
COT 6936: Topics in Algorithms!

Giri Narasimhan
ECS 254A / EC 2443; Phone: x3748

giri@cs.fiu.edu
http://www.cs.fiu.edu/~giri/teach/COT6936_S12.html
https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

COT 6936: Topics in Algorithms!

Online Algorithms

Randomized Algorithm: RANDOM!
•  On a miss:

–  Evict an item chosen uniformly at random from
all k items

2/27/12 COT 6936 3

Randomized Marker Algorithm!
•  Each of k pages has a marker bit
•  Algorithm proceeds in rounds with invariant:

–  At start of round all pages are unmarked
•  In each round

–  If request is a hit: mark page
–  If request is a miss:

•  If all cache pages are marked: start next round by
unmarking all locations

•  Else evict (randomly) unmarked page and mark it

•  This algorithm is 2Hk-competitive
2/27/12 COT 6936 4

Only change

Marker Algorithm!
•  Marker algorithm is k-competitive

–  In each round, algorithm has k misses
– OPT has at least one miss because k+1 distinct

pages are accessed including the last access
from previous round

•  Randomized Marker Algorithm is (ln k)-
competitive

•  Random is k-competitive

2/27/12 COT 6936 5

Load Balancing!
•  Jobs arrive in a stream to be processed

immediately on one of many processors
–  n processors and m jobs

•  Centralized algorithm
–  Round robin ensures that each processor gets at

most ceil(m/n) jobs
•  Assume centralization is not possible

–  Assign jobs uniformly at random to processors
– How do we analyze the situation? How balanced

is the assignment?
2/27/12 COT 6936 6

Randomized Load Allocation: Analysis!
•  Yij = indicator (binary) r.v. for event [job j is

assigned to processor i]
–  E[Yij] = 1/n

•  Xi = r.v. for number of jobs to processor I
•  E[Xi] = Σj E[Yij] = m/n
•  Pr [Xi > c] < ec-1/ec using Chernoff bounds

2/27/12 COT 6936 7

Randomized Load Allocation: Analysis!
•  Case m = n

– With high probability (at least 1–(1/n)), no
processor gets more than Θ(log n/log log n) jobs

•  As m increases, imbalance goes away!
–  Choose m > 16n ln n

•  Case m = Ω(n log n)
– With high probability (at least 1–(1/n2)), every

processor gets between m/2n and 2m/n jobs

2/27/12 COT 6936 8

Packet Routing in Distributed Systems!
•  Model network as a directed graph
•  Every message is discretized into packets

each sent separately on a s-t path
•  Constraint: 1 packet/step through edge e

– Need to queue requests along edge e
–  Decide when to release packet from s (schedule)
– Need queue management policy

•  Prioritize packets with closest/farthest destinations?

•  Goal: Find a schedule of minimum duration

2/27/12 COT 6936 9

Packet Routing in Distributed Systems 2!
•  Packets 1, …, N and paths P1, …, PN
•  Packet Schedule: which packet through

which edge at what time
•  Minimize Duration: for every packet to be

delivered to destination
•  Obstacles:

–  Long paths (duration ≥ d longest path length)
–  Congestion on bottleneck edges (duration ≥ c

number of paths sharing same edge)
–  Clearly, Duration ≥ max(c,d) = Ω(c+d)

2/27/12 COT 6936 10

Packet Routing in Distributed Systems 3!
•  Schedule: choose arbitrarily or FCFS

–  Duration = O(cd)
–  Could happen in real situations because packets

are very badly timed with respect to each other
and groups of size c reach edge e simultaneously

– Need better solution

2/27/12 COT 6936 11

Randomized Algorithm!
•  Scheduling Algorithm for each packet i

–  Packet i chooses random delay s from range [1..r]
and waits at source for s steps

–  Then packet attempts to move one edge per step
until destination is reached

•  If delays chosen so that no 2 packets reach
same edge at same time, then duration = r+d
–  Problem: r needs to be very large

2/27/12 COT 6936 12

Randomized Alg.: Group time into blocks!
•  Scheduling Algorithm for each packet i

–  Group b consecutive steps into blocks
–  Packet i chooses random delay s from range [1..r]

and waits at source for s blocks
–  Then packet attempts to move one edge per

block until destination is reached
•  Result [Leighton, Maggs, Rao, 88]

–  If event E (more than b packets arrive at edge e
at start of same block) does not occur, then
duration is at most b(r + d)

2/27/12 COT 6936 13

Randomized Packet Routing: Analysis!
•  Bound Pr(E)

–  Union of events by considering each edge
–  Union of events by considering each time block

•  Fet = event [Net > b]
•  Net = r.v. for # of packets scheduled to

appear at start of block t at edge e
•  Xeti = indicator (binary) r.v. for event [packet

i appears at start of block t at edge e]
•  Pr(E) = Pr[Ue,tFet] and E[Net] = Σi E[Xeti]

2/27/12 COT 6936 14

Randomized Packet Routing: Analysis!
•  Theorem:

–  Choose r = c / (q log(mN)) and b = 3c/r
• Here q is a carefully chosen constant

– With high probability, the duration of the
schedule for the packets is O(c + d log (mN))
• N = # of packets
• m = # of edges

2/27/12 COT 6936 15

Permutation Routing Problem!
•  Model

–  Given directed graph on N vertices (processors)
–  Communication in synchronous steps
–  At most one packet per link per step
–  Each processor needs to send one packet to a

unique destination (Destinations ≅ Permutation)
– Need route and queueing discipline for conflicts
– How many steps does the whole thing take?

2/27/12 COT 6936 16

Permutation Routing Problem!
•  Oblivious algorithm

–  route only depends on destination
•  Theorem:

–  For any deterministic oblivious permutation
routing algorithm on a network of N nodes each
of out-degree d, there is an instance of
permutation routing that requires Ω((N/d)1/2)
steps

•  Can randomized algorithms do any better?
–  Valiant’s Algorithm, 1982

2/27/12 COT 6936 17

Rand. Permutation Routing in Hypercube!
•  Phase 1

–  Pick a random intermediate destination for each
packet and route it there

•  Phase 2
–  Route every packet from intermediate

destination to final destination
•  Routing in each phase: Bit fixing strategy

–  Given s and t addresses are n-bit vectors, flip
leftmost bit of ID in which current node differs
from destination ID and send it to that neighbor

2/27/12 COT 6936 18

O(n) steps O(n) steps

k-Server Problem!
•  Problem: to efficiently “move” around k

servers in a metric space (weighted graph) to
service requests that appear online at the
points of metric space

2/27/12 COT 6936 19

General Paradigm: k-Server Problem!
•  Given:

–  n-vertex metric space (i.e., weighted graph),
–  k servers with initial locations, and
–  (online) request sequence with location

•  Request to be served by server at given location

•  Goal: minimize distance travelled by servers
•  Variants: symmetric or asymmetric

2/27/12 COT 6936 20

Mobile

k-Server Problem: Applications!
•  Paging

–  node ≈ page of address space
–  All distances = 1

•  Weighted Caching
–  Fonts in a printer or a bitmap display

•  Two-headed Disk Drives

2/27/12 COT 6936 21

What we know: k-Server Problem!
•  Lower Bound on competitiveness (k) applies

from before
•  Conjecture: Upper bound for competitiveness

is k [MMS, 1990]

2/27/12 COT 6936 22

Greedy Algorithm!
•  Let the nearest server serve the request

–  It minimizes the cost of each individual request
– How competitive is this algorithm?

2/27/12 COT 6936 23

A B C

Balance Algorithm!
•  Choose a server that would have moved the

minimum total distance of any server
–  Takes care of previous bad example since

eventually the second server would be employed
–  Tends to use all servers equally
–  Can be shown to be k-competitive if k = n-1
–  Can do poorly in other situations
– Not 2-competitive for k = 2

2/27/12 COT 6936 24

Follow-OPT!
•  On ith request compute final configuration X

achieved by OPT
•  Use the server that would result in the same

configuration X

2/27/12 COT 6936 25

A B C D

RES Algorithm for k = 2!
•  Define Residues

–  Rc(σ,S) = c . COPT(σ,S) – CA(σ)
•  v1 = location of last request
•  v2 = location of other server
•  Figures out which server would result in

smaller residues.
•  RES is 2-competitive

2/27/12 COT 6936 26

HARMONIC Algorithm!
•  Natural, memoryless, randomized algorithm

–  Choose a server with probability inversely
proportional to its distance to request location

•  Expected to be α-competitive
–  α = 317000 for k = 3
–  α = O(k2k) for general k

2/27/12 COT 6936 27

Related Problems and Results!
•  Points on a Line
•  Points on a circle
•  Points on a tree

•  (2n-1)-competitive algorithms exist

2/27/12 COT 6936 28

Work Function (WF) Algorithm!
•  Compute the configuration Xi achieved by

OPT and closest to previous configuration
Xi-1
–  Very expensive computationally

•  WF is (2k-1)-competitive
•  WF is 2-competitive for k = 2

2/27/12 COT 6936 29

Notation!
•  Metric Space M with n vertices and distance

function d(�,�)
•  Configuration S = subset of k vertices from

M (location of the k servers)
•  Requests: σ = {r1,r2,…} from vertices of M
•  Solution: Sequence of configurations S0,S1,…
•  Algorithm A: DA(S0,σ) = Σt d(St-1,St)

–  d(Sa,Sb) = min weight matching between Sa & Sb
•  Analysis: DA(S0,σ) ≤ ρDOPT(S0,σ) + f(S0)

2/27/12 COT 6936 30
Performance

Ratio

OPT: Offline Algorithm!
•  Argue that you only need to consider lazy

moves (no unnecessary moves)
•  Use dynamic programming

–  Recurrence?
–  Subproblems?

2/27/12 COT 6936 31

Function of states &
request seq

Important Open Problems!
•  Minimize ρ, where

–  DA(S0,σ) ≤ ρDOPT(S0,σ) + f(S0)
•  Competitive ratio of Algorithm/Problem
•  k-Server Conjecture: For every metric

space, the competitive ratio of the k-server
problem is exactly k

•  Randomized k-Server Conjecture: For every
metric space, there exists a randomized
algorithm with competitive ratio O(log k)

2/27/12 COT 6936 32

