COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2443; Phone: x3748

 giri@cs.fiu.eduhttp://www.cs.fiu.edu/~giri/teach/COT6936_S12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

COT 6936: Topics in Algorithms

Online Algorithms

Randomized Algorithm: RANDOM

- On a miss:
- Evict an item chosen uniformly at random from all k items

Randomized Marker Algorithm

- Each of k pages has a marker bit
- Algorithm proceeds in rounds with invariant:
- At start of round all pages are unmarked
- In each round
- If request is a hit: mark page
- If request is a miss:
- If all cache pages are mo ked: start next round by unmarking all locations
- Else evict (randomly) unmarked page and mark it
- This algorithm is $2 \mathrm{H}_{k}$-competitive

Marker Algorithm

- Marker algorithm is k-competitive
- In each round, algorithm has k misses
- OPT has at least one miss because $k+1$ distinct pages are accessed including the last access from previous round
- Randomized Marker Algorithm is (ln k)competitive
- Random is k-competitive

Load Balancing

- Jobs arrive in a stream to be processed immediately on one of many processors
- n processors and m jobs
- Centralized algorithm
- Round robin ensures that each processor gets at most ceil(m/n) jobs
- Assume centralization is not possible
- Assign jobs uniformly at random to processors
- How do we analyze the situation? How balanced is the assignment?

Randomized Load Allocation: Analysis

- $\mathrm{Y}_{\mathrm{ij}}=$ indicator (binary) r.v. for event [job j is assigned to processor i]
$-E\left[Y_{i j}\right]=1 / n$
- $X_{i}=r . v$. for number of jobs to processor I
- $E\left[X_{i}\right]=\Sigma_{j} E\left[Y_{i j}\right]=m / n$
- $\operatorname{Pr}\left[X_{i}>c\right]<e^{c-1} / e^{c}$ using Chernoff bounds

Randomized Load Allocation: Analysis

- Case $m=n$
- With high probability (at least 1-(1/n)), no processor gets more than $\Theta(\log n / \log \log n)$ jobs
- As m increases, imbalance goes away!
- Choose $m>16 n \ln n$
- Case $m=\Omega(n \log n)$
- With high probability (at least $1-\left(1 / n^{2}\right)$), every processor gets between $m / 2 n$ and $2 m / n$ jobs

Packet Routing in Distributed Systems

- Model network as a directed graph
- Every message is discretized into packets each sent separately on a s-t path
- Constraint: 1 packet/step through edge e
- Need to queue requests along edge e
- Decide when to release packet from s (schedule)
- Need queue management policy
- Prioritize packets with closest/farthest destinations?
- Goal: Find a schedule of minimum duration

Packet Routing in Distributed Systems 2

- Packets $1, \ldots, N$ and paths P_{1}, \ldots, P_{N}
- Packet Schedule: which packet through which edge at what time
- Minimize Duration: for every packet to be delivered to destination
- Obstacles:
- Long paths (duration \geq d longest path length)
- Congestion on bottleneck edges (duration $\geq c$ number of paths sharing same edge)
- Clearly, Duration $\geq \max (c, d)=\Omega(c+d)$

Packet Routing in Distributed Systems 3

- Schedule: choose arbitrarily or FCFS
- Duration = O(cd)
- Could happen in real situations because packets are very badly timed with respect to each other and groups of size c reach edge e simultaneously
- Need better solution

Randomized Algorithm

- Scheduling Algorithm for each packet i
- Packet i chooses random delay s from range [1..r] and waits at source for steps
- Then packet attempts to move one edge per step until destination is reached
- If delays chosen so that no 2 packets reach same edge at same time, then duration $=r+d$
- Problem: r needs to be very large

Randomized Alg.: Group time into blocks

- Scheduling Algorithm for each packet i
- Group b consecutive steps into blocks
- Packet i chooses random delay s from range [1..r] and waits at source for s blocks
- Then packet attempts to move one edge per block until destination is reached
- Result [Leighton, Maggs, Rao, 88]
- If event E (more than b packets arrive at edge e at start of same block) does not occur, then duration is at most $b(r+d)$

Randomized Packet Routing: Analysis

- Bound $\operatorname{Pr}(E)$
- Union of events by considering each edge
- Union of events by considering each time block
- $\mathrm{F}_{\mathrm{et}}=$ event [$\mathrm{N}_{\mathrm{et}}>b$]
- $N_{\text {et }}=$ r.v. for \# of packets scheduled to appear at start of block t at edge e
- $X_{\text {eti }}=$ indicator (binary) r.v. for event [packet i appears at start of block \dagger at edge e]
- $\operatorname{Pr}(E)=\operatorname{Pr}\left[U_{e, t} F_{e \dagger}\right]$ and $E\left[N_{e t}\right]=\Sigma_{i} E\left[X_{e t i}\right]$

Randomized Packet Routing: Analysis

- Theorem:
- Choose $r=c /(q \log (m N))$ and $b=3 c / r$
- Here q is a carefully chosen constant
- With high probability, the duration of the schedule for the packets is $O(c+d \log (m N))$
- $N=\#$ of packets
- $m=\#$ of edges

Permutation Routing Problem

- Model
- Given directed graph on N vertices (processors)
- Communication in synchronous steps
- At most one packet per link per step
- Each processor needs to send one packet to a unique destination (Destinations \cong Permutation)
- Need route and queueing discipline for conflicts
- How many steps does the whole thing take?

Permutation Routing Problem

- Oblivious algorithm
- route only depends on destination
- Theorem:
- For any deterministic oblivious permutation routing algorithm on a network of N nodes each of out-degree d, there is an instance of permutation routing that requires $\Omega\left((\mathrm{N} / \mathrm{d})^{1 / 2}\right)$ steps
- Can randomized algorithms do any better?
- Valiant's Algorithm, 1982

Rand. Permutation Routing in Hypercube

- Phase 1
$O(n)$ steps
- Pick a random intermediate donstimation for each packet and route it there
- Phase 2
- Route every packet from intermediate destination to final destination
- Routing in each phase: Bit fixing strategy
- Given s and \dagger addresses are n-bit vectors, flip leftmost bit of ID in which current node differs from destination ID and send it to that neighbor

k-Server Problem

- Problem: to efficiently "move" around k servers in a metric space (weighted graph) to service requests that appear online at the points of metric space

General Paradigm: k-Server Problem

- Given:

- n-vertex metric space (i.e., weighted grarin),
- k servers with initial locations, and
- (online) request sequence with location
- Request to be served by server at given location
- Goal: minimize distance travelled by servers
- Variants: symmetric or asymmetric

k-Server Problem: Applications

- Paging
- node \approx page of address space
- All distances = 1
- Weighted Caching
- Fonts in a printer or a bitmap display
- Two-headed Disk Drives

What we know: k-Server Problem

- Lower Bound on competitiveness (k) applies from before
- Conjecture: Upper bound for competitiveness is k [MMS, 1990]

Greedy Algorithm

- Let the nearest server serve the request
- It minimizes the cost of each individual request
- How competitive is this algorithm?

Balance Algorithm

- Choose a server that would have moved the minimum total distance of any server
- Takes care of previous bad example since eventually the second server would be employed
- Tends to use all servers equally
- Can be shown to be k-competitive if $k=n-1$
- Can do poorly in other situations
- Not 2-competitive for $k=2$

Follow-OPT

- On $i^{\text {th }}$ request compute final configuration X achieved by OPT
- Use the server that would result in the same configuration X

RES Algorithm for $\mathrm{k}=2$

- Define Residues
$-R_{c}(\sigma, S)=c \cdot C_{\text {OPT }}(\sigma, S)-C_{A}(\sigma)$
- $v_{1}=$ location of last request
- $v_{2}=$ location of other server
- Figures out which server would result in smaller residues.
- RES is 2-competitive

HARMONIC Algorithm

- Natural, memoryless, randomized algorithm
- Choose a server with probability inversely proportional to its distance to request location
- Expected to be a-competitive
- $a=3^{17000}$ for $k=3$
$-a=O\left(k 2^{k}\right)$ for general k

Related Problems and Results

- Points on a Line
- Points on a circle
- Points on a tree
(2n-1)-competitive algorithms exist

Work Function (WF) Algorithm

- Compute the configuration X_{i} achieved by OPT and closest to previous configuration X_{i-1}
- Very expensive computationally
- WF is (2k-1)-competitive
- WF is 2-competitive for $k=2$

Notation

- Metric Space M with n vertices and distance function d((\cdot, \bullet)
- Configuration $S=$ subset of k vertices from M (location of the k servers)
- Requests: $\sigma=\left\{r_{1}, r_{2}, \ldots\right\}$ from vertices of M Solution: Sequence of configurations S_{0}, S_{1}, \ldots Algorithm A: $D_{A}\left(S_{0}, \sigma\right)=\Sigma_{t} d\left(S_{t-1}, S_{t}\right)$
$-d\left(S_{a}, S_{b}\right)=$ min weight matching between $S_{a} \& S_{b}$
- Analysis: $D_{A}\left(S_{0}, \sigma\right) \leq \rho D_{\text {OPT }}\left(S_{0}, \sigma\right)+f\left(S_{0}\right)$

Performance Ratio

OPT: Offline Algorithm

- Argue that you only need to consider lazy moves (no unnecessary moves)
- Use dynamic programming
- Recurrence?
- Subproblems?

$$
C_{O P T}(\epsilon, S)= \begin{cases}0, & \text { if } S=S_{0} \\ \text { undefined, } & \text { otherwise }\end{cases}
$$

$C_{O P T}(\sigma v, S)= \begin{cases}\min _{T} C_{O P T}(\sigma, T)+d(T, S), & \text { if } v \text { is covered in } S \\ \text { undefined, }, & \text { otherwise. }\end{cases}$

Important Open Problems

- Minimize ρ, where

$$
-D_{A}\left(S_{0}, \sigma\right) \leq \rho D_{\text {OPT }}\left(S_{0}, \sigma\right)+f\left(S_{0}\right)
$$

- Competitive ratio of Algorithm/Problem
- k-Server Conjecture: For every metric space, the competitive ratio of the k-server problem is exactly k
- Randomized k-Server Conjecture: For every metric space, there exists a randomized algorithm with competitive ratio $O(\log k)$

