COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2443; Phone: x3748

 giri@cs.fiu.eduhttp://www.cs.fiu.edu/~giri/teach/COT6936_S12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

Types of networks \& Types of queries

- Road, highway, rail
- Electrical power, water, oil, gas, sewer
- Internet, phone, wireless, sensor
- (1950s) How quickly can Soviet Union get supplies through its rail network to Europe?
- Which links to destroy to reduce flow to under a threshold?

Network Flow: Example

Network Flow: Example of a flow

Network Flow

- Directed graph $G(V, E)$ with capacity function on edges given by non-negative function $\mathrm{c}: \mathrm{E}(\mathrm{G}) \rightarrow \boldsymbol{R}^{+}$.
- Capacity of each edge, e, is given by c(e)
- Source vertex s
- Sink vertex t
- Flow function f is a non-negative function of the edges
$-\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow \mathrm{R}^{+}$
- Capacity constraints: $f(\mathrm{e}) \leq \mathrm{c}(\mathrm{e})$
- Flow conservation constraints: For all vertices except source and sink, sum of flow values along edges entering a vertex equals sum of flow values along edges leaving that vertex
- Flow value: sum of flow values from source vertex (or sum of flow into sink vertex)

Flow Conservation

- For any legal flow function:
- Flow out of source = Flow into sink (Why?)

Network Flow: How to increase flow

Find path with residual capacity and increase flow along path.

- Path s to v_{1} to v_{3} to t has no residual capacity
- edge v_{1} to v_{3} is saturated
- Path s to v_{2} to v_{3} to thas residual capacity

Residual Flows and Augmenting Paths

Flow $=19$

(a)

Augmenting
Path

Capacity of augmenting path $=4$

Flow $=23$

Residual Flow Network: Definition

- Directed Graph $G(V, E)$ with capacity function c and flow function f
- Residual flow network $G_{f}\left(V, E^{\prime}\right)$
- For every edge $e=(u, v)$ in with $f(e)<c(e)$, there are two edges in $E^{\prime}:(u, v)$ and (v, u) with capacities $c(e)=f(e)$ and $f(e)$, respectively
- For every edge $e=(u, v)$ in E with $f(e)=c(e)$, there is one edge in $E^{\prime}:(v, u)$ with capacity $f(e)$
- For every edge $e=(u, v)$ in E with $f(e)=0$, there is one edge in $E^{\prime}:(u, v)$ with capacity $f(e)$

Ford Fulkerson Algorithm

- Initialize flow f to 0 .
- While (there exists augmenting path p from s to t) do
- Augment flow along augmenting path p
- Return flow f as maximum flow from s to \dagger

Ford Fulkerson Algorithm

- Initialize flow f to 0 .
- While (there exists directed path p from s to t in residual flow network G_{f}) do
- Augment flow along augmenting path p
- Return flow f as maximum flow from s to \dagger

Ford-Fulkerson Method: Example

(a)

(b)

(c)

(d)

(e)

Ford-Fulkerson Method: Example

Ford-Fulkerson Method: Example

Ford-Fulkerson Method: Example

- Max-Flow has been reached. Why?
- Cut with zero capacity has been found. Which Cut?
- $\left(\left\{s, v_{1}, v_{2}, v_{4}\right\},\left\{v_{3}, t\right\}\right)$

Correctness of Ford-Fulkerson Method

- Augmentation is possible if
- Every cut-set is NOT saturated

Cut (S,T):

- Capacity $=26$
- Flow across cut $=19$

Cut ($\mathrm{S}^{\prime}, \mathrm{T}^{\prime}$):

- Capacity $=23$
- Flow across cut = 19
- Theorem: Min-Cut = Max-Flow

Time Complexity

- It can be arbitrarily large.

(a)

(b)

(c)
- Solution: When finding augmenting path, find the shortest path
- In that case, $\#$ of augmentations $=O(m n)$

More efficient Network Flow algorithms

- Push-relabel algorithms [Goldberg, '87]
- Local algorithm, works on one vertex at a time
- Avoids maintaining flow conservation rule
- Excess flow in each node
- Height function
- $O\left(m n^{2}\right)$ time complexity
- Can be improved to $O\left(n^{3}\right)$

Generalizations

- Multiple sources and sinks.
- Can be reduced to single source and sink

Bipartite Matching

Maximize the number of tasks matched to machines

Network Flow

- Input: Directed graph $G(V, E)$ with capacity function on edges given by non-negative function $\mathrm{c}: \mathrm{E}(\mathrm{G}) \rightarrow \mathbb{R}^{+}$.
- Capacity of each edge, e, is given by c(e)
- Source vertex s
- Sink vertex t

Question: Find a flow function f with the maximum flow value

Min-Cost Network Flow

- Input: Directed graph $G(V, E)$ with capacity function on edges given by non-negative function $\mathrm{c}: \mathrm{E}(\mathrm{G}) \rightarrow \mathbb{R}^{+}$.
- Capacity of each edge, e, is given by c(e)
- Flow cost of each edge, e, is given by a(e)
- Implies that cost of flow in e is a(e)•f(e)
- Total cost of flow $=\Sigma \mathrm{a}(\mathrm{e}) \bullet f(\mathrm{e})$
- Source vertex s
- Sink vertex t
- Flow required = F
- Question: Find min-cost flow function f with flow value = F

Minimum Path Cover in DAGs

- Path Cover: set of vertex disjoint paths that cover all vertices
- Minimum Path Cover in directed acyclic graphs can be reduced to network flow (?)
- Examples:

Can be covered with one path: $\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{d} \rightarrow \mathrm{c}$

Cannot be covered with one path; needs at least two paths to cover all vertices

COT 6936: Topics in Algorithms

Linear Programming

Gaussian Elimination

Solving a system of simultaneous equations

$$
\begin{array}{lcl}
x_{1} & -2 x_{3} & =2 \\
& x_{2}+x_{3} & =3
\end{array}
$$

$\mathrm{O}\left(\mathrm{n}^{3}\right)$ algorithm

$$
x_{1}+x_{2} \quad-x_{4}=4
$$

$$
x_{2}+3 x_{3}+x_{4}=5
$$

$$
\begin{array}{lll}
x_{1} & -2 x_{3} & =2 \\
x_{2}+x_{3} & =3 \\
x_{2}+2 x_{3}-x_{4} & =2 \\
x_{2}+3 x_{3}+x_{4} & =5
\end{array}
$$

Linear Programming

- Want more than solving simultaneous equations
- We have an objective function to optimize

Chocolate Shop [DPV book]

- 2 kinds of chocolate
- milk [Profit: \$1 per box] [Demand: 200]
- Deluxe [Profit: \$6 per box] [Demand: 300]
- Production capacity: 400 boxes
- Goal: maximize profit
- Maximize $x_{1}+6 x_{2}$ subject to constraints:
- $x_{1} \leq 200$
- $x_{2} \leq 300$
- $x_{1}+x_{2} \leq 400$
- $x_{1}, x_{2} \geq 0$

Diet Problem

- Food type:

$$
\begin{aligned}
& F_{1}, \ldots, F_{m} \\
& N_{1}, \ldots, N_{n}
\end{aligned}
$$

- Nutrients:
- Min daily requirement of nutrients: c_{1}, \ldots, c_{n}
- Price per unit of food: $\quad b_{1}, \ldots, b_{m}$
- Nutrient N_{j} in food F_{i} :
$a_{i j}$
- Problem: Supply daily nutrients at minimum cos \dagger
- $\operatorname{Min} \Sigma_{i} b_{i} x_{i}$
- $\sum_{i} a_{i j} x_{i} \geq c_{j}$
for $1 \leq j \leq n$
- $x_{i} \geq 0$

Transportation Problem

- Ports or Production Units: P_{1}, \ldots, P_{m}
- Markets to be shipped to: M_{1}, \ldots, M_{n}
- Min daily market need:
r_{1}, \ldots, r_{n}
- Port/production capacity: s_{1}, \ldots, s_{m}
- Cost of transporting to M_{j} from port P_{i} :
- Problem: Meet market need at minimum transportation cost

Assignment Problem

- Workers: b_{1}, \ldots, b_{n}

Jobs: g_{1}, \ldots, g_{m}

- Value of assigning person b_{i} to job $g_{j}: a_{i j}$
- Problem: Choose job assignment to maximize value

Bandwidth Allocation Problem

Figure 7.3 A communications network between three users A, B, and C. Bandwidths are shown.

- Need:
$A-B \geq 2$ units
$B-C \geq 2$ units
$C-A \geq 2$ units
- Connections:

Short route
Long route

Bandwidth Allocation Pr

- Maximize revenue by allocating connections along two routes wi exceeding bandwidth capacities

- $\operatorname{Max} 3\left(x_{A B}+x_{A B}{ }^{\prime}\right)+2\left(x_{B C}+x_{B C}{ }^{\prime}\right)+4\left(x_{A C}+x_{A C}{ }^{\prime}\right)$ st.
$x_{A B}+x_{A B^{\prime}}+x_{B C}+x_{B C^{\prime}} \leq 10$
$x_{A B}+x_{A B}{ }^{\prime}+x_{A C}+x_{A C^{\prime}} \leq 12$
$x_{B C}+x_{B C}{ }^{\prime}+x_{A C}+x_{A C}{ }^{\prime} \leq 8$
$x_{A B}+x_{B C^{\prime}}+x_{A C^{\prime}} \leq 6 ; \quad x_{A B}+x_{A B^{\prime}} \geq 2 ; \quad x_{B C}+x_{B C^{\prime}} \geq 2$
$x_{A B}{ }^{\prime}+x_{B C}+x_{A C}{ }^{\prime} \leq 13 ;$
$x_{A C}+x_{A C^{\prime}} \geq 2$
$x_{A B}{ }^{\prime}+x_{B C} c^{\prime}+x_{A C} \leq 11 ; \&$ all nonneg constraints

Standard LP

- Maximize $\sum c_{j} x_{j} \quad$ [Objective Function]

Subject to $\sum a_{i j} x_{j} \leq b_{j}$ [Constraints]
and $x_{j} \geq 0$ [Nonnegativity Constraints]

- Matrix formulation of LP
Maximize
$c^{\top} x$
Subject to
$A x \leq b$ and
$x \geq 0$

Converting to standard form

$$
\operatorname{Min}-2 x_{1}+3 x_{2} \text { Subject to }
$$

$$
\begin{aligned}
& x_{1}+x_{2}=7 \\
& x_{1}-2 x_{2} \leq 4 \\
& x_{1} \geq 0
\end{aligned}
$$

- Max $2 x_{1}-3 x_{2}$ Subject to
$x_{1}+x_{2} \leq 7$
$-x_{1}-x_{2} \leq-7$
$x_{1}-2 x_{2} \leq 4$
$x_{1} \geq 0$

Converting to standard form

$\operatorname{Max} 2 x_{1}-3 x_{2}$ Subject to

$x_{1}+x_{2} \leq 7$
$-x_{1}-x_{2} \leq-7$
$x_{1}-2 x_{2} \leq 4$
x_{2} is not
constrained to be non-negative
$x_{1} \geq 0$

- Max $2 x_{1}-3\left(x_{3}-x_{4}\right)$ Subject to
$x_{1}+x_{3}-x_{4} \leq 7$
$-x_{1}-\left(x_{3}-x_{4}\right) \leq-7$
$x_{1}-2\left(x_{3}-x_{4}\right) \leq 4$
$x_{1}, x_{3}, x_{4} \geq 0$

Converting to Standard form

- Max $2 x_{1}-3 x_{2}+3 x_{3}$ Subject to

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3} \leq 7 \\
& -x_{1}-x_{2}+x_{3} \leq-7 \\
& x_{1}-2 x_{2}-2 x_{3} \leq 4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Slack Form

$\operatorname{Max} 2 x_{1}-3 x_{2}+3 x_{3}$ Subject to

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3} \leq 7 \\
& -x_{1}-x_{2}+x_{3} \leq-7 \\
& x_{1}-2 x_{2}-2 x_{3} \leq 4
\end{aligned}
$$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

- Max $2 x_{1}-3 x_{2}+3 x_{3}$ Subject to
$x_{1}+x_{2}-x_{3}+x_{4}=7$
$-x_{1}-x_{2}+x_{3}+x_{5}=-7$
$x_{1}-2 x_{2}-2 x_{3}+x_{6}=4$
$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0$

Duality

- $\operatorname{Max} c^{\top} x$
[Primal]
Subject to $A x \leq b$ and $x \geq 0$
- $M i n y^{\top} b$

[Dual]

Subject to $y^{\top} A \geq C^{\top}$ and $y \geq 0$

Understanding Duality

- Maximize $x_{1}+6 x_{2}$ subject to constraints:

$$
\begin{align*}
& \cdot x_{1} \leq 200 \tag{1}\\
& \cdot \tag{2}\\
& \cdot x_{2} \leq 300 \tag{3}\\
& \cdot x_{1}+x_{2} \leq 400 \\
& \cdot \\
& x_{1}, x_{2} \geq 0
\end{align*}
$$

How were mutipliers

determined?

- $(100,300)$ is feasible; vr. .le $=1900$. Optimum?
- Adding 1 times (1) + 6 times (2) gives us
- $x_{1}+6 x_{2} \leq 2000$
- Adding 1 times (3) +5 times (2) gives us
- $x_{1}+6 x_{2} \leq 1900$
- "Certificate of Optimality" for solution $(100,300)$

Understanding Duality

- Maximize $x_{1}+6 x_{2}$ subject to:

$\cdot x_{1} \leq 200$	$\left(y_{1}\right)$	
$\cdot x_{1} \leq 300$	$\left(y_{2}\right)$	$[(100,300)]$
\cdot	$x_{1}+x_{2} \leq 400$	$\left(y_{3}\right)$
$\cdot x_{1}, x_{2} \leq 0$		

- Different choice of multipliers gives us different bounds. We want smallest bound.
- Minimize $200 y_{1}+300 y_{2}+400 y_{3}$ subject to:
- $y_{1}+y_{3} \geq 1 \quad\left(x_{1}\right)$
- $y_{2}+y_{3} \geq 6 \quad\left(x_{2}\right) \quad[(0,5,1)]$
- $y_{1}, y_{2} \geq 0$

Duality Principle

- Primal feasible values s dual feasible values
- Max primal value $=\min$ dual value
- Duality Theorem: If a linear program has a bounded optimal value then so does its dual and the two optimal values are equal.

Visualizing Duality

- Shortest Path Problem
- Build a physical model and between each pair of vertices attach a string of appropriate length
- To find shortest path from s to t, hold the two vertices and pull them apart as much as possible without breaking the strings
- This is exactly what a dual LP solves!
- Max $x_{s}-x_{t}$
- subject to $\left|x_{u}-x_{v}\right| \leq w_{u v}$ for every edge (u.v)
- The taut strings correspond to the shortest path, i.e., they have no slack

Simplex Algorithm

- Start at v, any vertex of feasible region
- while (there is neighbor v ' of v with better objective value) do

```
set v = v'
```

- Report vas optimal point and its value as optimal value
- What is a
- Vertex?, neighbor?
- Start vertex? How to pick next neighbor?

Simplex Algorithm: Example

Figure 7.12 A polyhedron defined by seven inequalities.
i.e., some inequalities satisfied as equalities

$$
\begin{align*}
\max x_{1}+6 x_{2} & +13 x_{3} \\
x_{1} & \leq 200 \tag{1}\\
x_{2} & \leq 300 \tag{2}\\
x_{1}+x_{2}+x_{3} & \leq 400 \tag{3}\\
x_{2}+3 x_{3} & \leq 600 \tag{4}\\
x_{1} & \geq 0 \tag{5}\\
x_{2} & \geq 0 \tag{6}\\
x_{3} & \geq 0 \tag{7}
\end{align*}
$$

Vertex: point where n hyperplanes meet; Neighbor: vertices sharing n-1 hyperplanes

Steps of Simplex Algorithm

- In order to find next neighbor from arbitrary vertex, we do a change of origin (pivot)

Initial LP:

$$
\begin{align*}
& \max 2 x_{1}+5 x_{2} \\
& 2 x_{1}-x_{2} \leq 4 \\
& x_{1}+2 x_{2} \leq 9 \tag{2}\\
&-x_{1}+x_{2} \leq 3 \\
& x_{1} \geq 0 \tag{4}\\
& x_{2} \geq 0
\end{align*}
$$

Current vertex: $\{(4)$, (5) $\}$ (origin).
Objective value: 0 .
Move: increase x_{2}.
(5) is released, (3) becomes tight. Stop at $x_{2}=3$.

New vertex $\{(4),(3)\}$ has local coordinates $\left(y_{1}, y_{2}\right)$:

$$
y_{1}=x_{1}, \quad y_{2}=3+x_{1}-x_{2}
$$

Simplex Algorithm Example

Simplex Algorithm Example

Initial LP:

$$
\begin{align*}
& \max 2 x_{1}+5 x_{2} \\
& 2 x_{1}-x_{2} \leq 4 \tag{1}\\
& x_{1}+2 x_{2} \leq 9 \tag{2}\\
&-x_{1}+x_{2} \leq 3 \tag{3}\\
& x_{1} \geq 0 \tag{4}\\
& x_{2} \geq 0 \tag{5}
\end{align*}
$$

Current vertex: $\{$ (4), (5) $\}$ (origin).
Objective value: 0 .
Move: increase x_{2}.
(5) is released, (3) becomes tight. Stop at $x_{2}=3$.

New vertex $\{(4),(3)\}$ has local coordinates $\left(y_{1}, y_{2}\right)$:

$$
y_{1}=x_{1}, \quad y_{2}=3+x_{1}-x_{2}
$$

Current vertex: $\{(4),(3)\}$.
Objective value: 15.
Move: increase y_{1}.
(4) is released, (2) becomes tight. Stop at $y_{1}=1$.

New vertex $\{(2),(3)\}$ has local coordinates $\left(z_{1}, z_{2}\right)$:

$$
z_{1}=3-3 y_{1}+2 y_{2}, \quad z_{2}=y_{2}
$$

Simplex Algorithm Example

Rewritten LP:

$$
\begin{align*}
\max 15 & +7 y_{1}-5 y_{2} \\
y_{1}+y_{2} & \leq 7 \tag{1}\\
3 y_{1}-2 y_{2} & \leq 3 \tag{2}\\
y_{2} & \geq 0 \tag{3}\\
y_{1} & \geq 0 \tag{4}\\
-y_{1}+y_{2} & \leq 3 \tag{5}
\end{align*}
$$

Rewritten LP:

$$
\begin{align*}
& \max 22-\frac{7}{3} z_{1}-\frac{1}{3} z_{2} \\
&-\frac{1}{3} z_{1}+\frac{5}{3} z_{2} \leq 6 \tag{1}\\
& z_{1} \geq 0 \tag{2}\\
& z_{2} \geq 0 \tag{3}\\
& \frac{1}{3} z_{1}-\frac{2}{3} z_{2} \leq 1 \tag{4}\\
& \frac{1}{3} z_{1}+\frac{1}{3} z_{2} \leq 4 \tag{5}
\end{align*}
$$

Current vertex: $\{(4)$, (3) $\}$.
Objective value: 15.
Move: increase y_{1}.
(4) is released, (2) becomes tight. Stop at $y_{1}=1$.

New vertex $\{(2),(3)\}$ has local coordinates $\left(z_{1}, z_{2}\right)$:

$$
z_{1}=3-3 y_{1}+2 y_{2}, \quad z_{2}=y_{2}
$$

Current vertex: $\{(2),(3)\}$.
Objective value: 22 .
Optimal: all $c_{i}<0$.
Solve (2), (3) (in original LP) to get optimal solution $\left(x_{1}, x_{2}\right)=(1,4)$.

Simplex Algorithm: Degenerate vertices

Figure 7.12 A polyhedron defined by seven inequalities.

i.e., some inequalities satisfied as equalities

1,3,7

$$
\begin{align*}
\max x_{1}+6 x_{2} & +13 x_{3} \\
x_{1} & \leq 200 \tag{1}\\
x_{2} & \leq 300 \tag{2}\\
x_{1}+x_{2}+x_{3} & \leq 400 \tag{3}\\
x_{2}+3 x_{3} & \leq 600 \tag{4}\\
x_{1} & \geq 0 \tag{5}\\
x_{2} & \geq 0 \tag{6}\\
x_{3} & \geq 0 \tag{7}
\end{align*}
$$

Vertex: point where n hyperplanes meet; Neighbor: vertices sharing n -1 hyperplanes

Polynomial-time algorithms for LP

- Simplex is not poly-time in the worst-case - Khachiyan's ellipsoid algorithm: LP is in \mathbb{P}
- Karmarkar's interior-point algorithm
- Good implementations for LP exist
- Works very well in practice
- More competitive than the poly-time methods for LP

Integer Linear Programming

- LP with integral solutions
- NP-hard
- If A is a totally unimodular matrix, then the LP solution is always integral.
- A TUM is a matrix for which every nonsingular submatrix has determinant $0,+1$ or -1 .
- A TUM is a matrix for which every nonsingular submatrix has integral inverse.

Vertex Cover as an LP?

- For vertex v, create variable x_{v}
- For edge (u,v), create constraint $x_{u}+x_{v} \geq 1$

Objective function: Σx_{v}
Additional constraints: $x_{v} \leq 1$

- Doesn't work because x_{v} needs to be from $\{0,1\}$

