
COT 6936: Topics in Algorithms!

Giri Narasimhan
ECS 254A / EC 2443; Phone: x3748

giri@cs.fiu.edu
http://www.cs.fiu.edu/~giri/teach/COT6936_S12.html
https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

Types of networks & Types of queries!
•  Road, highway, rail
•  Electrical power, water, oil, gas, sewer
•  Internet, phone, wireless, sensor
•  …

•  (1950s) How quickly can Soviet Union get
supplies through its rail network to Europe?

•  Which links to destroy to reduce flow to
under a threshold?

2/6/12 COT 6936 2

Network Flow: Example!

2/6/12 COT 6936 3

Source Sink

Capacity

Network Flow: Example of a flow!

2/6/12 COT 6936 4

Flow value along
edge Capacity of edge

Total Flow in
Network

= 11 + 8 = 19

Network Flow!
•  Directed graph G(V,E) with capacity function on edges

given by non-negative function c: E(G) è R +.
–  Capacity of each edge, e, is given by c(e)
–  Source vertex s
–  Sink vertex t

•  Flow function f is a non-negative function of the edges
–  f: E(G) è R +
–  Capacity constraints: f(e) ≤ c(e)
–  Flow conservation constraints: For all vertices except source

and sink, sum of flow values along edges entering a vertex
equals sum of flow values along edges leaving that vertex

•  Flow value: sum of flow values from source vertex (or
sum of flow into sink vertex)

5 2/6/12 COT 6936

Flow Conservation!
•  For any legal flow function:

–  Flow out of source = Flow into sink (Why?)

2/6/12 COT 6936 6

Network Flow: How to increase flow!

2/6/12 COT 6936 7

Find path with residual capacity and increase flow along path.
•  Path s to v1 to v3 to t has no residual capacity

•  edge v1 to v3 is saturated
•  Path s to v2 to v3 to t has residual capacity

Residual Flows and Augmenting Paths!

2/6/12 COT 6936 8

Flow = 19

Flow = 23

Augmenting
Path

Capacity of
augmenting
path = 4

Residual Flow Network: Definition!
•  Directed Graph G(V,E) with capacity function

c and flow function f
•  Residual flow network Gf(V,E’)

–  For every edge e = (u,v) in E with f(e) < c(e),
there are two edges in E’: (u,v) and (v,u) with
capacities c(e) = f(e) and f(e), respectively

–  For every edge e = (u,v) in E with f(e) = c(e),
there is one edge in E’: (v,u) with capacity f(e)

–  For every edge e = (u,v) in E with f(e) = 0, there
is one edge in E’: (u,v) with capacity f(e)

2/6/12 COT 6936 9

Ford Fulkerson Algorithm!
•  Initialize flow f to 0.
•  While (there exists augmenting path p from

s to t) do
–  Augment flow along augmenting path p

•  Return flow f as maximum flow from s to t

2/6/12 COT 6936 10

Ford Fulkerson Algorithm!
•  Initialize flow f to 0.
•  While (there exists directed path p from s

to t in residual flow network Gf) do
–  Augment flow along augmenting path p

•  Return flow f as maximum flow from s to t

2/6/12 COT 6936 11

Ford-Fulkerson Method: Example!

2/6/12 COT 6936 12

Ford-Fulkerson Method: Example!

2/6/12 COT 6936 13

A

B

Ford-Fulkerson Method: Example!

2/6/12 COT 6936 14

C

D

Ford-Fulkerson Method: Example!

2/6/12 COT 6936 15

•  Max-Flow has been reached. Why?
•  Cut with zero capacity has been found. Which Cut?

•  ({s,v1,v2,v4},{v3,t})

C

Correctness of Ford-Fulkerson Method!
•  Augmentation is possible if

–  Every cut-set is NOT saturated

•  Theorem: Min-Cut = Max-Flow
2/6/12 COT 6936 16

Cut (S,T):
•  Capacity = 26
•  Flow across cut = 19
Cut (S’,T’):
•  Capacity = 23
•  Flow across cut = 19

Time Complexity!

•  It can be arbitrarily large.

•  Solution: When finding augmenting path,
find the shortest path

•  In that case, # of augmentations = O(mn)
2/6/12 COT 6936 17

More efficient Network Flow algorithms!
•  Push-relabel algorithms [Goldberg, ‘87]

–  Local algorithm, works on one vertex at a time
–  Avoids maintaining flow conservation rule

•  Excess flow in each node
• Height function

– O(mn2) time complexity
–  Can be improved to O(n3)

2/6/12 COT 6936 18

Generalizations!
•  Multiple sources and sinks.

–  Can be reduced to single source and sink

2/6/12 COT 6936 19

Bipartite Matching!

2/6/12 COT 6936 20

s t s t

Ta
sk

s

M
ac

hi
ne

s

Maximize the
number of

tasks
matched to
machines

Network Flow!
•  Input: Directed graph G(V,E) with capacity function on

edges given by non-negative function c: E(G) è R +.
–  Capacity of each edge, e, is given by c(e)
–  Source vertex s
–  Sink vertex t

•  Question: Find a flow function f with the maximum flow
value

21 2/6/12 COT 6936

Min-Cost Network Flow!
•  Input: Directed graph G(V,E) with capacity function on

edges given by non-negative function c: E(G) è R +.
–  Capacity of each edge, e, is given by c(e)
–  Flow cost of each edge, e, is given by a(e)

•  Implies that cost of flow in e is a(e)�f(e)
•  Total cost of flow = Σ a(e)�f(e)

–  Source vertex s
–  Sink vertex t
–  Flow required = F

•  Question: Find min-cost flow function f with flow value
= F

22 2/6/12 COT 6936

Minimum Path Cover in DAGs!
•  Path Cover: set of vertex disjoint paths that

cover all vertices
•  Minimum Path Cover in directed acyclic

graphs can be reduced to network flow (?)
•  Examples:

2/6/12 COT 6936 23

a

b c

d a

b c

d

Can be covered with one
path: a èb èd èc

Cannot be covered with one path;
needs at least two paths to cover all
vertices

COT 6936: Topics in Algorithms!

Linear Programming

Gaussian Elimination!
•  Solving a system of simultaneous equations

x1 -2x3 = 2
 x2 + x3 = 3
x1 + x2 - x4 = 4
 x2 + 3x3 + x4 = 5

x1 -2x3 = 2
 x2 + x3 = 3
 x2 + 2x3 - x4 = 2
 x2 + 3x3 + x4 = 5

2/6/12 COT 6936 25

O(n3) algorithm

Linear Programming!
•  Want more than solving simultaneous

equations
•  We have an objective function to optimize

2/6/12 COT 6936 26

Chocolate Shop [DPV book]!
•  2 kinds of chocolate

– milk [Profit: $1 per box] [Demand: 200]
–  Deluxe [Profit: $6 per box] [Demand: 300]

•  Production capacity: 400 boxes
•  Goal: maximize profit

– Maximize x1 + 6x2 subject to constraints:
•  x1 ≤ 200
•  x2 ≤ 300
•  x1 + x2 ≤ 400
•  x1, x2 ≥ 0

2/6/12 COT 6936 27

Diet Problem!
•  Food type: F1,…,Fm
•  Nutrients: N1,…,Nn

•  Min daily requirement of nutrients: c1,…,cn

•  Price per unit of food: b1,…,bm

•  Nutrient Nj in food Fi: aij

•  Problem: Supply daily nutrients at minimum
cost

• Min Σi bixi
• Σi aijxi ≥ cj for 1 ≤ j ≤ n
•  xi ≥ 0

2/6/12 COT 6936 28

Transportation Problem!
•  Ports or Production Units: P1,…,Pm
•  Markets to be shipped to: M1,…,Mn

•  Min daily market need: r1,…,rn

•  Port/production capacity: s1,…,sm

•  Cost of transporting to Mj from port Pi: aij

•  Problem: Meet market need at minimum
transportation cost

2/6/12 COT 6936 29

Assignment Problem!
•  Workers: b1,…,bn
•  Jobs: g1,…,gm

•  Value of assigning person bi to job gj: aij

•  Problem: Choose job assignment to maximize
value

2/6/12 COT 6936 30

Bandwidth Allocation Problem!

2/6/12 COT 6936 31

•  Revenue:
A − B pays $3 per unit
B − C pays $2 per unit
C − A pays $4 per unit

•  Need:
A − B ≥ 2 units
B − C ≥ 2 units
C − A ≥ 2 units

•  Connections:
Short route
Long route

Bandwidth Allocation Problem!
•  Maximize revenue by allocating bandwidth to

connections along two routes without
exceeding bandwidth capacities

•  Max 3(xAB+xAB’) + 2(xBC+xBC’) + 4(xAC+xAC’) s.t.
xAB + xAB’ + xBC + xBC’ ≤ 10
xAB + xAB’ + xAC + xAC’ ≤ 12
xBC + xBC’ + xAC + xAC’ ≤ 8
xAB + xBC’ + xAC’ ≤ 6; xAB + xAB’ ≥ 2; xBC + xBC’ ≥ 2
xAB’ + xBC + xAC’ ≤ 13; xAC + xAC’ ≥ 2
xAB’ + xBC’ + xAC ≤ 11; & all nonneg constraints

2/6/12 COT 6936 32

Standard LP!
•  Maximize Σcjxj [Objective Function]
 Subject to Σaijxj ≤ bj [Constraints]
 and xj ≥ 0 [Nonnegativity Constraints]

•  Matrix formulation of LP
 Maximize cTx
 Subject to Ax ≤ b
 and x ≥ 0

2/6/12 COT 6936 33

Converting to standard form!
•  Min -2x1 + 3x2 Subject to

x1 + x2 = 7
x1 – 2x2 ≤ 4
x1 ≥ 0

•  Max 2x1 - 3x2 Subject to
x1 + x2 ≤ 7
-x1 - x2 ≤ -7
x1 – 2x2 ≤ 4
x1 ≥ 0

2/6/12 COT 6936 34

Converting to standard form!
•  Max 2x1 - 3x2 Subject to

x1 + x2 ≤ 7
-x1 - x2 ≤ -7
x1 – 2x2 ≤ 4
x1 ≥ 0

•  Max 2x1 – 3(x3 - x4) Subject to
x1 + x3 - x4 ≤ 7
-x1 – (x3 - x4) ≤ -7
x1 – 2(x3 - x4) ≤ 4
x1, x3, x4 ≥ 0

2/6/12 COT 6936 35

x2 is not
constrained to
be non-negative

Converting to Standard form!
•  Max 2x1 – 3x2 + 3x3 Subject to

x1 + x2 – x3 ≤ 7
-x1 – x2 + x3 ≤ -7
x1 – 2x2 – 2x3 ≤ 4
x1, x2, x3 ≥ 0

2/6/12 COT 6936 36

Slack Form!
•  Max 2x1 – 3x2 + 3x3 Subject to

x1 + x2 – x3 ≤ 7
-x1 – x2 + x3 ≤ -7
x1 – 2x2 – 2x3 ≤ 4
x1, x2, x3 ≥ 0

•  Max 2x1 – 3x2 + 3x3 Subject to
x1 + x2 – x3 + x4 = 7
-x1 – x2 + x3 + x5 = -7
x1 – 2x2 – 2x3 + x6 = 4
x1, x2, x3, x4, x5, x6 ≥ 0

2/6/12 COT 6936 37

Duality!
•  Max cTx [Primal]
 Subject to Ax ≤ b
 and x ≥ 0

•  Min yTb [Dual]
 Subject to yTA ≥ cT
 and y ≥ 0

2/6/12 COT 6936 38

Understanding Duality!
•  Maximize x1 + 6x2 subject to constraints:

•  x1 ≤ 200 (1)
•  x2 ≤ 300 (2)
•  x1 + x2 ≤ 400 (3)
•  x1, x2 ≥ 0

•  (100,300) is feasible; value = 1900. Optimum?
•  Adding 1 times (1) + 6 times (2) gives us

•  x1 + 6x2 ≤ 2000

•  Adding 1 times (3) + 5 times (2) gives us
•  x1 + 6x2 ≤ 1900
•  “Certificate of Optimality” for solution (100,300)

2/6/12 COT 6936 39

How were
mutipliers

determined?

Understanding Duality!
•  Maximize x1 + 6x2 subject to:

•  x1 ≤ 200 (y1)
•  x2 ≤ 300 (y2) [(100,300)]
•  x1 + x2 ≤ 400 (y3)
•  x1, x2 ≥ 0

•  Different choice of multipliers gives us
different bounds. We want smallest bound.

•  Minimize 200y1 + 300y2 + 400y3 subject to:
•  y1 + y3 ≥ 1 (x1)
•  y2 + y3 ≥ 6 (x2) [(0,5,1)]
•  y1, y2 ≥ 0

2/6/12 COT 6936 40

Duality Principle!
•  Primal feasible values ≤ dual feasible values
•  Max primal value = min dual value
•  Duality Theorem: If a linear program has a

bounded optimal value then so does its dual
and the two optimal values are equal.

2/6/12 COT 6936 41

Visualizing Duality!
•  Shortest Path Problem

–  Build a physical model and between each pair of
vertices attach a string of appropriate length

–  To find shortest path from s to t, hold the two
vertices and pull them apart as much as possible
without breaking the strings

–  This is exactly what a dual LP solves!
• Max xs-xt
•  subject to |xu-xv| ≤ wuv for every edge (u.v)

–  The taut strings correspond to the shortest
path, i.e., they have no slack

2/6/12 COT 6936 42

Simplex Algorithm!
•  Start at v, any vertex of feasible region
•  while (there is neighbor v’ of v with better

objective value) do
 set v = v’

•  Report v as optimal point and its value as
optimal value

•  What is a
–  Vertex?, neighbor?

•  Start vertex? How to pick next neighbor?
2/6/12 COT 6936 43

Simplex Algorithm: Example!

2/6/12 COT 6936 44

Vertex: point where n hyperplanes meet;
Neighbor: vertices sharing n-1 hyperplanes

i.e., some inequalities
satisfied as equalities

2,3,7

1,3,7

Steps of Simplex Algorithm!
•  In order to find next neighbor from

arbitrary vertex, we do a change of origin
(pivot)

2/6/12 COT 6936 45

Simplex Algorithm Example!

2/6/12 COT 6936 46

Simplex Algorithm Example!

2/6/12 COT 6936 47

Simplex Algorithm Example!

2/6/12 COT 6936 48

Simplex Algorithm: Degenerate vertices!

2/6/12 COT 6936 49

Vertex: point where n hyperplanes meet;
Neighbor: vertices sharing n-1 hyperplanes

i.e., some inequalities
satisfied as equalities

2,3,7

1,3,7

2,3,4,5

Polynomial-time algorithms for LP!
•  Simplex is not poly-time in the worst-case
•  Khachiyan’s ellipsoid algorithm: LP is in P
•  Karmarkar’s interior-point algorithm
•  Good implementations for LP exist

– Works very well in practice
– More competitive than the poly-time methods

for LP

2/6/12 COT 6936 50

Integer Linear Programming!
•  LP with integral solutions
•  NP-hard
•  If A is a totally unimodular matrix, then the

LP solution is always integral.
–  A TUM is a matrix for which every nonsingular

submatrix has determinant 0, +1 or -1.
–  A TUM is a matrix for which every nonsingular

submatrix has integral inverse.

2/6/12 COT 6936 51

Vertex Cover as an LP?!
•  For vertex v, create variable xv
•  For edge (u,v), create constraint xu + xv ≥ 1
•  Objective function: Σxv

•  Additional constraints: xv ≤ 1

•  Doesn’t work because xv needs to be from
{0,1}

2/6/12 COT 6936 52

