex Cover: Analysis

- Label edges in deletion order $e_{1}, e_{2}, \ldots, e_{m}$
- Let e_{j} be edge deleted in iteration i
- At least $m-j+1$ edges remain at start of iteration i which can be covered by C with average cost $K /(m-j+1)$
- Total cost of all edges $\leq \sum_{j} K /(m-j+1)$
- $\leq K \log m$

Greedy Vertex Cover: Analysis

- Performance ratio $\leq \log n$
- Is the analysis tight?
- Goal is to find graph such that after K rounds, we are left with half the edges uncovered
- Make the graph recursive so that we need $\log n$ such rounds before all edges are covered.
- Challenge!

Another challenge: try to generalize to weighted vertex cover problem

Complements and Approx Algorithms

- Complement of a clique subgraph is an independent set (i.e., a subgraph with no edges connecting any of the vertices)
- If a vertex cover is removed (including all incident edges), what remains?
- ??
- If the minimum vertex cover problem can be 2-approximated, what about the maximum clique or maximum independent set?
- ??

Edge Colorings Example

Edge Colorings

Theorem: Every graph can be edge colored with at most $\Delta+1$ colors, where Δ is the maximum degree of the graph.

- Theorem: No graph can be edge colored with less than Δ colors.
- Theorem: It is NP-complete to decide whether a graph can be edge colored with Δ colors [Holyer, 1981]
- Thus it can be approximated to within an additive constant. Can't do better than that!

Some NP-Complete Number Problems

- Input: set S of n integers

Question 1: Is there a subset of S that adds up to 0?

- Example: $\{-7,-3,-2,5,8\}$
- Input: set S of n integers, and integer B

Question 2: Is there a subset of S that adds up to B (part of input)?

- Example

SUBSET-SUM
$S=\{267,493,869,961,1000,1153,1246,1598$, $1766,1922\}$ and $B=5842$

More NP-Complete Number Problems

- Input: set S of n integers
- Question 3: Is there a partition of S into two subsets each with the same sum?
- Example: $\{-7,-3,-2,1,5,8\}$
- Input: set S of $3 n$ integers

Question 4: Is there a partition of S into $|S| / 3$ subsets each of size 3 and each of which adds up to the same value?

- Strongly NP-Complete!

Load Balancing

- Input: m identical machines; n jobs, job j has processing time \dagger_{j}.
- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.
- Def: The load of machine i is $L_{i}=$ sum of processing times of assigned jobs.
- Def: The makespan is the maximum load on any machine $L=\max _{i} L_{i}$.
- Load balancing: Assign each job to a machine to minimize makespan. NP-Complete problem

Example

Load on Machine 1

Machine 1
 \square
 \square
 10

Machine 2 \square
\square

Machine 3 \square
Makespan

Greedy Algorithm

- Algorithm:
- for jobs 1 to n (in any order)
- Assign job j to machine with least load

Observations:

1. $L_{\text {OPT }} \geq \max \left\{t_{1}, \ldots, t_{n}\right\}$
2. $L_{\text {OPT }} \geq \Sigma_{i} t_{i} / m$ (average load on a machine)
3. If $n>m$, then $L_{\text {OPT }} \geq 2 t_{\text {small }}$

Example

Machine 1

 5
 6 10

Machine 2

8

Machine 3

9

Greedy Algorithm

Machine 1
 7 10

Machine 2

\square

Machine 3

9

Analysis

- Theorem: Greedy Algorithm is 2-approximate - Proof:
- Let i be machine with maximum load L_{i}. Let j be last job scheduled on it.
- Before j was assigned, machine i had least load.
- Thus $L_{i}-t_{j} \leq$ average load $\leq L_{\text {OPT }}$
$-t_{j} \leq L_{\text {OPT }}$
$-L_{i} \leq 2 L_{\text {OPT }}$
- Is the analysis tight?

Analysis is tight!

Longest Processing Time (LPT) Algorithm

- Algorithm:
- for jobs 1 to n (in decreasing order of time)
- Assign job j to machine with least load
- Proof:
- Let i be machine with maximum load L_{i}. Let j be last job scheduled on it.
- The last job is the shortest and is at most $L_{\text {OPT }} / 2$
- Thus L_{i} is at most $(3 / 2) L_{\text {OPT }} \quad[$ if $n>m$]
- Is the analysis tight?
- No! (4/3)-approximation exists [Graham, 1969]

Fractional Knapsack Problem

- Burglar's choices:
n bags of valuables: $x_{1}, x_{2}, \ldots, x_{n}$
Unit Value: $v_{1}, v_{2}, \ldots, v_{n}$
Max number of units in bag: $q_{1}, q_{2}, \ldots, q_{n}$
Weight per unit: $w_{1}, w_{2}, \ldots, w_{n}$
Getaway Truck has a weight limit of B.
Burglar can take "fractional" amount of any item.
How can burglar maximize value of the loot?
- Greedy Algorithm works!

Pick maximum quantity of highest value per weight item. Continue until weight limit B is reached.

0-1 Knapsack Problem

- Burglar's choices:

Items: $x_{1}, x_{2}, \ldots, x_{n}$
Value: $v_{1}, v_{2}, \ldots, v_{n}$
Weight: $w_{1}, w_{2}, \ldots, w_{n}$
Getaway Truck has a weight limit of B. "Fractional" amount of items NOT allowed How can burglar maximize value of the loot?

- Greedy Algorithm does not work! Why?
- Need dynamic programming!

0-1 Knapsack Problem: Example

$B=12$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

0-1 Knapsack Problem

- Subproblems?
- $V[j, L]=$ Optimal solution for knapsack problem assuming truck weight limit L \& choice of items from set $\{1,2, \ldots, j\}$.
- $V[n, B]=$ Optimal solution for original problem
- $V[1, L]=$ easy to compute for all values of L.
- Recurrence Relation? [Either x_{j} included or not]
$-V[j, L]=\max \left\{V[j-1, L], \quad V_{j}+V\left[j-1, L-w_{j}\right]\right\}$
- Table of solutions?
- V[1..n, 1..B]
- Ordering of subproblems?
- Row-wise

Another NP-Complete Number Problem

- Input: set S of n items each with values $\left\{v_{1}\right.$, $\left.\ldots, v_{n}\right\}$ and weights $\left\{w_{1}, \ldots, w_{n}\right\}$; Knapsack with weight limit B and value V
- Question: Is there a choice of items from S whose weights add up to at most B and whose value adds up to at least V ?

KNAPSACK

Knapsack Problem

- The 0-1 Knapsack problem is NP-Complete.
- The 0-1 Knapsack problem can be solved exactly in $O(n B)$ time.
- Does this mean $P=\pi \mathbb{P}$? What is going on here?
- What we have here is a pseudo-polynomial time algorithm. Why?

Knapsack: Approximations

- Greedy Algorithm is 2-approximate
- Sort items by value/weight
- Greedily add items to knapsack if it does no \dagger exceed the weight limit
- Improved algorithm is ($1+1 / k$)-approximate [Sahni, 1975]
- Time complexity is polynomial in $n, \log V$, and $\log B$
- Time complexity is exponential in k
- This is a "approximation scheme"
- Implies cannot get to within an additive constant!

Clustering

Set of points $\left\{p_{1}, \ldots, p_{n}\right\}$ in R^{d}

- Typical data mining problem is to find k clusters in this data

Clustering

- Requires a distance function
- Euclidean distance (L_{2} distance) and L_{p} metrics
- Mahalanobis distance
- Pearson Correlation Coefficient
- General metric distance
- Requires an objective function to optimize
- Maximum distance to a center
- Sum of distances to a center
- Median of distance to a center
- Can any point be center? (finite vs infinite)

Clustering

- Set of points $S=\left\{p_{1}, \ldots, p_{n}\right\}$ in R^{d}
- Find a set of k centers such that the maximum of the distance of a point to its closest center is minimized.
- $\operatorname{Min}_{C} \operatorname{Max}_{i} \mathrm{~d}\left(\mathrm{p}_{\mathrm{i}}, C\right)$
- $\mathrm{d}\left(\mathrm{p}_{\mathrm{i}}, C\right)=\operatorname{Min}_{\mathrm{cj} \text { in } \mathrm{C}} \operatorname{dist}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{c}_{\mathrm{j}}\right)$

Well-known clustering techniques

- Algorithms
- K-Means
- Hierarchical clustering
- Clustering using MSTs
- Greedy algorithm
- Put first center at best possible location for single center; then keep adding centers to reduce covering radius each time by as much as possible.
- Disadvantages
- All three are heuristic algorithms (solutions not optimal, no provable approximation factor)

Clustering: Approximation Algorithm

- Improved Greedy algorithm:
- Repeatedly choose (k vertices selected) next center to be site farthest from any existing center. Choose first center arbitrarily.

Clustering: Approximation Analysis

- Analysis:
- Let r = radius of largest greedy cluster
- Let $r_{\text {OPT }}=$ radius of largest optimal cluster
- If distance from optimal center to every site is $\leq r_{\text {OPT }}$, then distance from any site to some optimal center is \leq $r_{\text {OPT. }}$. Take ball of radius $r_{\text {OPT }}$ around every greedy center. All optimal centers are covered;
- Ball of radius $2 r_{\text {opt }}$ around each greedy center will cover every site.
- Thus $r \leq 2 r_{\text {Opt }}$.

Alternative (Corrected) Proof

- Improved Greedy algorithm:
- Repeatedly choose (k vertices selected) next center to be site farthest from any existing center
- Analysis:
- Let $r=\min$ distance between 2 greedy centers \& $r_{\text {OPT }}=$ radius of largest cluster in optimal clustering
- Let $r>2 r_{\text {OpT }}$. Take ball of radius $\frac{1}{2} r$ around every greedy center. Exactly one optimal center in each ball (?);
- Pair optimal and greedy centers (c_{i}, c_{i}^{*}).
- Let s be any site and c_{i}^{*} be its nearest optimal center
$-d(s, C) \leq d\left(s, c_{i}\right) \leq d\left(s, c_{i}^{\star}\right)+d\left(c_{i}^{*}, c_{i}\right) \leq 2 r\left(C^{\star}\right)$.
- Thus $r(C) \leq 2 r\left(C^{\star}\right)$, i.e., $r<2 r_{\text {OPT }}$

Observation

- Analysis compared r with $r_{\text {OPT }}$ without knowing what the optimal clustering looked like!

Yet Another Proof!

- Improved Greedy algorithm:
- Repeatedly choose (k vertices selected) next center to be site farthest from any existing center
- Analysis:
- Let $r=\min$ distance between 2 greedy centers \& $r_{\text {OPT }}=$ radius of largest cluster in optimal clustering
- Let $r>2 r_{\text {OPT. }}$ Take ball of radius $\frac{1}{2} r$ around every greedy center. Exactly one optimal center in each ball (?);
- Ball of radius $r_{\text {OPT }}$ around each greedy center will cover every optimal center. Ball of radius $2 r_{\text {OPT }}$ around each greedy center will cover every site.
- Thus rı2 ropt. CONTRADICTION!

Bin Packing

- Given an infinite number of unit capacity bins - Given finite set of items with rational sizes
- Place items into minimum number of bins such that each bin is never filled beyond capacity
- BIN-PACKING is NP-Complete
- Reduction from 3-PARTITION

Bin Packing: Approx Algorithm

- First-Fit:
- place item in lowest numbered bin that can accommodate item
- FF(I) < 2 OPT(I)
- $F F(\mathrm{I}) \leq 17 / 10$ OPT(I) +2
- First-Fit Decreasing:
- Sort items in decreasing size and then do firstfit placement
- $\operatorname{FFD}(I)=11 / 9$ OPT(I) +4

Bin Packing: Approx Algorithm

- Connection to Partition
- Hard even when you have only 2 bins
- Cannot approximate to within (3/2)- ε unless $P=$ NP
- Can get ($1+\varepsilon$)approximation if OPT $>2 / \varepsilon$

Set Cover

- Greedy Algorithm
- While there are uncovered items
- Find set with most uncovered items and add to cover
- Analysis
- Approximation Ratio $=\log n$
- It is tight. In example below, it will pick 5 sets instead of 2.

Approximability of NP-Hard Problems

Required Reading for Feb 6

- Network Flow
- Ford Fulkerson Algorithm
- Linear Programming
- Standard LP
- Dual LP
- Feasibility and feasible region

