COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2443; Phone: x3748

 giri@cs.fiu.eduhttp://www.cs.fiu.edu/~giri/teach/COT6936_S12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

Polynomial-time algorithms for LP

- Simplex is not poly-time in the worst-case - Khachiyan's ellipsoid algorithm: LP is in \mathbb{P}
- Karmarkar's interior-point algorithm
- Good implementations for LP exist
- Works very well in practice
- More competitive than the poly-time methods for LP

COT 6936: Topics in Algorithms

Integer Linear Programming

Integer Linear Programming

- LP with integral solutions
- NP-hard
- If A is a totally unimodular matrix, then the LP solution is always integral.
- A TUM is a matrix for which every nonsingular submatrix has determinant $0,+1$ or -1 .
- A TUM is a matrix for which every nonsingular submatrix has integral inverse.

Vertex Cover as an LP?

- For vertex v, create variable x_{v}
- For edge (u,v), create constraint $x_{u}+x_{v} \geq 1$

Objective function: Σx_{v}
Additional constraints: $x_{v} \leq 1$

- Doesn't work because x_{v} needs to be from $\{0,1\}$

Set Cover

- Given a universe of items $U=\left\{e_{1}, \ldots, e_{n}\right\}$ and a collection of subsets $S=\left\{S_{1}, \ldots, S_{m}\right\}$ such that each S_{i} is contained in U
- Find the minimum set of subsets from S that will cover all items in U (i.e., the union of these subsets must equal U)
- Weighted Set Cover: Given universe U and collection S, and a cost $c\left(S_{i}\right)$ for each subset S_{i} in S, find the minimum cost set cover

The Greedy Set Cover Algorithm

The Integer Linear Program (ILP)

$$
\begin{aligned}
\min & \sum_{S \in \mathcal{S}} c(S) x_{S} \\
\text { subject to } & \sum_{S: \in \in S} x_{S} \geq 1, \quad e \in U \\
& x_{S} \in\{0,1\}, \quad S \in \mathcal{S}
\end{aligned}
$$

The LP Relaxation

$$
\begin{aligned}
\min & \sum_{S \in \mathcal{S}} c(S) x_{S} \\
\text { subject to } & \sum_{S: \in \in S} x_{S} \geq 1, \quad e \in U \\
& x_{S} \geq 0, \quad S \in \mathcal{S}
\end{aligned}
$$

The Dual LP

$$
\begin{array}{rcc}
\max & \sum_{e \in U} y_{e} \\
\text { subject to } & \sum_{e: e \in S} y_{e} \leq c(S), \quad S \in \mathcal{S} \\
& y_{e} \geq 0, \quad e \in U
\end{array}
$$

Fractional may be better than integral

- $U=\{e, f, g\}$
- $S_{1}=\{e, f\}$
- $S_{2}=\{f, g\}$
- $S_{3}=\{e, g\}$
- Optimal set cover $=\left\{S_{1}, S_{2}\right\}$
- Fractional optimal set cover assigns $\frac{1}{2}$ to each of three sets giving a total optimal value of $3 / 2$.

The LP Relaxation

$$
\begin{aligned}
\min & \sum_{S \in \mathcal{S}} c(S) x_{S} \\
\text { subject to } & \sum_{S: e \in S} x_{S} \geq 1, \quad e \in U \\
& x_{S} \geq 0, \quad S \in \mathcal{S}
\end{aligned}
$$

The Dual LP Relaxation

$$
\begin{array}{rc}
\max & \sum_{e \in U} y_{e} \\
\text { subject to } & \sum_{e: e \in S} y_{e} \leq c(S), \quad S \in \mathcal{S} \\
y_{e} \geq 0, & e \in U
\end{array}
$$

Weak Duality Principle

If \bar{x} is primal feasible and \bar{y} is dual feasible then

$$
\sum_{S \in \mathcal{S}} c(S) x_{S} \geq \sum_{e \in U} y_{e}
$$

K-Approximation Alg using Dual Fitting

Analysis of Greedy Weighted Set Cover

- In each iteration, greedy algorithm picks the set with the least price for each uncovered item.
- In iteration j, let S_{j} be the set picked covering m previously uncovered items. Let

$$
\operatorname{price}(e)=c\left(S_{j}\right) / m
$$

be the price of each item e covered in this iteration.

- If S_{1}, \ldots, S_{k} are sets chosen by greedy algorithm,

$$
\begin{aligned}
\text { Total Cost of Greedy Solution } & =\sum_{j=1}^{k} c\left(S_{j}\right) \\
& =\sum_{e \in U} \operatorname{price}(e)
\end{aligned}
$$

Analysis of Greedy Set Cover
Let price $(e)=\frac{c\left(S_{j}\right)}{m}$
Consider the following dual variables:

$$
y_{e}=\frac{\operatorname{price}(e)}{H_{n}}
$$

Claim: All dual constraints are satisfied.
$\sum_{i=1}^{k} y_{e_{i}} \leq \frac{c(S)}{H_{n}} \cdot\left(\frac{1}{k}+\frac{1}{k-1}+\ldots+\frac{1}{1}\right)=\frac{H_{k}}{H_{n}} c(S) \leq c(S)$
Thus $\left(y_{e_{1}}, \ldots, y_{e_{n}}\right)$ gives us a dual feasible point.

$$
\sum_{e \in U} \operatorname{price}(e)=H_{n}\left(\sum_{e \in U} y_{e}\right) \leq H_{n} \cdot \mathrm{OPT}_{f} \leq H_{n} \cdot \mathrm{OPT}
$$

Rounding Algorithm for Set Cover

- Algorithm
- Find an optimal solution to the LP Relaxation
- Pick all sets S for which $x_{s} \geq 1 / f$ in this solution
- $f=$ frequency of most frequent item
- Analysis
- Is the resulting solution a valid set cover?
- How good is the solution? How close is to the optimal set cover?

Analysis of Rounding Algorithm

Let $\mathcal{C}=$ sets picked by Rounding Algorithm.
Claim 1: \mathcal{C} is a valid set cover. Arbitrary item e appears in at most f sets. At least one of these sets is assigned value $1 / f$. Thus, e will get picked.

Claim 2: The rounding algorithm is f-approximate.
Rounding increases the value of each set by a factor of at most f.

COT 6936: Topics in Algorithms

Randomized Algorithms

Randomization

- Randomized Algorithms: Uses values generated by random number generator to decide next step
- Often easier to implement and/or more efficient
- Applications
- Used in protocol in "Ethernet Cards" to decide when it next tries to access the shared medium
- Primality testing \& cryptography
- Monte Carlo simulations

Monte Carlo Simulations

Slide by David Evans

Determining π

$$
0,1 \quad 1,1
$$

Square $=1$
Circle $=\pi / 4$

The probability

 a random point in square is in circle:$$
=\pi / 4
$$

$\pi=4 *$ points in circle/points

QuickSort vs Randomized QuickSort

QuickSort

- Pick a fixed pivot
- Partition input based on pivot into two sets
- Recursively sort the two partitions

Randomized QuickSort

- Pick a random pivot
- Partition input based on pivot into two sets
- Recursively sort the two partitions

QuickSort: Probabilistic Analysis

- Expected rank of pivot $=n / 2$ (Why?)
- Thus expected size of sublists after partition $=n / 2$
- Hence the recurrence $T(n)=2 T(n / 2)+O(n)$
- Average time complexity $=T(n)=O(n \log n)$

New Quicksort: Randomized Analysis

- Let $X_{i j}$ be a random variable representing the number of times items i and j are compared by the algorithm.
- Expected time complexity = expected value of sum of all random variables $X_{i j}$.
- $\operatorname{Pr}\left(X_{i j}=1\right)=2 /(j-i+1)$
- $T(n)=$?

New Quicksort: Randomized Analysis

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k} \\
& =\sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k} \\
& =\sum_{k=2}^{n}(n+1-k) \frac{2}{k} \\
& =\left((n+1) \sum_{k=2}^{n} \frac{2}{k}\right)-2(n-1) \\
& =(2 n+2) \sum_{k=1}^{n} \frac{1}{k}-4 n \\
& =2 n \ln n+\Theta(n)
\end{aligned}
$$

Cut-Sets \& Min-Cuts

- Example 1: (\{a,b,c,d\}, \{e,f,g\})
- Weight = 19
- Example 2: (\{a,b,g\}, \{c,d,e,f\})
- Weight = 30
- Example 3: (\{a\}, \{b,c,d,e,f,g\})
- Weight = 5

Edge Contraction

http://en.wikipedia.org/wiki/Edge_contraction

Edge Contractions and Min-Cuts

- Lemma: If you are not contracting an edge from the cut-set, edge contractions do not affect the size of min-cuts.
- Observation: Most edges are not part of the min-cut.
- Idea: Use randomization

Min-Cuts in the Internet Graph

June 1999 Internet graph, Bill Cheswick

 http://research.lumeta.com/ches/map/gallery/index.html
Randomized Algorithms: Min-Cut

- Algorithm:
- Pick a random edge and contract it until only 2 vertices are remaining.
- Report edges connecting the 2 remaining vertices as the min cut
Analysis
- Assume that the Min-cut is of size k
- Prob \{edge is not in Min-cut\} $\geq 1-2 / n$ (why?)
$-\operatorname{Prob}\{$ Min-cut is output $\} \geq 2 / n(n-1)$ (why?)

Analysis: Min-Cut Algorithm (Cont’d)

- Observation:

- If Min-Cut is of size k, then minimum degree of every vertex is k. (Why?)
- Number of edges in graph $\geq k n / 2$
- Probability that an edge from Min-Cut is picked in iteration 1 is $\leq 2 / n$
- Probability that no edge from Min-Cut is picked in iteration 1 is $\geq 1-2 / n$
- Iteration i?

Analysis: Min-Cut Algorithm (Cont’d)

- $E_{i}=$ Event that no edge from Min-Cut is picked in iteration i
- $F_{i}=$ Event that no edge from Min-Cut is picked in iteration 1 through i

$$
\operatorname{Pr}\left(E_{i} \mid F_{i-1}\right) \geq 1-\frac{k}{k(n-i+1) / 2}=1-\frac{2}{n-i+1} .
$$

- Need $F_{n-2!}$

Analysis: Min-Cut Algorithm (Cont’d)

$$
\begin{aligned}
\operatorname{Pr}\left(F_{n-2}\right) & =\operatorname{Pr}\left(E_{n-2} \cap F_{n-3}\right)=\operatorname{Pr}\left(E_{n-2} \mid F_{n-3}\right) \operatorname{Pr}\left(F_{n-3}\right) \\
& =\operatorname{Pr}\left(E_{n-2} \mid F_{n-3}\right) \cdot \operatorname{Pr}\left(E_{n-3} \mid F_{n-4}\right) \ldots \operatorname{Pr}\left(E_{2} \mid F_{1}\right) \operatorname{Pr}\left(F_{1}\right) \\
& \geq \Pi_{i=1}^{n-2}\left(1-\frac{2}{n-i+1}\right)=\Pi_{i=1}^{n-2} \frac{n-i-1}{n-I+1} \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right) \ldots \frac{4}{6} \frac{3}{5} \frac{2}{4} \frac{1}{3} \\
& =\frac{2}{n(n-1)} .
\end{aligned}
$$

Analysis: Min-Cut Algorithm (Cont’d)

- Probability of contracting only edges not from Min-Cut, i.e., ending up with exactly the Min-Cut $\geq 2 / n(n-1)$
- Rather low!
- Repeat the algorithm many times.
- How many times?
- Goal: repeat until prob of error is very small

$$
\left(1-\frac{2}{n(n-1)}\right)^{n(n-1) \ln n} \leq e^{-2 \ln n}=\frac{1}{n^{2}}
$$

