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Types of networks & Types of queries!
•  Road, highway, rail 
•  Electrical power, water, oil, gas, sewer 
•  Internet, phone, wireless, sensor 
•  … 

•  (1950s) How quickly can Soviet Union get 
supplies through its rail network to Europe? 

•  Which links to destroy to reduce flow to 
under a threshold? 
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Network Flow: Example!
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Network Flow: Example of a flow!
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Flow value along 
edge Capacity of edge 

Total Flow in 
Network   

= 11 + 8 = 19 



Network Flow!
•  Directed graph G(V,E) with capacity function on edges 

given by non-negative function c: E(G) è R +. 
–  Capacity of each edge, e, is given by c(e) 
–  Source vertex s 
–  Sink vertex t 

•  Flow function f is a non-negative function of the edges 
–  f: E(G) è R + 
–  Capacity constraints: f(e) ≤ c(e) 
–  Flow conservation constraints: For all vertices except source 

and sink, sum of flow values along edges entering a vertex 
equals sum of flow values along edges leaving that vertex 

•  Flow value: sum of flow values from source vertex (or 
sum of flow into sink vertex) 
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Flow Conservation!
•  For any legal flow function: 

–  Flow out of source = Flow into sink (Why?) 
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Network Flow: How to increase flow!
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Find path with residual capacity and increase flow along path. 
•  Path s to v1 to v3 to t has no residual capacity 

•  edge v1 to v3 is saturated 
•  Path s to v2 to v3 to t has residual capacity 



Residual Flows and Augmenting Paths!
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Flow = 19 

Flow = 23 

Augmenting 
Path 

Capacity of 
augmenting 
path  = 4 



Residual Flow Network: Definition!
•  Directed Graph G(V,E) with capacity function 

c and flow function f 
•  Residual flow network Gf(V,E’) 

–  For every edge e = (u,v) in E with f(e) < c(e), 
there are two edges in E’: (u,v) and (v,u) with 
capacities c(e) = f(e) and f(e), respectively 

–  For every edge e = (u,v) in E with f(e) = c(e), 
there is one edge in E’: (v,u) with capacity f(e) 

–  For every edge e = (u,v) in E with f(e) = 0, there 
is one edge in E’: (u,v) with capacity f(e) 
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Ford Fulkerson Algorithm!
•  Initialize flow f to 0. 
•  While (there exists augmenting path p from 

s to t) do 
–  Augment flow along augmenting path p 

•  Return flow f as maximum flow from s to t 
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Ford Fulkerson Algorithm!
•  Initialize flow f to 0. 
•  While (there exists directed path p from s 

to t in residual flow network Gf) do 
–  Augment flow along augmenting path p 

•  Return flow f as maximum flow from s to t 
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Ford-Fulkerson Method: Example!
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Ford-Fulkerson Method: Example!
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Ford-Fulkerson Method: Example!
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Ford-Fulkerson Method: Example!
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•  Max-Flow has been reached. Why? 
•  Cut with zero capacity has been found. Which Cut? 

•  ({s,v1,v2,v4},{v3,t}) 

C 



Correctness of Ford-Fulkerson Method!
•  Augmentation is possible if 

–  Every cut-set is NOT saturated 

•  Theorem: Min-Cut = Max-Flow 
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Cut (S,T): 
•  Capacity = 26 
•  Flow across cut = 19 
Cut (S’,T’): 
•  Capacity = 23 
•  Flow across cut = 19 



Time Complexity!

•  It can be arbitrarily large. 

•  Solution: When finding augmenting path, 
find the shortest path  

•  In that case, # of augmentations = O(mn) 
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More efficient Network Flow algorithms!
•  Push-relabel algorithms [Goldberg, ‘87]  

–  Local algorithm, works on one vertex at a time 
–  Avoids maintaining flow conservation rule 

•  Excess flow in each node 
• Height function 

– O(mn2) time complexity 
–  Can be improved to O(n3) 
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Generalizations!
•  Multiple sources and sinks. 

–  Can be reduced to single source and sink 
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Bipartite Matching!
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Network Flow!
•  Input: Directed graph G(V,E) with capacity function on 

edges given by non-negative function c: E(G) è R +. 
–  Capacity of each edge, e, is given by c(e) 
–  Source vertex s 
–  Sink vertex t 

•  Question: Find a flow function f with the maximum flow 
value 
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Min-Cost Network Flow!
•  Input: Directed graph G(V,E) with capacity function on 

edges given by non-negative function c: E(G) è R +. 
–  Capacity of each edge, e, is given by c(e) 
–  Flow cost of each edge, e, is given by a(e) 

•  Implies that cost of flow in e is a(e)�f(e) 
•  Total cost of flow = Σ a(e)�f(e) 

–  Source vertex s 
–  Sink vertex t 
–  Flow required = F 

•  Question: Find min-cost flow function f with flow value 
= F 
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Minimum Path Cover in DAGs!
•  Path Cover: set of vertex disjoint paths that 

cover all vertices 
•  Minimum Path Cover in directed acyclic 

graphs can be reduced to network flow (?) 
•  Examples: 
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a

b c

d a

b c

d

Can be covered with one  
path: a èb èd èc 

Cannot be covered with one path;  
needs at least two paths to cover all 
vertices 



COT 6936: Topics in Algorithms!

Linear Programming 



Gaussian Elimination!
•  Solving a system of simultaneous equations 

x1         -2x3        = 2 
       x2 + x3          = 3 
x1 + x2          - x4  = 4 
       x2 + 3x3 + x4  = 5 
 
x1         -2x3         = 2 
        x2 + x3          = 3 
        x2 + 2x3 - x4  = 2 
        x2 + 3x3 + x4  = 5 
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O(n3) algorithm 



Linear Programming!
•  Want more than solving simultaneous 

equations 
•  We have an objective function to optimize 
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Chocolate Shop [DPV book]!
•  2 kinds of chocolate  

– milk [Profit: $1 per box] [Demand: 200] 
–  Deluxe [Profit: $6 per box] [Demand: 300] 

•  Production capacity: 400 boxes 
•  Goal: maximize profit 

– Maximize x1 + 6x2 subject to constraints: 
•  x1 ≤ 200 
•  x2 ≤ 300 
•  x1 + x2 ≤ 400 
•  x1, x2 ≥ 0 
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Diet Problem!
•  Food type:   F1,…,Fm 
•  Nutrients:   N1,…,Nn 

•  Min daily requirement of nutrients: c1,…,cn 

•  Price per unit of food:  b1,…,bm 

•  Nutrient Nj in food Fi:  aij 

•  Problem: Supply daily nutrients at minimum 
cost 

• Min Σi bixi 
• Σi aijxi ≥ cj   for 1 ≤ j ≤ n 
•  xi ≥ 0 
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Transportation Problem!
•  Ports or Production Units:  P1,…,Pm 
•  Markets to be shipped to:  M1,…,Mn 

•  Min daily market need:   r1,…,rn 

•  Port/production capacity:   s1,…,sm 

•  Cost of transporting to Mj from port Pi:  aij 

•  Problem: Meet market need at minimum 
transportation cost 
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Assignment Problem!
•  Workers: b1,…,bn 
•  Jobs: g1,…,gm 

•  Value of assigning person bi to job gj: aij 

•  Problem: Choose job assignment to maximize 
value 
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Bandwidth Allocation Problem!
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•  Revenue:  
A − B pays $3 per unit  
B − C pays $2 per unit  
C − A pays $4 per unit 

•  Need:  
A − B ≥ 2 units  
B − C ≥ 2 units   
C − A ≥ 2 units 

•  Connections:  
Short route 
Long route  



Bandwidth Allocation Problem!
•  Maximize revenue by allocating bandwidth to 

connections along two routes without 
exceeding bandwidth capacities 

•  Max 3(xAB+xAB’) + 2(xBC+xBC’) + 4(xAC+xAC’) s.t. 
xAB + xAB’ + xBC + xBC’ ≤ 10 
xAB + xAB’ + xAC + xAC’ ≤ 12 
xBC + xBC’ + xAC + xAC’ ≤ 8     
xAB + xBC’ + xAC’ ≤ 6;    xAB + xAB’ ≥ 2;     xBC + xBC’ ≥ 2 
xAB’ + xBC + xAC’ ≤ 13;       xAC + xAC’ ≥ 2 
xAB’ + xBC’ + xAC ≤ 11; & all nonneg constraints 
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Standard LP!
•  Maximize Σcjxj     [Objective Function] 
 Subject to Σaijxj ≤ bj  [Constraints]  
    and xj ≥ 0 [Nonnegativity Constraints]  

 

•  Matrix formulation of LP 
 Maximize   cTx 
 Subject to        Ax ≤ b 
 and         x ≥ 0 
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Converting to standard form!
•  Min -2x1 + 3x2 Subject to  

x1 + x2 = 7 
x1 – 2x2 ≤ 4 
x1 ≥ 0 

•  Max 2x1 - 3x2 Subject to  
x1 + x2 ≤ 7 
-x1 - x2 ≤ -7 
x1 – 2x2 ≤ 4 
x1 ≥ 0 
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Converting to standard form!
•  Max 2x1 - 3x2 Subject to  

x1 + x2 ≤ 7 
-x1 - x2 ≤ -7 
x1 – 2x2 ≤ 4 
x1 ≥ 0 

•  Max 2x1 – 3(x3 - x4) Subject to  
x1 + x3 - x4 ≤ 7 
-x1 – (x3 - x4) ≤ -7 
x1 – 2(x3 - x4) ≤ 4 
x1, x3, x4 ≥ 0 
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x2 is not 
constrained to 
be non-negative 



Converting to Standard form!
•  Max 2x1 – 3x2 + 3x3 Subject to  

x1 + x2 – x3 ≤ 7 
-x1 – x2 + x3 ≤ -7 
x1 – 2x2 – 2x3 ≤ 4 
x1, x2, x3 ≥ 0 
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Slack Form!
•  Max 2x1 – 3x2 + 3x3 Subject to  

x1 + x2 – x3 ≤ 7 
-x1 – x2 + x3 ≤ -7 
x1 – 2x2 – 2x3 ≤ 4 
x1, x2, x3 ≥ 0 

•  Max 2x1 – 3x2 + 3x3 Subject to  
x1 + x2 – x3 + x4 = 7 
-x1 – x2 + x3 + x5 = -7 
x1 – 2x2 – 2x3 + x6 = 4 
x1, x2, x3, x4, x5, x6 ≥ 0 
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Duality!
•  Max cTx     [Primal] 
 Subject to Ax ≤ b 
 and x ≥ 0 

•  Min yTb     [Dual] 
 Subject to yTA ≥ cT 
 and y ≥ 0 
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Understanding Duality!
•  Maximize x1 + 6x2 subject to constraints: 

•  x1 ≤ 200   (1) 
•  x2 ≤ 300   (2) 
•  x1 + x2 ≤ 400  (3) 
•  x1, x2 ≥ 0 

•  (100,300) is feasible; value = 1900. Optimum? 
•  Adding 1 times (1) + 6 times (2) gives us 

•  x1 + 6x2 ≤ 2000 

•  Adding 1 times (3) + 5 times (2) gives us 
•  x1 + 6x2 ≤ 1900 
•  “Certificate of Optimality” for solution (100,300) 
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How were 
mutipliers 

determined? 



Understanding Duality!
•  Maximize x1 + 6x2 subject to: 

•  x1        ≤ 200   (y1) 
•        x2 ≤ 300   (y2)   [(100,300)] 
•  x1 + x2 ≤ 400   (y3) 
•  x1, x2 ≥ 0 

•  Different choice of multipliers gives us 
different bounds. We want smallest bound.  

•  Minimize 200y1 + 300y2 + 400y3  subject to: 
•  y1       + y3  ≥ 1   (x1) 
•        y2 + y3 ≥ 6   (x2)   [(0,5,1)] 
•  y1, y2 ≥ 0 
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Duality Principle!
•  Primal feasible values ≤ dual feasible values 
•  Max primal value = min dual value 
•  Duality Theorem: If a linear program has a 

bounded optimal value then so does its dual 
and the two optimal values are equal.  
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Visualizing Duality!
•  Shortest Path Problem 

–  Build a physical model and between each pair of 
vertices attach a string of appropriate length 

–  To find shortest path from s to t, hold the two 
vertices and pull them apart as much as possible 
without breaking the strings 

–  This is exactly what a dual LP solves! 
• Max xs-xt 
•  subject to |xu-xv| ≤ wuv for every edge (u.v) 

–  The taut strings correspond to the shortest 
path, i.e., they have no slack 
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Simplex Algorithm!
•  Start at v, any vertex of feasible region 
•  while (there is neighbor v’ of v with better 

objective value) do 
  set v = v’ 

•  Report v as optimal point and its value as 
optimal value 

•  What is a 
–  Vertex?, neighbor? 

•  Start vertex? How to pick next neighbor? 
2/6/12 COT 6936 43 



Simplex Algorithm: Example!
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Vertex: point where n hyperplanes meet; 
Neighbor: vertices sharing n-1 hyperplanes   

i.e., some inequalities 
satisfied as equalities 

2,3,7 

1,3,7 



Steps of Simplex Algorithm!
•  In order to find next neighbor from 

arbitrary vertex, we do a change of origin 
(pivot) 
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Simplex Algorithm Example!
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Simplex Algorithm Example!
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Simplex Algorithm Example!
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Simplex Algorithm: Degenerate vertices!
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Vertex: point where n hyperplanes meet; 
Neighbor: vertices sharing n-1 hyperplanes   

i.e., some inequalities 
satisfied as equalities 

2,3,7 

1,3,7 

2,3,4,5 



Polynomial-time algorithms for LP!
•  Simplex is not poly-time in the worst-case 
•  Khachiyan’s ellipsoid algorithm: LP is in P 
•  Karmarkar’s interior-point algorithm 
•  Good implementations for LP exist 

– Works very well in practice 
– More competitive than the poly-time methods 

for LP 
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Integer Linear Programming!
•  LP with integral solutions 
•  NP-hard 
•  If A is a totally unimodular matrix, then the 

LP solution is always integral.  
–  A TUM is a matrix for which every nonsingular 

submatrix has determinant 0, +1 or -1. 
–  A TUM is a matrix for which every nonsingular 

submatrix has integral inverse. 
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Vertex Cover as an LP?!
•  For vertex v, create variable xv 
•  For edge (u,v), create constraint xu + xv ≥ 1 
•  Objective function: Σxv 

•  Additional constraints: xv ≤ 1 

•  Doesn’t work because xv needs to be from 
{0,1} 
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