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Polynomial-time algorithms for LP

» Simplex is nhot poly-time in the worst-case
» Khachiyan's ellipsoid algorithm: LP is in 2
» Karmarkar's interior-point algorithm

* Good implementations for LP exist
- Works very well in practice

- More competitive than the poly-time methods
for LP
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Integer Linear Programming

* LP with integral solutions
* NP-hard

+ If A is a totally unimodular matrix, then the
LP solution is always integral.

- A TUM is a matrix for which every nonsingular
submatrix has determinant O, +1 or -1.

- A TUM is a matrix for which every nonsingular
submatrix has integral inverse.
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Vertex Cover as an LP?

* For vertex v, create variable x,

* For edge (u,v), create constraint x, + x, > 1
+ Objective function: Zx,

* Additional constraints: x, < 1

» Doesn't work because x, needs to be from
{0.1}
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Set Cover

» Given a universe of items U ={e,, .., e }and a
collection of subsets S = {S;, ..., S} such
that each S, is contained in U

» Find the minimum set of subsets from S that
will cover all items in U (i.e., the union of
these subsets must equal U)

+ Weighted Set Cover: Given universe U and
collection S, and a cost ¢(S;) for each subset
S.in S, find the minimum cost set cover
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The Greedy Set Cover Algorithm

The Integer Linear Program (ILP)

min Y ¢(S)zs

Ses

subject to Y zg>1, ee€U
S:ecS

zg € {0,1}, Se€S§

The LP Relaxation

min Y _ ¢(S)zs

Ses

subject to E zs>1, eeU
S:e€eS
zg =0, Ses

The Dual LP

max 39

ecU

subject to > y. <¢(S), Se€S
e:e€eS
Ye 2 0, ecU
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Fractional may be better than integral

* U={e, f, g}

+ 51=A{e, f}

- S, ={f, g}

+ S;={e, g}

» Optimal set cover = {S;, S,}

- Fractional optimal set cover assigns 3 to
each of three sets giving a total optimal
value of 3/2.
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The LP Relaxation

min Y _ ¢(S)zs

Ses

subject to Z zg>1, ecU

S:eeS
zs 2 0’

The Dual LP Relaxation

max D Ye

eclU

Ses

subject to Y y. <¢(S), S€S

e:eeS
Ye = 0,

Weak Duality Principle

ecU

If z is primal feasible and ¥ is dual feasible then

Ses ecU

> e(S)zs > D ve
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K-Approximation Alg using Dual Fitting

Ratio to be

L.L"'
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Analysis of Greedy Weighted Set Cover

e In each iteration, greedy algorithm picks the set with
the least price for each uncovered item.

e In iteration j, let S; be the set picked covering m
previously uncovered items. Let

price(e) = c(S;)/m
be the price of each item e covered in this iteration.

o If 51,...,S5) are sets chosen by greedy algorithm,

k

Total Cost of Greedy Solution = Y- ¢(S;)
j=1

> price(e)
ecU
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Analysis of Greedy Set Cover

Let price(e) = 53)

Consider the following dual variables:

~ price(e)
Ye = .
Claim: All dual constraints are satisfied.
k c(S) (1 1 1 H;
et Tl — g om ke e al G
HY¥a=q (k+k—1+ +1) g,o%) < eld)

Thus (Ye,, - - -, Ye,) gives us a dual feasible point.

Y priceley—=H, (Z ye) < H,~0OFTp=s H,;-OFT
ecU ecU
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Rounding Algorithm for Set Cover

» Algorithm
- Find an optimal solution to the LP Relaxation

- Pick all sets S for which x. > 1/f in this solution
* f = frequency of most frequent item

* Analysis
- Is the resulting solution a valid set cover?

- How good is the solution? How close is to the
optimal set cover?
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Analysis of Rounding Algorithm

Let C = sets picked by Rounding Algorithm.

Claim 1:

C is a valid set cover.| Arbitrary item e

appears in at most f sets. At least one of these sets
is assigned value 1/f. Thus, e will get picked.

Claim 2:

The rounding algorithm is f-approximate.

Rounding increases the value of each set by a factor
of at most f.
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Randomization

* Randomized Algorithms: Uses values
generated by random number generator to
decide next step

+ Often easier to implement and/or more
efficient
+ Applications

- Used in protocol in "Ethernet Cards” to decide
when it next tries to access the shared medium

- Primality testing & cryptography
- Monte Carlo simulations
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Monte Carlo Simulations

Slide by David Evans

Determining =«
0,1 1,1

INn square is in
circle:
= /4

Square =1
Circle = =n/4
The probability
a random point k j

0,0

. = 4 * points in circle/points

1,0

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 20
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QuickSort vs Randomized QuickSort

QuickSort

» Pick a fixed pivot

* Partition input based on pivot into two sets
* Recursively sort the two partitions

Randomized QuickSort

* Pick a random pivot

» Partition input based on pivot into two sets
* Recursively sort the two partitions
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QuickSort: Probabilistic Analysis

+ Expected rank of pivot = n/2 (Why?)

* Thus expected size of sublists after
partition = n/2

+ Hence the recurrence T(n) = 2T(n/2) + O(n)

+ Average time complexity = T(n) = O(n log n)
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New Quicksort: Randomized Analysis

* Let X, be a random variable representing the
number of times items i and ) are compared
by the algorithm.

+ Expected time complexity = expected value
of sum of all random variables X;;.

* Pr(Xi;=1)=2/(j-i+1) (Why?)
» T(n)=7?
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New Quicksort: Randomized Analysis
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Cut-Sets &
Min-Cuts

* Example 1: ({a,b,c.d}, {e.f.g})
« Weight = 19

* Example 2: ({a,b,g}, {c,d.e,f})
* Weight = 30

« Example 3: ({a}, {b.c.d.e.f,g})
* Weight = 5
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Edge Contraction

http://en.wikipedia.org/wiki/Edge contraction
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Edge Contractions and Min-Cuts

* Lemma: If you are not contracting an edge
from the cut-set, edge contractions do not
affect the size of min-cuts.

» Observation: Most edges are not part of the
min-cuf.

- Tdea: Use randomization
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Min-Cuts in the Internet Graph

June 1999 Internet graph, Bill Cheswick
http://research.lumeta.com/ches/map/gallery/index.html
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Randomized Algorithms: Min-Cut

» Algorithm:
- Pick a random edge and contract it until only 2
vertices are remaining.

- Report edges connecting the 2 remaining vertices
as the min cut

* Analysis

- Assume that the Min-cut is of size k

- Prob {edge is not in Min-cut} > 1-2/n (why?)
- Prob {Min-cut is output} > 2/n(n - 1) (why?)
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Analysis: Min-Cut Algorithm (Cont’d)

+ Observation:

- If Min-Cut is of size k, then minimum degree of
every vertex is k. (Why?)

* Number of edges in graph > kn/2

* Probability that an edge from Min-Cut is
picked in iteration 1is< 2/n

* Probability that no edge from Min-Cut is
picked in iterationlis>1 - 2/n

- Tteration 1?
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Analysis: Min-Cut Algorithm (Cont’d)

» E. = Event that no edge from Min-Cut is
picked in iteration i

» F. = Event that no edge from Min-Cut is
picked in iteration 1 through i

k: 2

r(Ei| Fie1) 2 k(n —i+1)/2 n—i+ 1

* Need F, ;!
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Analysis: Min-Cut Algorithm (Cont’d)

P"’(Fn—Q) PT(En—Z a Fn—3) — PT(En—‘Z|F71.—3)P7"(Fn—3)

Pr(E,_s|Fyn_3) - Pr(Ep_s|Fo_4) ... Pr(Bs|F)Pr(F)

: 2 on—12—1
> n:’.l:2<1 — ) =TI
Bl ot n—1t+1 =lpn-TI+1

n—2\/n-—3 4321

( n )(n—l)gglg
2

nin—1)
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Analysis: Min-Cut Algorithm (Cont’d)

* Probability of contracting only edges not
from Min-Cut, i.e., ending up with exactly the
Min-Cut > 2/n(n-1)

- Rather low!

* Repeat the algorithm many times.
- How many times?
- Goal: repeat until prob of error is very small

(1 9 )n(n 1)Inn . 2inn _ i
n(n — 1) - n?

2/8/12 COT 6936 30




