COT 6936: Topics in Algorithms

Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/COT6936_S12.html

COT 6936: Topics in Algorithms

Amortized Analysis

Amortized Analysis

- Consider (worst-case) time complexity of <u>sequence</u> of n operations, not cost of a <u>single</u> operation.
- Traditional Analysis: Cost of sequence of n operations = n S(n), where S(n) = worst case cost of each of the n operations
- Amortized Cost = T(n)/n, where T(n) = worst case total cost of n operations in the sequence.
- Amortized cost can be small even with some expensive operations. <u>Worst case may not occur in</u> <u>every operation, even in worst case</u>. Cost of operations often correlated.

Problem 1: Binary Counter

- Data Structure: <u>binary counter</u> b.
- Operations: Inc(b).

Cost of Inc(b) = number of bits flipped in the operation.

- What's the total cost of N operations when this counter counts up to integer N?
- Approach 1: simple analysis
 - Size of counter is log(N). Worst case when every bit flipped.
 For N operations, total worst-case cost = O(Nlog(N))

Approach 2: Binary Counter

Intuition: Worst case cannot happen all the time!

Bit 0 flips every time; Bit 1 flips every other time; Bit 2 flips every fourth time, etc... Bit k flips every 2^k time. So the total bits flipped in N operations, when the counter counts from 1 to N, will be = ?

$$T(N) = \sum_{k=0}^{\log N} \frac{N}{2^k} < N \sum_{k=0}^{\infty} \frac{1}{2^k} = 2N$$

So the amortized cost will be T(N)/N = 2.

Approach 3: Binary Counter

- For k bit counters, the total cost is
 t(k) = 2 x t(k-1) + 1
- So for N operations, T(N) = t(log(N)).
- t(k) = ?
- T(N) can be proved to be bounded by 2N.

Amortized Analysis: Potential Method

- For n operations, the data structure goes through states: D₀, D₁, D₂, ..., D_n with costs c₁, c₂, ..., c_n
- Define potential function $\Phi(D_i)$: represents the <u>potential energy</u> of data structure after i_{th} operation.
- The amortized cost of the i_{th} operation is defined by:

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

The total amortized cost is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{N} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})) = \Phi(D_{n}) - \Phi(D_{0}) + \sum_{i=1}^{n} c_{i}$$
$$\sum_{i=1}^{n} c_{i} = -(\Phi(D_{n}) - \Phi(D_{0})) + \sum_{i=1}^{n} \hat{c}_{i}$$

Potential Method for Binary Counter

- Potential function = ??
- $\Phi(D) = #$ of 1's in counter
- Assume that in i-th iteration Inc(b) changes
 - 1 → 0 (j bits)
 - 0 → 1 (1 bit)
 - $\Phi(D_{i-1}) = k; \Phi(D_i) = k j + 1$
 - Change in potential = (k j + 1) k = 1-j
 - Real cost = j + 1
 - Amortized cost = Real cost + change in potential
 - Amortized cost = j + 1 j + 1 = 2

Problem 2: Stack Operations

- Data Structure: <u>Stack</u>
- Operations:
 - Push(s,x) : Push object x into stack s.
 - Cost: T(push) = O(1).
 - Pop(s) : Pop the top object in stack s.
 - Cost: T(pop) = O(1).
 - MultiPop(s,k) ; Pop the top k objects in stack s.
 - Cost: T(mp) = O(size(s)) worst case
- **Assumption:** Start with an empty stack
- Simple analysis: For N operations, maximum stack size = N. Worst-case cost of MultiPop = O(N). Total worst-case cost of N operations is at most N x T(mp) = O(N²).

Amortized analysis: Stack Operations

- Intuition: Worst case cannot happen all the time!
- Idea: pay a dollar for every operation, then count carefully.
- Pay \$2 for each *Push* operation, one to pay for operation, another for "future use" (pin it to object on stack).
- For *Pop* or *MultiPop*, instead of paying from pocket, pay for operations with extra dollar pinned to popped objects.
- Total cost of N operations must be less than 2 x N
- Amortized cost = T(N)/N = 2.

Potential Method for Stack Problem

- Potential function Φ(D) = # of items in stack
 Push
 - Change in potential = 1; Real cost = 1
 - Amortized Cost = 2
- MultiPop [Assume j items popped in ith iter]
 - Φ(D_{i-1}) = k; Φ(D_i) = k j
 - Real cost = j

- Pop: j = 1
- Change in potential = -j
- Amortized cost = Real cost + change in potential
- Amortized cost = j j = 0

COT 6936: Topics in Algorithms

Streaming Algorithms

Massive Data Sets

- Examples of large persistent data sets
 - WalMart Transaction data (1 PB?)
 - Sloan Digital Sky Survey (100 TB)
 - Web (over a Trillion pages; over 1 PB of text)
 - CERN (expected to produce ~40 TB/sec)
- Large data sets with time-sensitive data
 - Financial tickers data (NASDAQ: 50K trans/s)
 - Credit Card usage traffic
 - Network Traffic: Telecom & ISP traffic
 - Sensor data

Important Issues for Stream Algorithms

- Key parameters
 - Amount of memory available; window size
 - Per-item processing time; # of Passes on data
 - Tolerance to error
- What is needed?
 - Summarizations, synposes, sketches
 - Randomization and sampling
 - Pattern Discovery
 - Anomaly Detection
 - Clustering and Classifications

Streaming Model of Computation

- N = # of items seen so far, window size
 - amount of memory available
- ε= error tolerance
- Memory usage = $poly(1/\epsilon, log N)$
- Query Time = $poly(1/\epsilon, log N)$

Network Monitoring System

Frequency Related Problems

Analytics on Packet Headers – IP Addresses

Warm up Problems

- Given stream of values, find mean.
 - Easy.
 - Maintain sum of all values and number of items
- Given stream, find standard deviation.
 - Not so hard
- Given stream of bits and window size N, count number of 1s in window
 - Naïve: Store the window: requires N bits
 - Can you do better?

Problem: Finding Missing Label

- Packets labeled from set {1,...,n} and arrive in random order. Assume one packet is missing.
- Find the label of the missing packet.
 - Bit vector of length n
 - Space O(n)

Problem: Find Missing Label

6	4	0	1	7	2	5	28- Sum	Parity Bit
6	10	10	11	18	20	25	3	
1	1	0	0	1	0	1		0
1	0	0	0	1	1	0		1
0	0	0	1	1	0	1		1

- Maintain Sum of Labels and subtract from required sum = $\Sigma_{i=[1..n]}i = n(n+1)/2$
 - Space = log (n(n+1)/2) < 2 log n</p>
- Optimal algorithm [Assume n = 2^m]
 - Store parity sum of each bit of all numbers seen
 - Missing number = Final parity sum bits 03/05/12 COT 6936

Problem: Finding Missing Numbers

- Same as problem 1, but there may be up to k missing numbers.
- Instead of sum of numbers, we maintain k different functions of the numbers seen.
 - Decoding is not so easy
 - Needs factoring polynomials
 - No known deterministic algorithms (?)
 - Randomized algorithms
 - O(k²log n)
 - O(k log k log n)

Problem: Find number of unique items

- Simple hashing scheme to do counting
 - Space = O(m)
 - Time = O(1) per item in stream

Problem: Find fraction of rare items

- Fishing problem
 - Species U = {1, ..., u}
- Input stream consists of species caught and observed at time t
- <u>Rarity</u>: r[t] = |{j| c_t[j] = 1}| / u
 - Number of items in stream that are rare (i.e., appear only once in the catch so far)

Rarity Problem

- <u>Rarity</u>: r[t] = |{j| c_t[j] = 1}| / u
 - Deterministic alg: 2u bits + counter for r (Easy!)
 - If s[t] is number of species in input stream, then deterministic alg has lower bound of $\Omega(s[t])$ bits
 - It takes $\Omega(s[t])$ bits to keep track of which species are in the stream.
 - If deterministic alg using o(s[t]) bits, then we can keep track of species in stream with o(s[t]) bits.
 - Contradiction!
 - Randomization? Approximation?
 - Maintain info on k species; report ratio r[t,k]

• If r[t,k] > 1/k, then r[t,k] is a good estimate for r[t] 03/05/12 COT 6936 24

Rarity Problem

- Randomization? Approximation?
 - Maintain info on k species; report ratio r[t,k]
 - If r[t,k] > 1/k, then r[t,k] is a good estimate for r[t]
 - Often does not work if u is very large then modify the definition of rarity

Problem: Counting

- Given a stream of bits, at every time instant, maintain count of number of 1s in last N elements
 - Deterministic algorithms
 - $\Theta(N)$ bits of memory to answer in O(1) time [Why?]

Problem: Counting

- How well can you approximate with o(N) memory? [Datar et al. SIAM J C 2002]
 - Use histogram techniques
 - Build time-based histograms in which every bucket represents a contiguous time interval
 - Idea: Use uniform buckets
 - Problem: 1s may not be distributed uniformly
 - Solution: Use non-uniform buckets
 - Results
 - $O((1/\epsilon)\log^2 N)$ bits

 $Ω((1/ε)log^2(Nε))$

• $(1+\epsilon)$ -approximate count in O(1) time

Other problems

- COUNTING: Given a stream of bits, at every time instant, maintain count of number of 1s in last N elements
- SUM: Given a stream of positive integers in range [0..R], at every time instant, maintain sum of last N elements

Clustering

- K-Means
 - Constant-factor approximation, O(nk log k) time, O(k) space, single pass [Charikar et al. 1997]
- K-Medians
 - Constant-factor approximation, O(nk log k) time, O(n^ε) space, single pass [Guha et al. 2002]