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COT 6936: Topics in Algorithms!

Online Algorithms 



Randomized Algorithm: RANDOM!
•  On a miss:  

–  Evict an item chosen uniformly at random from 
all k items 
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Randomized Marker Algorithm!
•  Each of k pages has a marker bit 
•  Algorithm proceeds in rounds with invariant:  

–  At start of round all pages are unmarked 
•  In each round 

–  If request is a hit: mark page 
–  If request is a miss:  

•  If all cache pages are marked: start next round by 
unmarking all locations  

•  Else evict (randomly) unmarked page and mark it 

•  This algorithm is 2Hk-competitive 
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Marker Algorithm!
•  Marker algorithm is k-competitive 

–  In each round, algorithm has k misses 
– OPT has at least one miss because k+1 distinct 

pages are accessed including the last access 
from previous round 

•  Randomized Marker Algorithm is (ln k)-
competitive 

•  Random is k-competitive 
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Load Balancing!
•  Jobs arrive in a stream to be processed 

immediately on one of many processors 
–  n processors and m jobs 

•  Centralized algorithm 
–  Round robin ensures that each processor gets at 

most ceil(m/n) jobs 
•  Assume centralization is not possible 

–  Assign jobs uniformly at random to processors 
– How do we analyze the situation? How balanced 

is the assignment?  
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Randomized Load Allocation: Analysis!
•  Yij = indicator (binary) r.v. for event [job j is 

assigned to processor i]  
–  E[Yij] = 1/n 

•  Xi = r.v. for number of jobs to processor I 
•  E[Xi] = Σj E[Yij] = m/n 
•  Pr [Xi > c] < ec-1/ec using Chernoff bounds 

2/27/12 COT 6936 7 



Randomized Load Allocation: Analysis!
•  Case m = n 

– With high probability (at least 1–(1/n)), no 
processor gets more than Θ(log n/log log n) jobs 

•  As m increases, imbalance goes away!  
–  Choose m > 16n ln n 

•  Case m = Ω(n log n) 
– With high probability (at least 1–(1/n2)), every 

processor gets between m/2n and 2m/n jobs 
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Packet Routing in Distributed Systems!
•  Model network as a directed graph 
•  Every message is discretized into packets 

each sent separately on a s-t path 
•  Constraint: 1 packet/step through edge e 

– Need to queue requests along edge e 
–  Decide when to release packet from s (schedule) 
– Need queue management policy 

•  Prioritize packets with closest/farthest destinations? 

•  Goal: Find a schedule of minimum duration 
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Packet Routing in Distributed Systems 2!
•  Packets 1, …, N and paths P1, …, PN 
•  Packet Schedule: which packet through 

which edge at what time 
•  Minimize Duration: for every packet to be 

delivered to destination 
•  Obstacles: 

–  Long paths (duration ≥ d longest path length) 
–  Congestion on bottleneck edges (duration ≥ c 

number of paths sharing same edge) 
–  Clearly, Duration ≥ max(c,d) = Ω(c+d) 
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Packet Routing in Distributed Systems 3!
•  Schedule: choose arbitrarily or FCFS 

–  Duration = O(cd) 
–  Could happen in real situations because packets 

are very badly timed with respect to each other 
and groups of size c reach edge e simultaneously 

– Need better solution 
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Randomized Algorithm!
•  Scheduling Algorithm for each packet i 

–  Packet i chooses random delay s from range [1..r] 
and waits at source for s steps 

–  Then packet attempts to move one edge per step 
until destination is reached 

•  If delays chosen so that no 2 packets reach 
same edge at same time, then duration = r+d 
–  Problem: r needs to be very large 
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Randomized Alg.: Group time into blocks!
•  Scheduling Algorithm for each packet i 

–  Group b consecutive steps into blocks 
–  Packet i chooses random delay s from range [1..r] 

and waits at source for s blocks 
–  Then packet attempts to move one edge per 

block until destination is reached 
•  Result [Leighton, Maggs, Rao, 88] 

–  If event E (more than b packets arrive at edge e 
at start of same block) does not occur, then 
duration is at most b(r + d) 
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Randomized Packet Routing: Analysis!
•  Bound Pr(E)  

–  Union of events by considering each edge 
–  Union of events by considering each time block 

•  Fet = event [Net > b] 
•  Net = r.v. for # of packets scheduled to 

appear at start of block t at edge e 
•  Xeti = indicator (binary) r.v. for event [packet 

i appears at start of block t at edge e] 
•  Pr(E) = Pr[Ue,tFet] and E[Net] = Σi E[Xeti] 
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Randomized Packet Routing: Analysis!
•  Theorem:  

–  Choose r = c / (q log(mN)) and b = 3c/r 
• Here q is a carefully chosen constant 

– With high probability, the duration of the 
schedule for the packets is O(c + d log (mN)) 
• N = # of packets 
• m = # of edges 
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Permutation Routing Problem!
•  Model 

–  Given directed graph on N vertices (processors) 
–  Communication in synchronous steps 
–  At most one packet per link per step 
–  Each processor needs to send one packet to a 

unique destination (Destinations ≅ Permutation) 
– Need route and queueing discipline for conflicts 
– How many steps does the whole thing take? 
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Permutation Routing Problem!
•  Oblivious algorithm  

–  route only depends on destination 
•  Theorem: 

–  For any deterministic oblivious permutation 
routing algorithm on a network of N nodes each 
of out-degree d, there is an instance of 
permutation routing that requires Ω((N/d)1/2) 
steps 

•  Can randomized algorithms do any better? 
–  Valiant’s Algorithm, 1982 
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Rand. Permutation Routing in Hypercube!
•  Phase 1 

–  Pick a random intermediate destination for each 
packet and route it there 

•  Phase 2 
–  Route every packet from intermediate 

destination to final destination 
•  Routing in each phase: Bit fixing strategy 

–  Given s and t addresses are n-bit vectors, flip 
leftmost bit of ID in which current node differs 
from destination ID and send it to that neighbor 
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k-Server Problem!
•  Problem: to efficiently “move” around k 

servers in a metric space (weighted graph) to 
service requests that appear online at the 
points of metric space 

2/27/12 COT 6936 19 



General Paradigm: k-Server Problem!
•  Given:  

–  n-vertex metric space (i.e., weighted graph),   
–  k servers with initial locations, and 
–  (online) request sequence with location 

•  Request to be served by server at given location 

•  Goal: minimize distance travelled by servers 
•  Variants: symmetric or asymmetric 
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k-Server Problem: Applications!
•  Paging  

–  node ≈ page of address space 
–  All distances = 1 

•  Weighted Caching 
–  Fonts in a printer or a bitmap display 

•  Two-headed Disk Drives 
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What we know: k-Server Problem!
•  Lower Bound on competitiveness (k) applies 

from before 
•  Conjecture: Upper bound for competitiveness 

is k [MMS, 1990]  
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Greedy Algorithm!
•  Let the nearest server serve the request 

–  It minimizes the cost of each individual request  
– How competitive is this algorithm? 
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Balance Algorithm!
•  Choose a server that would have moved the 

minimum total distance of any server 
–  Takes care of previous bad example since 

eventually the second server would be employed 
–  Tends to use all servers equally 
–  Can be shown to be k-competitive if k = n-1 
–  Can do poorly in other situations 
– Not 2-competitive for k = 2 
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Follow-OPT!
•  On ith request compute final configuration X 

achieved by OPT 
•  Use the server that would result in the same 

configuration X 
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RES Algorithm for k = 2!
•  Define Residues 

–  Rc(σ,S) = c . COPT(σ,S) – CA(σ) 
•  v1 = location of last request 
•  v2 = location of other server 
•  Figures out which server would result in 

smaller residues. 
•  RES is 2-competitive  
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HARMONIC Algorithm!
•  Natural, memoryless, randomized algorithm 

–  Choose a server with probability inversely 
proportional to its distance to request location 

•  Expected to be α-competitive  
–  α = 317000 for k = 3 
–  α = O(k2k) for general k 

2/27/12 COT 6936 27 



Related Problems and Results!
•  Points on a Line 
•  Points on a circle 
•  Points on a tree 

•  (2n-1)-competitive algorithms exist 
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Work Function (WF) Algorithm!
•  Compute the configuration Xi achieved by 

OPT and closest to previous configuration 
Xi-1 
–  Very expensive computationally 

•  WF is (2k-1)-competitive 
•  WF is 2-competitive for k = 2 
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Notation!
•  Metric Space M with n vertices and distance 

function d(�,�) 
•  Configuration S = subset of k vertices from 

M (location of the k servers) 
•  Requests: σ = {r1,r2,…} from vertices of M 
•  Solution: Sequence of configurations S0,S1,… 
•  Algorithm A: DA(S0,σ) = Σt d(St-1,St) 

–  d(Sa,Sb) = min weight matching between Sa & Sb 
•  Analysis: DA(S0,σ) ≤ ρDOPT(S0,σ) + f(S0) 
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OPT: Offline Algorithm!
•  Argue that you only need to consider lazy 

moves (no unnecessary moves) 
•  Use dynamic programming 

–  Recurrence? 
–  Subproblems? 
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Important Open Problems!
•  Minimize ρ, where 

–  DA(S0,σ) ≤ ρDOPT(S0,σ) + f(S0) 
•  Competitive ratio of Algorithm/Problem 
•  k-Server Conjecture: For every metric 

space, the competitive ratio of the k-server 
problem is exactly k 

•  Randomized k-Server Conjecture: For every 
metric space, there exists a randomized 
algorithm with competitive ratio O(log k) 
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