#### COT 6936: Topics in Algorithms

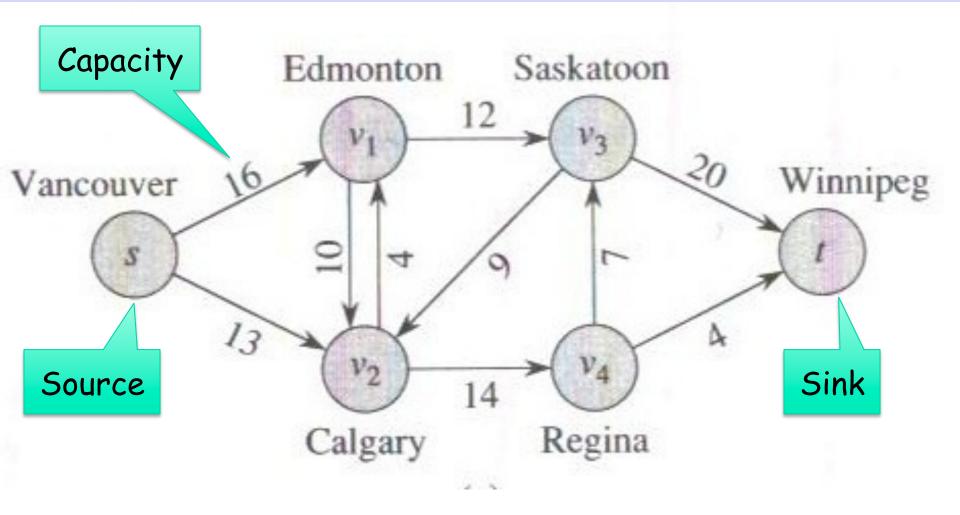
# Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/COT6936\_S12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

# Types of networks & Types of queries

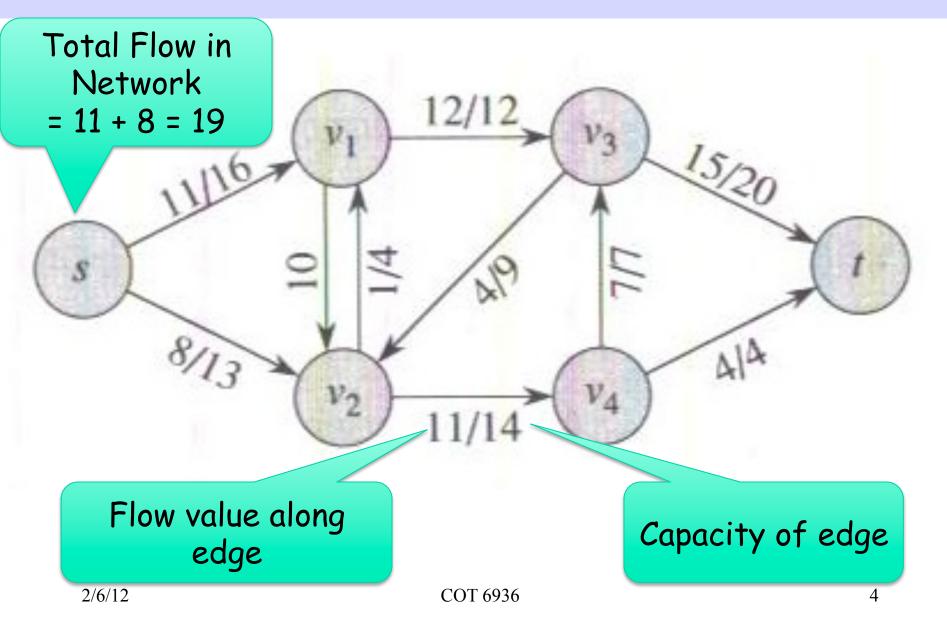
- Road, highway, rail
- Electrical power, water, oil, gas, sewer
- Internet, phone, wireless, sensor

- (1950s) How quickly can Soviet Union get supplies through its rail network to Europe?
- Which links to destroy to reduce flow to under a threshold?

#### **Network Flow: Example**



## Network Flow: Example of a flow



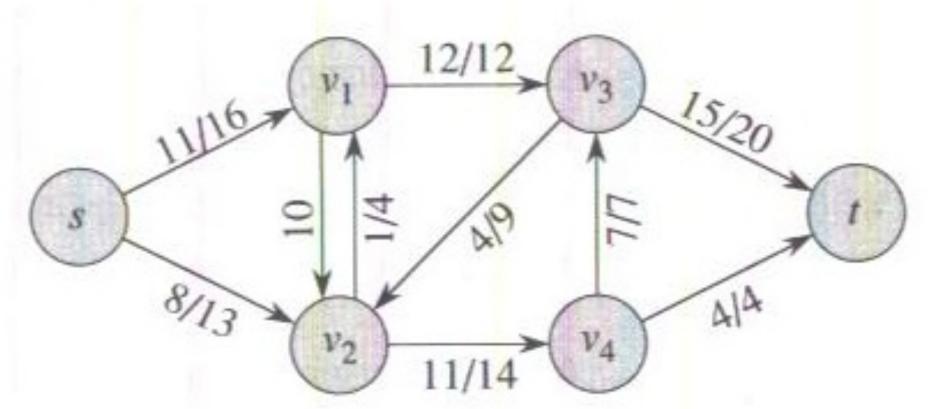
# **Network Flow**

- <u>Directed graph</u> G(V,E) with <u>capacity function</u> on edges given by non-negative function c: E(G) → *R*<sup>+</sup>.
  - Capacity of each edge, e, is given by c(e)
  - Source vertex s
  - Sink vertex t
- Flow function f is a non-negative function of the edges
  - f: E(G) → *R*<sup>+</sup>
  - <u>Capacity constraints</u>:  $f(e) \le c(e)$
  - Flow conservation constraints: For all vertices except source and sink, sum of flow values along edges <u>entering</u> a vertex equals sum of flow values along edges <u>leaving</u> that vertex
- <u>Flow value</u>: sum of flow values from <u>source</u> vertex (or sum of flow into <u>sink</u> vertex)

# **Flow Conservation**

- For any legal flow function:
  - Flow out of source = Flow into sink (Why?)

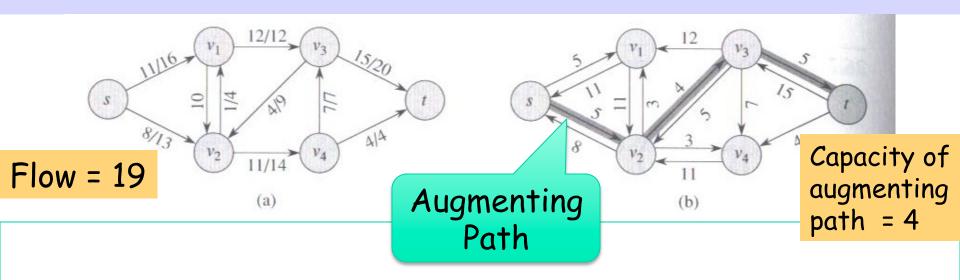
## Network Flow: How to increase flow



Find path with <u>residual capacity</u> and increase flow along path.

- Path s to  $v_1$  to  $v_3$  to t has no residual capacity
  - edge  $v_1$  to  $v_3$  is saturated
- Path s to  $v_2$  to  $v_3$  to t has residual capacity

# **Residual Flows and Augmenting Paths**



$$Flow = 23$$

# **Residual Flow Network: Definition**

- Directed Graph G(V,E) with capacity function c and flow function f
- <u>Residual flow network</u> G<sub>f</sub>(V,E')
  - For every edge e = (u,v) in E with f(e) < c(e), there are two edges in E': (u,v) and (v,u) with capacities c(e) = f(e) and f(e), respectively
  - For every edge e = (u,v) in E with f(e) = c(e),
     there is one edge in E': (v,u) with capacity f(e)
  - For every edge e = (u,v) in E with f(e) = 0, there is one edge in E': (u,v) with capacity f(e)

# Ford Fulkerson Algorithm

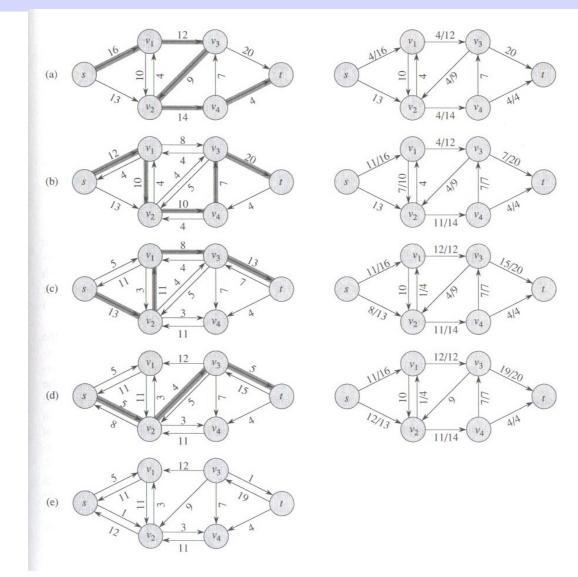
- Initialize flow f to 0.
- While (there exists augmenting path p from s to t) do
  - Augment flow along augmenting path p
- Return flow f as maximum flow from s to t

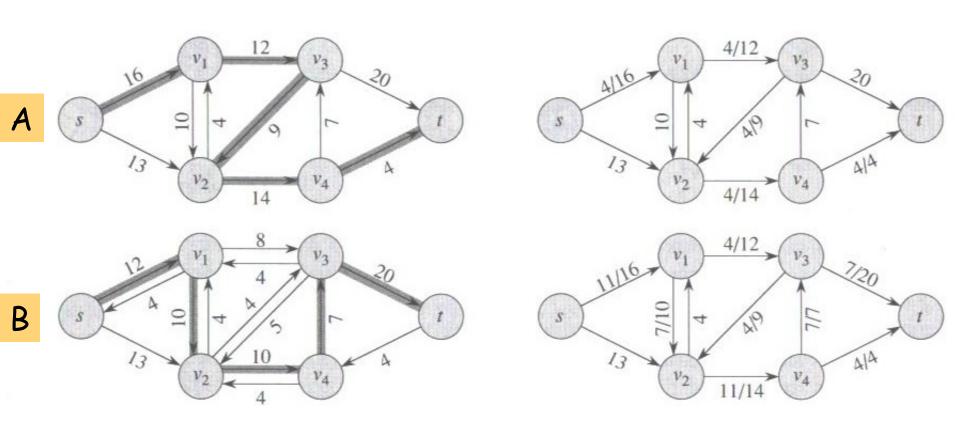
# Ford Fulkerson Algorithm

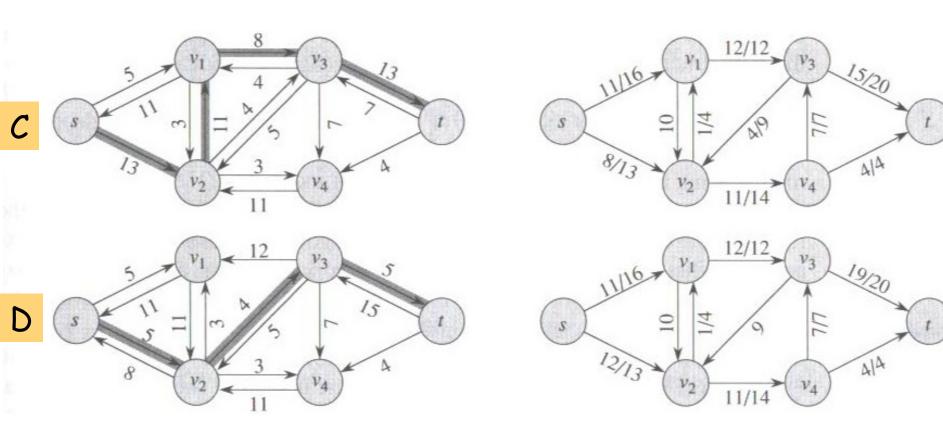
- Initialize flow f to 0.
- While (there exists directed path p from s to t in residual flow network G<sub>f</sub>) do

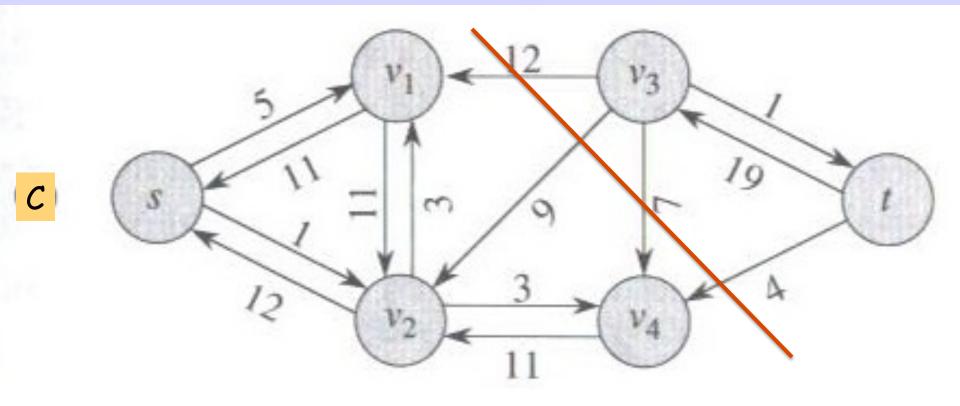
- Augment flow along augmenting path p

Return flow f as maximum flow from s to t





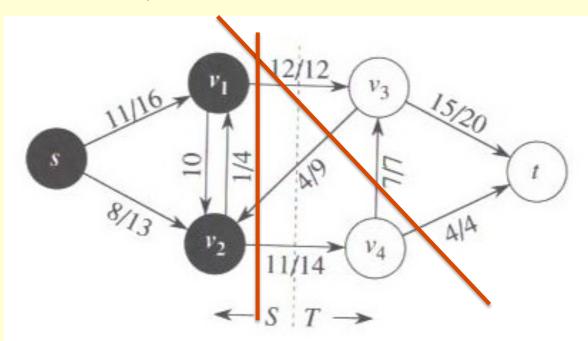




- Max-Flow has been reached. Why?
- Cut with zero capacity has been found. Which Cut?
  - ({ $s,v_1,v_2,v_4$ },{ $v_3,t$ })

# **Correctness of Ford-Fulkerson Method**

- Augmentation is possible if
  - Every cut-set is NOT saturated



Cut (S,T):

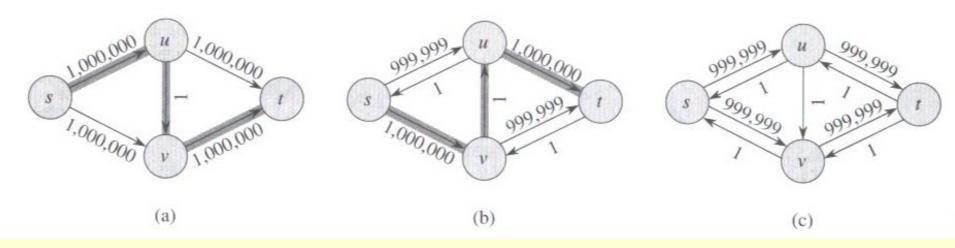
Cut (S',T'):

• Flow across cut = 19

#### <u>Theorem</u>: Min-Cut = Max-Flow

# **Time Complexity**

• It can be arbitrarily large.



- Solution: When finding augmenting path, find the shortest path
- In that case, # of augmentations = O(mn)

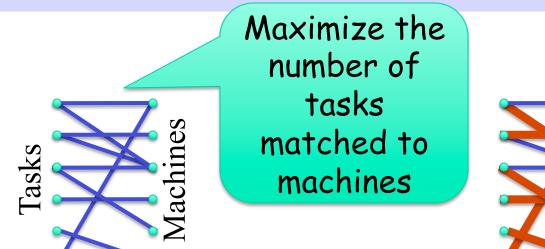
# More efficient Network Flow algorithms

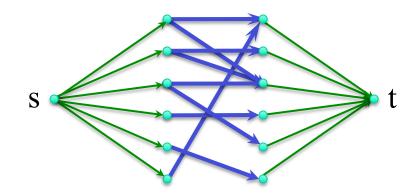
- Push-relabel algorithms [Goldberg, '87]
  - Local algorithm, works on one vertex at a time
  - Avoids maintaining flow conservation rule
    - Excess flow in each node
    - Height function
  - O(mn<sup>2</sup>) time complexity
  - Can be improved to  $O(n^3)$

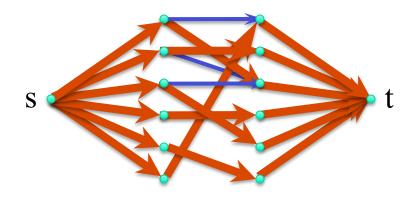
## Generalizations

- Multiple sources and sinks.
  - Can be reduced to single source and sink

### **Bipartite Matching**







# **Network Flow**

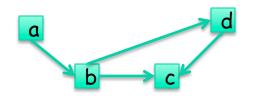
- Input: <u>Directed graph</u> G(V,E) with <u>capacity function</u> on edges given by non-negative function c: E(G) → *R*<sup>+</sup>.
  - Capacity of each edge, e, is given by c(e)
  - Source vertex s
  - Sink vertex t
- Question: Find a <u>flow function</u> f with the maximum flow value

# **Min-Cost Network Flow**

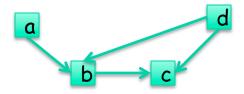
- Input: <u>Directed graph</u> G(V,E) with <u>capacity function</u> on edges given by non-negative function c: E(G) → *R*<sup>+</sup>.
  - Capacity of each edge, e, is given by c(e)
  - Flow cost of each edge, e, is given by a(e)
    - Implies that cost of flow in e is a(e)•f(e)
    - Total cost of flow = Σ a(e)•f(e)
  - Source vertex s
  - Sink vertex t
  - Flow required = F
- Question: Find <u>min-cost</u> flow function f with flow value = F

# Minimum Path Cover in DAGs

- Path Cover: set of vertex disjoint paths that cover all vertices
- Minimum Path Cover in directed acyclic graphs can be reduced to network flow (?)
- Examples:



Can be covered with one path:  $a \rightarrow b \rightarrow d \rightarrow c$ 



Cannot be covered with one path; needs at least two paths to cover all vertices

#### COT 6936: Topics in Algorithms

# Linear Programming

# **Gaussian Elimination**

Solving a system of simultaneous equations

| $\mathbf{x}_1$          | -2x <sub>3</sub>                              | = 2         |
|-------------------------|-----------------------------------------------|-------------|
|                         | <b>x</b> <sub>2</sub> + <b>x</b> <sub>3</sub> | = 3         |
| <b>x</b> <sub>1</sub> + | <b>x</b> <sub>2</sub>                         | $-x_4 = 4$  |
|                         | $x_2 + 3x_3$                                  | $+ x_4 = 5$ |

 $O(n^3)$  algorithm

| $\mathbf{x}_1$ | -2x <sub>3</sub>                              | = 2                |
|----------------|-----------------------------------------------|--------------------|
|                | <b>x</b> <sub>2</sub> + <b>x</b> <sub>3</sub> | = 3                |
|                | $x_2 + 2x_3 -$                                | $x_4 = 2$          |
|                | x <sub>2</sub> + 3x <sub>3</sub> +            | x <sub>4</sub> = 5 |

# Linear Programming

- Want more than solving simultaneous equations
- We have an objective function to optimize

# Chocolate Shop [DPV book]

- 2 kinds of chocolate
  - milk [Profit: \$1 per box] [Demand: 200]
  - Deluxe [Profit: \$6 per box] [Demand: 300]
- Production capacity: 400 boxes
- Goal: maximize profit
  - Maximize  $x_1 + 6x_2$  subject to constraints:
    - x<sub>1</sub> ≤ 200
    - $x_2 \le 300$
    - $x_1 + x_2 \le 400$
    - $x_1, x_2 \ge 0$

# **Diet Problem**

- Food type:  $F_1, \dots, F_m$
- Nutrients:  $N_1, \dots, N_n$
- Min daily requirement of nutrients: c<sub>1</sub>,...,c<sub>n</sub>

 $b_{1},...,b_{m}$ 

aii

- Price per unit of food:
- Nutrient N<sub>j</sub> in food F<sub>i</sub>:
- Problem: Supply daily nutrients at minimum cost
  - Min  $\Sigma_i b_i x_i$
  - $\Sigma_i a_{ij} x_i \ge c_j$  for  $1 \le j \le n$
  - x<sub>i</sub> ≥ 0

# **Transportation Problem**

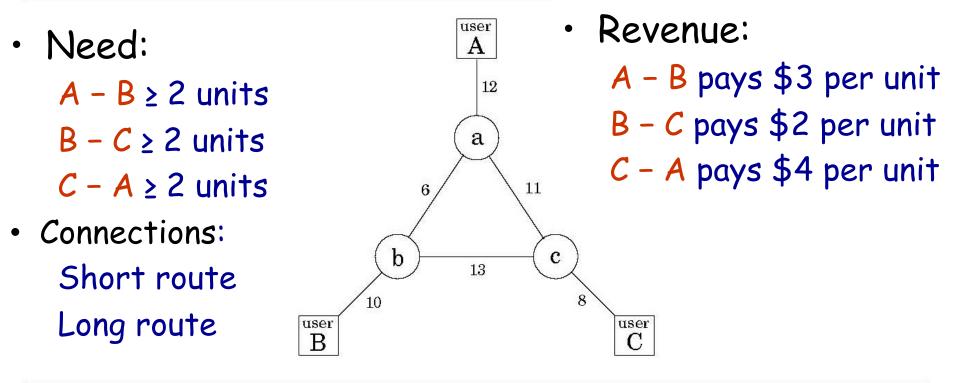
- Ports or Production Units: P<sub>1</sub>,...,P<sub>m</sub>
- Markets to be shipped to:  $M_1, \dots, M_n$
- Min daily market need:  $r_1, \dots, r_n$
- Port/production capacity:  $s_1, \dots, s_m$
- Cost of transporting to  $M_j$  from port  $P_i$ :  $a_{ij}$
- Problem: Meet market need at minimum transportation cost

# **Assignment Problem**

- Workers: b<sub>1</sub>,...,b<sub>n</sub>
- **Jobs**: *g*<sub>1</sub>,...,*g*<sub>m</sub>
- Value of assigning person b<sub>i</sub> to job g<sub>j</sub>: a<sub>ij</sub>
- Problem: Choose job assignment to maximize value

# **Bandwidth Allocation Problem**

**Figure 7.3** A communications network between three users A, B, and C. Bandwidths are shown.



# Bandwidth Allocation Pr

- Maximize revenue by allocating connections along two routes wi exceeding bandwidth capacities
- Max  $3(x_{AB}+x_{AB}') + 2(x_{BC}+x_{BC}') + 4(x_{AC}+x_{AC}')$ s.t.  $x_{AB} + x_{AB}' + x_{BC} + x_{BC}' \le 10$  $x_{AB} + x_{AB}' + x_{AC} + x_{AC}' \le 12$  $x_{BC} + x_{BC} + x_{AC} + x_{AC} \leq 8$  $x_{AB} + x_{BC}' + x_{AC}' \le 6; \quad x_{AB} + x_{AB}' \ge 2;$  $x_{BC} + x_{BC}' \ge 2$  $x_{AB}' + x_{BC} + x_{AC}' \le 13;$  $X_{AC} + X_{AC}' \ge 2$  $x_{AB}' + x_{BC}' + x_{AC} \le 11$ ; & all nonneg constraints

Α

a

13

10

12

11

С

user C

## Standard LP

- Maximize  $\sum c_j x_j$  [Objective Function] Subject to  $\sum a_{ij} x_j \le b_j$  [Constraints] and  $x_j \ge 0$ [Nonnegativity Constraints]
- Matrix formulation of LP Maximize  $c^{T}x$ Subject to  $Ax \le b$ and  $x \ge 0$

## Converting to standard form

- Min  $-2x_1 + 3x_2$  Subject to  $x_1 + x_2 = 7$   $x_1 - 2x_2 \le 4$   $x_1 \ge 0$ • Max  $2x_1 - 3x_2$  Subject to  $x_1 + x_2 \le 7$ 
  - $-x_1 x_2 \le -7$  $x_1 - 2x_2 \le 4$  $x_1 \ge 0$

# Converting to standard form

- Max  $2x_1 3x_2$  Subject to  $x_1 + x_2 \le 7$   $-x_1 - x_2 \le -7$   $x_1 - 2x_2 \le 4$   $x_1 \ge 0$ • Max  $2x_1 - 3x_2$  Subject to  $x_2$  is not constrained to be non-negative
- Max  $2x_1 3(x_3 x_4)$  Subject to  $x_1 + x_3 - x_4 \le 7$   $-x_1 - (x_3 - x_4) \le -7$   $x_1 - 2(x_3 - x_4) \le 4$  $x_{1,} x_3, x_4 \ge 0$

## Converting to Standard form

• Max 
$$2x_1 - 3x_2 + 3x_3$$
 Subject to  
 $x_1 + x_2 - x_3 \le 7$   
 $-x_1 - x_2 + x_3 \le -7$   
 $x_1 - 2x_2 - 2x_3 \le 4$   
 $x_1, x_2, x_3 \ge 0$ 

### **Slack Form**

• Max  $2x_1 - 3x_2 + 3x_3$  Subject to  $x_1 + x_2 - x_3 \le 7$  $-X_1 - X_2 + X_3 \le -7$  $x_1 - 2x_2 - 2x_3 \le 4$  $x_1 x_2, x_3 \ge 0$ • Max  $2x_1 - 3x_2 + 3x_3$  Subject to  $x_1 + x_2 - x_3 + x_4 = 7$  $-X_1 - X_2 + X_3 + X_5 = -7$  $x_1 - 2x_2 - 2x_3 + x_6 = 4$  $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$ 

# Duality

- Max  $c^T x$ Subject to  $Ax \le b$ and  $x \ge 0$
- Min  $y^Tb$ Subject to  $y^TA \ge c^T$ and  $y \ge 0$

#### [Primal]



## **Understanding Duality**

Maximize x<sub>1</sub> + 6x<sub>2</sub> subject to constraints:

(1)

- ×<sub>1</sub> ≤ 200
- x<sub>2</sub> ≤ 300 (2)
- $x_1 + x_2 \le 400$  (3)
- $x_1, x_2 \ge 0$

How were mutipliers determined?

- (100,300) is feasible; v...ae = 1900. Optimum?
- Adding 1 times (1) + 6 times (2) gives us

•  $x_1 + 6x_2 \le 2000$ 

- Adding 1 times (3) + 5 times (2) gives us
  - $x_1 + 6x_2 \le 1900$

• "Certificate of Optimality" for solution (100,300)

# **Understanding Duality**

- Maximize  $x_1 + 6x_2$  subject to:
  - $x_1 \le 200$  (y<sub>1</sub>) •  $x_2 \le 300$  (y<sub>2</sub>) [(100,300)] •  $x_1 + x_2 \le 400$  (y<sub>3</sub>) •  $x_1, x_2 \ge 0$
- Different choice of multipliers gives us different bounds. We want smallest bound.
- Minimize  $200y_1 + 300y_2 + 400y_3$  subject to:
  - $\begin{array}{cccc} \cdot y_1 & + y_3 \ge 1 & (x_1) \\ \cdot & y_2 + y_3 \ge 6 & (x_2) & [(0,5,1)] \end{array}$ 
    - y<sub>1</sub>, y<sub>2</sub> ≥ 0

# **Duality Principle**

- Primal feasible values < dual feasible values</li>
- Max primal value = min dual value
- Duality Theorem: If a linear program has a bounded optimal value then so does its dual and the two optimal values are equal.

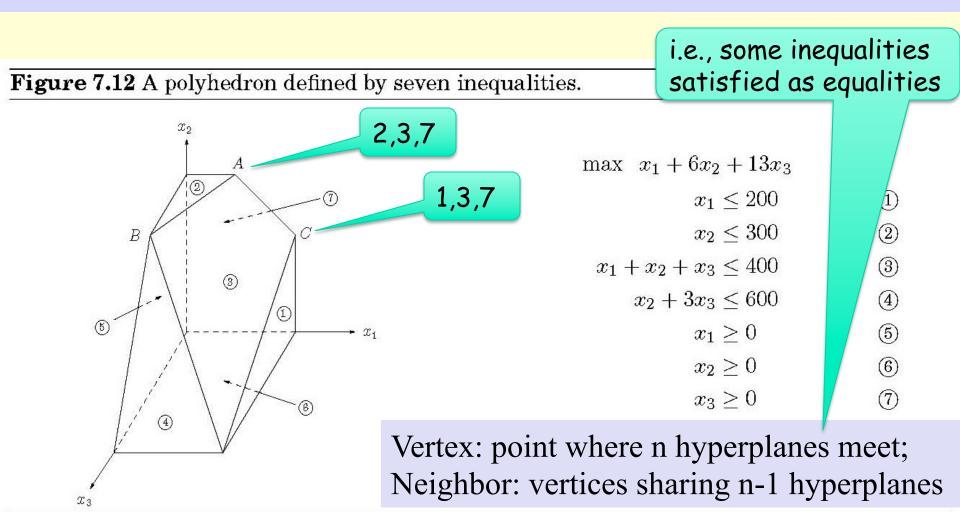
# **Visualizing Duality**

- Shortest Path Problem
  - Build a physical model and between each pair of vertices attach a string of appropriate length
  - To find shortest path from s to t, hold the two vertices and pull them apart as much as possible without breaking the strings
  - This is exactly what a dual LP solves!
    - Max x<sub>s</sub>-x<sub>t</sub>
    - subject to  $|x_u x_v| \le w_{uv}$  for every edge (u.v)
  - The taut strings correspond to the shortest path, i.e., they have no slack

# Simplex Algorithm

- Start at v, any vertex of feasible region
- while (there is neighbor v' of v with better objective value) do
   set v = v'
- Report v as optimal point and its value as optimal value
- What is a
  - Vertex?, neighbor?
- Start vertex? How to pick next neighbor?

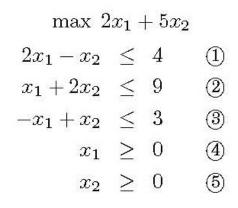
## Simplex Algorithm: Example



### Steps of Simplex Algorithm

 In order to find next neighbor from arbitrary vertex, we do a change of origin (pivot)

Initial LP:



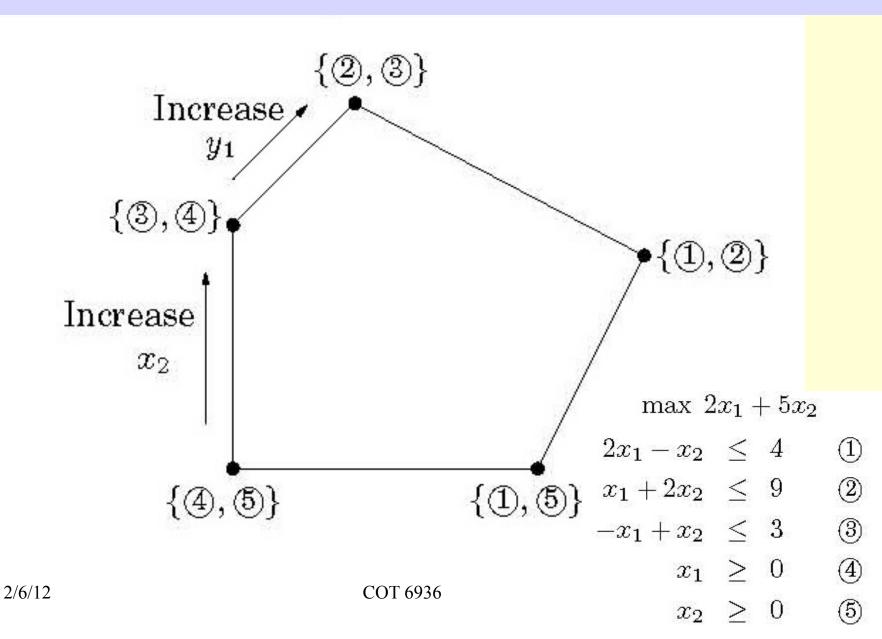
Current vertex: {(4), (5)} (origin). Objective value: 0.

Move: increase  $x_2$ . (5) is released, (3) becomes tight. Stop at  $x_2 = 3$ .

New vertex  $\{(4), (3)\}$  has local coordinates  $(y_1, y_2)$ :

$$y_1 = x_1, \ \ y_2 = 3 + x_1 - x_2$$

#### Simplex Algorithm Example



#### Simplex Algorithm Example

| Initial LP:<br>$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                               | Current vertex: $\{4, 5\}$ (origin).<br>Objective value: 0.<br>Move: increase $x_2$ .<br>5 is released, 3 becomes tight. Stop at $x_2 = 3$ .<br>New vertex $\{4, 3\}$ has local coordinates $(y_1, y_2)$ :<br>$y_1 = x_1, y_2 = 3 + x_1 - x_2$        |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rewritten LP: $max \ 15 + 7y_1 - 5y_2$ $y_1 + y_2 \le 7$ ① $3y_1 - 2y_2 \le 3$ ② $y_2 \ge 0$ ③ $y_1 \ge 0$ ④ $-y_1 + y_2 \le 3$ ⑤ | Current vertex: $\{(4), (3)\}$ .<br>Objective value: 15.<br>Move: increase $y_1$ .<br>(4) is released, (2) becomes tight. Stop at $y_1 = 1$ .<br>New vertex $\{(2), (3)\}$ has local coordinates $(z_1, z_2)$ :<br>$z_1 = 3 - 3y_1 + 2y_2, z_2 = y_2$ |

### Simplex Algorithm Example

**Rewritten LP:** 

| max $15 + 7y_1 - 5y_2$                                                                                      | 0 Geome e                                 |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| $egin{array}{rcl} y_1+y_2 &\leq & 7 & \ y_1-2y_2 &\leq & 3 & \ \end{array} \ (1)$                           | Move: incr<br>④ is releas                 |
| $egin{array}{rcl} y_2 &\geq & 0 & @ \ y_1 &\geq & 0 & @ \ -y_1+y_2 &\leq & 3 & @ \end{array} \ \end{array}$ | New verte                                 |
| Rewritten LP:<br>max $22 - \frac{7}{3}z_1 - \frac{1}{3}z_2$                                                 | Current ve<br>Objective v                 |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                        | Optimal: a<br>Solve $(2), (x_1, x_2) = ($ |
|                                                                                                             |                                           |

Current vertex:  $\{4, 3\}$ . Objective value: 15.

rease  $y_1$ . used, (2) becomes tight. Stop at  $y_1 = 1$ . ex  $\{(2), (3)\}$  has local coordinates  $(z_1, z_2)$ :

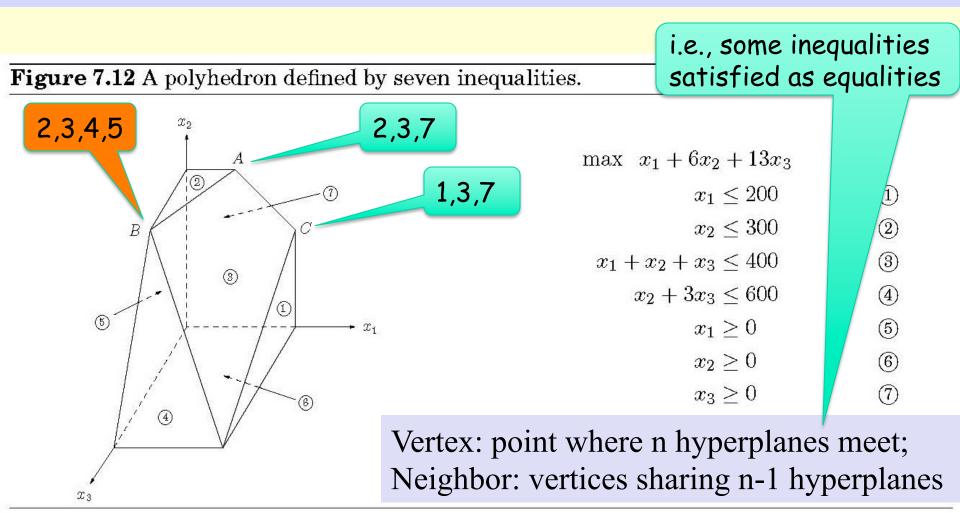
 $z_1 = 3 - 3y_1 + 2y_2, \quad z_2 = y_2$ 

 $ertex: \{(2), (3)\}.$ value: 22.

all  $c_i < 0$ .

③ (in original LP) to get optimal solution (1, 4).

### Simplex Algorithm: Degenerate vertices



# Polynomial-time algorithms for LP

- Simplex is not poly-time in the worst-case
- Khachiyan's ellipsoid algorithm: LP is in *P*
- Karmarkar's interior-point algorithm
- Good implementations for LP exist
  - Works very well in practice
  - More competitive than the poly-time methods for LP

## Integer Linear Programming

- LP with integral solutions
- NP-hard
- If A is a totally unimodular matrix, then the LP solution is always integral.
  - A TUM is a matrix for which every nonsingular submatrix has determinant 0, +1 or -1.
  - A TUM is a matrix for which every nonsingular submatrix has integral inverse.

#### Vertex Cover as an LP?

- For vertex v, create variable  $x_v$
- For edge (u,v), create constraint  $x_u + x_v \ge 1$
- Objective function:  $\Sigma x_v$
- Additional constraints:  $x_v \le 1$
- Doesn't work because  $x_v$  needs to be from  $\{0,1\}$