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Types of networks & Types of queries

* Road, highway, rail
» Electrical power, water, oil, gas, sewer
» Internet, phone, wireless, sensor

* (1950s) How quickly can Soviet Union get
supplies through its rail network to Europe?

* Which links to destroy to reduce flow to
under a threshold?
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Network Flow: Example

‘ Capacity Edmonton  Saskatoon

Vancouver \© T Winnipeg

- 14
Calgary Regina
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Network Flow: Example of a flow
Total Flow in
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Network Flow

» Directed graph G(V,E) with capacity function on edges
given by non-negative function c: E(G) = 2~.
— Capacity of each edge, e, is given by c(e)
— Source vertex s
— Sink vertex t

* Flow function f is a non-negative function of the edges

-fTEG)=> 2"

— Capacity constraints: f(e) < c(e)

— Flow conservation constraints: For all vertices except source
and sink, sum of flow values along edges entering a vertex
equals sum of flow values along edges leaving that vertex

* Flow value: sum of flow values from source vertex (or
sum of flow into sink vertex)
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Flow Conservation

* For any legal flow function:
- Flow out of source = Flow into sink (Why?)
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Network Flow: How to increase flow

\ ) A2

12/12 ,
Vl — \3 /)\
\4)0
2] | ~ =
= [ N IS °
|
| A

VA V.
5 11/14 &

Find path with residual capacity and increase flow along path.

* Path s to v; to v5 to T has no residual capacity
* edge v, to v; is saturated
* Path s to v, to v; To T has residual capacity
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Residual Flows and Augmenting Paths

873

Flow = 19 Capacity of

augmenting

path =4

Flow = 23
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Residual Flow Network: Definition

* Directed Graph G(V,E) with capacity function
c and flow function f

+ Residual flow network G¢(V E’)

- For every edge e = (u,v) in E with f(e) < c(e),
there are two edges in E": (u,v) and (v,u) with
capacities c(e) = f(e) and f(e), respectively

- For every edge e = (u,v) in E with f(e) = c(e),
there is one edge in E": (v,u) with capacity f(e)

- For every edge e = (u,v) in E with f(e) = O, there
is one edge in E": (u,v) with capacity f(e)
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Ford Fulkerson Algorithm

» Initialize flow f to O.

* While (there exists augmenting path p from
s to t) do

- Augment flow along augmenting path p
» Return flow f as maximum flow from s to t
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Ford Fulkerson Algorithm

» Initialize flow f to O.

» While (there exists directed path p from s
to T in residual flow network G;) do

- Augment flow along augmenting path p
» Return flow f as maximum flow from s to t

2/6/12 COT 6936 11



Ford-Fulkerson Method: Example
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Ford-Fulkerson Method: Example
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Ford-Fulkerson Method: Example

2/6/12 COT 6936 14



Ford-Fulkerson Method: Example

* Max-Flow has been reached. Why?
* Cut with zero capacity has been found. Which Cut?

* ({s,v1,vo,Va} {v3,1})
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Correctness of Ford-Fulkerson Method

» Augmentation is possible if
- Every cut-set is NOT saturated

Cut (S,T):

* Capacity = 26

e Flow across cut =19
Cut (S°,T°):

* Capacity = 23

e Flow across cut =19

- Theorem: Min-Cut = Max-Flow
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Time Complexity

* It can be arbitrarily large.
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» Solution: When finding augmenting path,
find the shortest path

» In that case, # of augmentations = O(mn)
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More efficient Network Flow algorithms
* Push-relabel algorithms [Goldberg, '87]

- Local algorithm, works on one vertex at a time

- Avoids maintaining flow conservation rule
+ Excess flow in each node
* Height function

- O(mn?) time complexity
- Can be improved to O(n?)
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Generalizations

* Multiple sources and sinks.
- Can be reduced to single source and sink
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Bipartite Matching

Maxumlze the
| number' of
% tasks
S @ t S
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Network Flow

 Input: Directed graph G(V,E) with capacity function on
edges given by non-negative function c: E(G) = 2.
— Capacity of each edge, e, is given by c(e)
— Source vertex s
— Sink vertex t
* Question: Find a flow function f with the maximum flow

value
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Min-Cost Network Flow

 Input: Directed graph G(V,E) with capacity function on
edges given by non-negative function c: E(G) = 2.
— Capacity of each edge, e, is given by c(e)
— Flow cost of each edge, e, is given by a(e)

* Implies that cost of flow in e is a(e)ef(e)
« Total cost of flow = 2 a(e)-f(e)

— Source vertex s
— Sink vertex t
— Flow required = F
* Question: Find min-cost flow function f with flow value
=F
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Minimum Path Cover in DAGS

* Path Cover: set of vertex disjoint paths that
cover all vertices

* Minimum Path Cover in directed acyclic
graphs can be reduced to network flow (?)

+ Examples:
a d a d
b c b c
Can be covered with one Cannot be covered with one path;

path: a =b =2d =>c needs at least two paths to cover all
vertices
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Gaussian Elimination

» Solving a system of simultaneous equations
X1 -2X;5 =2
Xy + X3 =3 O(n?) algorithm
X1+ X5 -X, =4
Xy + 3X3+ X4 =

X1 -2X;5 =2
X5 + X3 =3
Xy + 2X3-Xy4 =2
X, +3X3+X, =D

2/6/12 COT 6936 25



Linear Programming

» Want more than solving simultaneous
equations

* We have an objective function to optimize
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Chocolate Shop [DPV bookK]

» 2 kinds of chocolate
- milk [Profit: $1 per box] [Demand: 200]
- Deluxe [Profit: $6 per box] [Demand: 300]

* Production capacity: 400 boxes

* Goal: maximize profit
- Maximize x; + 6x, subject to constraints:
* X1 <200
- X, < 300
* Xy + X, < 400
* Xq, X, 20
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Diet Problem

* Food type: Fi P

- Nutrients: N,,....N,

* Min daily requirement of nutrients: c,....c,
* Price per unit of food: by,...b,,

* Nutrient N; in food F;: ot

* Problem: Supply daily nutrients at minimum

cost
* Min 2. b.x.

* 2,0, 2 C; forl<j<n

* x;20
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Transportation Problem

* Ports or Production Units: P,,.. P,

* Markets to be shipped to: M,,...M,,

* Min daily market need: S
* Port/production capacity: S1,.-,Sp

+ Cost of transporting to M; from port P;:

* Problem: Meet market need at minimum
transportation cost
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Assignment Problem

+ Workers: by,....b,

- Jobs: g4,...,9,,

* Value of assigning person b; to job g;: a;;

* Problem: Choose job assignment to maximize
value
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Bandwidth Allocation Problem

Figure 7.3 A communications network between three users A, B, and C. Bandwidths are
shown.

. Need: =1 + Revenue:
A - B> 2 units 12 A - B pays $3 per unit
B -C2>2 units a B - C pays $2 per unit
C - A > 2 units ; .,  C-Apays $4 per unit
« Connections: 5 -
Short route ’ 13 8
Long route o o
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Bandwidth Allocation Pr

* Maximize revenue by allocating
connections along two routes wi

exceeding bandwidth capacities

B

12

6 11

b (d

13
10 8

user
C

* Max 3(Xxsp+Xap) + 2(XpctXpc ) + 4(XactXac) S.T.

Xap+ Xap + Xpc+ Xpc ¢ 10

Xap+ Xap + Xac* Xac ¢ 12

Xpc* Xpc *+ Xact Xac ¢ 8

Xapt Xpe + Xpac €6. Xpp* Xap 22
Xag * Xgc * Xac ¢ 13

Xpc+ Xpc 2 2
Xac+ Xac 22

Xap + Xpc + Xac ¢ 11:4 all nonneg constraints
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Standard LP

- Maximize ZCJXJ- [Objective Function]

Subject to 2a;;X; < b; [Constraints]

and XJ- >0 [Nonnegativity Constraints]

» Matrix formulation of LP
Maximize c'x
Subject to Ax < b
and x>0
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Converting to standard form

* Min -2x; + 3x, Subject to
X1+ X,=7/

X1 - 2X, ¢4

x;20

* Max 2x; - 3x, Subject to
X+ X,¢ 7/

-X{ - X, ¢ -/

X;-2X, ¢4

X120
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Converting to standard form

* Max 2x, - 3x, Subject to
X;+X,¢7

X, 1S hot
X1 - Xo ¢ -/ 219
1 %2 constrained to
X1-2X,¢ 4 be non-negative

x;20
* Max 2x; - 3(x5 - X4) Subject to

X+ X3-Xa¢7/

-X1 = (X3- X4) < -7

X1 = 2(X3-X4) <4

Xy X3, X420
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Converting to Standard form

* Max 2x; - 3x,+ 3X5 Subject to
Xi+ Xo=-X3¢7
-X1 = Xo*+ X3¢ -7
X1 - 2X,-2X3¢4
Xy X5, X320
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Slack Form

* Max 2x; - 3x,+ 3X5 Subject to
Xi+ Xo=-X3¢7
-X1 = Xo*+ X3¢ -7
X1 - 2X,-2X3¢4
Xy X5, X320
* Max 2x; - 3x,+ 3X5; Subject to
Xi+Xo= X3+ X,=7
-X1 = Xo+ X3+ X5 = -7/
X1 = 2X,= 2X3+ X, = 4
X1, X2, X3, Xg, X5, X2 0
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Duality

» Max c'x
Subject fo Ax<b
and x > 0

* Miny'b
Subject foy'™A 2> cT
andy >0
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Understanding Duality

* Maximize x; + 6x, subject to constraints:

* %1 £ 200 (1) How were

. X, < 300 (2) mutipliers
. X; + X, < 400 (3) determined?
¢ Xl, XZ 2 O

* (100,300) is feasible; veide = 1900. Optimum?

* Adding 1 times (1) + 6 times (2) gives us
* X; + 6%, < 2000

» Adding 1 times (3) + 5 times (2) gives us
x1 + 6x, < 1900
"Certificate of Optimality” for solution (100, 300)
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Understanding Duality

* Maximize x; + 6x, subject to:

" X < 200 (Y1)

X, ¢ 300 (y,) [(100,300)]
' Xp+ X < 400 (y3)
* Xy, X,20

+ Different choice of multipliers gives us
different bounds. We want smallest bound.

* Minimize 200y, + 300y, + 400y; subject to:
"Y1 tys 21 (%)

Y2 +Y326 (X2) [(0.5.1)]
"Y1, Y220
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Duality Principle

- Primal feasible values < dual feasible values

*|Max primal value = min dual value

* Duality Theorem: If a linear program has a
bounded optimal value then so does its dual
and the two optimal values are equal.
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Visualizing Duality

- Shortest Path Problem

- Build a physical model and between each pair of
vertices attach a string of appropriate length

- To find shortest path from s to t, hold the two
vertices and pull them apart as much as possible
without breaking the strings

- This is exactly what a dual LP solves!

* Max x-x.
» subject to |x,-x,| < w,, for every edge (u.v)

- The taut strings correspond to the shortest
path, i.e., they have no slack
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Simplex Algorithm

+ Start at v, any vertex of feasible region

» while (there is neighbor v' of v with better
objective value) do

setv=V

* Report v as optimal point and its value as
optimal value

* What is a
- Vertex?, neighbor?

+ Start vertex? How to pick next neighbor?
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Simplex Algorithm: Example

(i.e., some inequalities
Figure 7.12 A polyhedron defined by seven inequalities. _satisfied as equalities

%7 3
A max x1 + 6z + 1324
x2 < 300

z1 + 22 + z3 < 400
x9 + 3z3 < 600

z1 >0

z9 > 0

xg > 0

- Vertex: point where n hyperplanes meet;
/ Neighbor: vertices sharing n-1 hyperplanes

2/6/12 COT 6936 44



Steps of Simplex Algorithm

* In order to find next neighbor from
arbitrary vertex, we do a change of origin

(pivot)

Initial LP: Current vertex: {@), (5} (origin).

Objective value: 0.
max 2x; + bxo

Move: increase zo.

2z1 —x2 < 4 @D ; .
1 +220 < 9 @ (®) 1s released, 3) becomes tight. Stop at z2 = 3.
—wf g 5 3 (9 New vertex {4, 3} has local coordinates (1, y2):
T Z 0 @
zo 2 0 @ Y1 = x1, Y2 = 3+ x1— X9
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Simplex Algorithm Example

{®,3®}
Increase
’y1/
{®,®}
‘ (©,@)
Increase
X3
max 2x1 + 5o

8 2x1—x2 S 4
{®@,®} {D;®) +*2 =9
—z1+z2 < 3
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Simplex Algorithm Example

Initial LP: Current vertex: {@),® } (origin).
Objective value: 0.
max 2xzy + 5xo
Oy —zg < 4 @ Move: increase xo.
o s & 18 ) (5) is released, (8) becomes tight. Stop at x5 = 3.
—z1+z2 < 3 @ New vertex {(4), 3} has local coordinates (y1, v2 ):
z1 > 0 @
2 >0 @ y1 = 1, Y2 = 3+xT1— X2
Rewritten LP: Current vertex: {4),(®}.

max 15+ 7y — dyo

nty2 <7 @
dJy1—2y2 £ 3 @
y2 = 0 ®

1 2 0 @

-1 +y2 < 3 ®

Objective value: 15.

Move: increase .
@ is released, (2) becomes tight. Stop at y; = 1.

New vertex {(2), 3} has local coordinates (21, z2):

21 = 3—3n1+ 2y2, z2a=1y2




Simplex Algorithm Example

Rewritten LP:

max 15+ 7y — dyo

Current vertex: {4),(®}.
Objective value: 15.

a4 @ BT A ﬂ(go‘ve: ilncrea; e@%lb tight. Stop at y; = 1
is released, ecomes tight. Stop at 1 = 1.
y1—2y2 < 3 (2 . e
y2 > 0 ® New vertex {(@2), 3} has local coordinates (21, z2):
yr 20 @
21 = 3—3y1+2 2=
gy € 8 ® 1 Y1 Y2, 22 = Y2
Rewritten LP: Current vertex: {(2,(3}.
Objective value: 22.
max 22 — %zl — %zg
—Ln 435 < 6 @ Optimal: all ¢; < 0.
4 2 0 @ Solve (2),® (in original LP) to get optimal solution
zg 2> 0 ® (:Cl,xg) = (1,4)
%zl == %zg S i @
T2+ iz < 4 ®
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Simplex Algorithm: Degenerate vertices

(i.e., some inequalities
Figure 7.12 A polyhedron defined by seven inequalities. _satisfied as equalities

© 231
A max x1 + 6z + 1323
22 < 300

z1 + 22 + z3 < 400
x9 + 3z3 < 600

z1 >0

2o 2> @

2a 2

' Vertex: point where n hyperplanes meet;
/ Neighbor: vertices sharing n-1 hyperplanes
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Polynomial-time algorithms for LP

» Simplex is nhot poly-time in the worst-case
» Khachiyan's ellipsoid algorithm: LP is in 2
» Karmarkar's interior-point algorithm

* Good implementations for LP exist
- Works very well in practice

- More competitive than the poly-time methods
for LP
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Integer Linear Programming

* LP with integral solutions
* NP-hard

+ If A is a totally unimodular matrix, then the
LP solution is always integral.

- A TUM is a matrix for which every nonsingular
submatrix has determinant O, +1 or -1.

- A TUM is a matrix for which every nonsingular
submatrix has integral inverse.
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Vertex Cover as an LP?

* For vertex v, create variable x,

* For edge (u,v), create constraint x, + x, > 1
+ Objective function: Zx,

* Additional constraints: x, < 1

» Doesn't work because x, needs to be from
{0.1}
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