
COT 6936: Topics in Algorithms!

Giri Narasimhan
ECS 254A / EC 2443; Phone: x3748

giri@cs.fiu.edu
http://www.cs.fiu.edu/~giri/teach/COT6936_S12.html

COT 6936: Topics in Algorithms!

Amortized Analysis

03/05/12 COT 6936 3

Amortized Analysis!
§  Consider (worst-case) time complexity of sequence of

n operations, not cost of a single operation.
§  Traditional Analysis: Cost of sequence of n

operations = n S(n), where S(n) = worst case cost of
each of the n operations

§  Amortized Cost = T(n)/n, where T(n) = worst case
total cost of n operations in the sequence.

§  Amortized cost can be small even with some
expensive operations. Worst case may not occur in
every operation, even in worst case. Cost of
operations often correlated.

03/05/12 COT 6936 4

Problem 1: Binary Counter
§  Data Structure: binary counter b.
§  Operations: Inc(b).

§  Cost of Inc(b) = number of bits flipped in the operation.
§  What’s the total cost of N operations when this counter

counts up to integer N?
§  Approach 1: simple analysis

§  Size of counter is log(N). Worst case when every bit flipped.
For N operations, total worst-case cost = O(Nlog(N))

03/05/12 COT 6936 5

Approach 2: Binary Counter
§  Intuition: Worst case cannot happen all the time!

 000000
 000001
 000010
 000011
 000100
 000101
 000110
 000111

Bit 0 flips every time;
Bit 1 flips every other time;
Bit 2 flips every fourth time, etc…
Bit k flips every 2k time.
So the total bits flipped in N operations, when
the counter counts from 1 to N, will be = ?

NNNNT
k

k

N

k
k 2

2
1

2
)(

0

log

0
=<= ∑∑

∞

==

So the amortized cost will be T(N)/N = 2.

03/05/12 COT 6936 6

Approach 3: Binary Counter
§  For k bit counters, the total cost is

 t(k) = 2 x t(k-1) + 1
§  So for N operations, T(N) = t(log(N)).
§  t(k) = ?
§  T(N) can be proved to be bounded by 2N.

03/05/12 COT 6936 7

Amortized Analysis: Potential Method
§  For n operations, the data structure goes through states: D0, D1,

D2, …, Dn with costs c1, c2, …, cn
§  Define potential function Φ(Di): represents the potential energy

of data structure after ith operation.
§  The amortized cost of the ith operation is defined by:

§  The total amortized cost is

() ()1ˆ −Φ−Φ+= iiii DDcc

() ()() () ()

() ()() ∑∑

∑∑∑

==

==
−

=

+Φ−Φ−=

+Φ−Φ=Φ−Φ+=

n

i
in

n

i
i

n

i
in

N

i
iii

n

i
i

cDDc

cDDDDcc

1
0

1

1
0

1
1

1

ˆ

ˆ

Potential Method for Binary Counter!
§  Potential function = ??
§  Φ(D) = # of 1’s in counter
§  Assume that in i-th iteration Inc(b) changes

§  1 è 0 (j bits)
§  0 è 1 (1 bit)
§ Φ(Di-1) = k; Φ(Di) = k – j + 1
§  Change in potential = (k – j + 1) – k = 1-j
§  Real cost = j + 1
§ Amortized cost = Real cost + change in potential
§ Amortized cost = j + 1 – j + 1 = 2

03/05/12 COT 6936 8

03/05/12 COT 6936 9

Problem 2: Stack Operations
§  Data Structure: Stack
§  Operations:

§  Push(s,x) : Push object x into stack s.
•  Cost: T(push) = O(1).

§  Pop(s) : Pop the top object in stack s.
•  Cost: T(pop) = O(1).

§  MultiPop(s,k) ; Pop the top k objects in stack s.
•  Cost: T(mp) = O(size(s)) worst case

§  Assumption: Start with an empty stack
§  Simple analysis: For N operations, maximum stack size = N.

Worst-case cost of MultiPop = O(N). Total worst-case cost of N
operations is at most N x T(mp) = O(N2).

03/05/12 COT 6936 10

Amortized analysis: Stack Operations
§  Intuition: Worst case cannot happen all the time!
§  Idea: pay a dollar for every operation, then count carefully.
§  Pay $2 for each Push operation, one to pay for operation,

another for “future use” (pin it to object on stack).
§  For Pop or MultiPop, instead of paying from pocket, pay

for operations with extra dollar pinned to popped objects.
§  Total cost of N operations must be less than 2 x N
§  Amortized cost = T(N)/N = 2.

Potential Method for Stack Problem!
§  Potential function Φ(D) = # of items in stack
§  Push

§  Change in potential = 1; Real cost = 1
§ Amortized Cost = 2

§  MultiPop [Assume j items popped in ith iter]
§ Φ(Di-1) = k; Φ(Di) = k – j
§  Real cost = j
§  Change in potential = -j
§ Amortized cost = Real cost + change in potential
§ Amortized cost = j – j = 0

03/05/12 COT 6936 11

Pop: j = 1

COT 6936: Topics in Algorithms!

Streaming Algorithms

Massive Data Sets!
§  Examples of large persistent data sets

§ WalMart Transaction data (1 PB?)
§ Sloan Digital Sky Survey (100 TB)
§ Web (over a Trillion pages; over 1 PB of text)
§  CERN (expected to produce ~40 TB/sec)

§  Large data sets with time-sensitive data
§  Financial tickers data (NASDAQ: 50K trans/s)
§  Credit Card usage traffic
§ Network Traffic: Telecom & ISP traffic
§ Sensor data

03/05/12 COT 6936 13

Important Issues for Stream Algorithms!
§  Key parameters

§ Amount of memory available; window size
§  Per-item processing time; # of Passes on data
§  Tolerance to error

§  What is needed?
§ Summarizations, synposes, sketches
§  Randomization and sampling
§  Pattern Discovery
§ Anomaly Detection
§  Clustering and Classifications

03/05/12 COT 6936 14

Streaming Model of Computation!
§  N = # of items seen so far, window size

§  amount of memory available
§  ε= error tolerance
§  Memory usage = poly(1/ε, log N)
§  Query Time = poly(1/ε, log N)

03/05/12 COT 6936 15

Network Monitoring System!

03/05/12 COT 6936 16

DSMS Streaming
Data

Anomaly
Warnings

Monitoring
Queries

Scratch
Store

Lookup
Tables Archive

Performance
Metrics

Based on slide by R. Motwani, 2005

Frequency Related Problems!

03/05/12 COT 6936 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Find all elements
 with frequency > 0.1%

Top-k most frequent elements

What is the frequency
 of element 3? What is the total frequency

 of elements between 8 and 14?

Find elements that
 occupy 0.1% of the tail.

Mean + Variance?

Median?

How many elements have non-zero frequency?

Analytics on Packet Headers – IP Addresses

Based on slide by R. Motwani, 2005

Warm up Problems!
§  Given stream of values, find mean.

§  Easy.
§ Maintain sum of all values and number of items

§  Given stream, find standard deviation.
§ Not so hard

§  Given stream of bits and window size N,
count number of 1s in window
§ Naïve: Store the window: requires N bits
§  Can you do better?

03/05/12 COT 6936 18

Problem: Finding Missing Label!
§  Packets labeled from set {1,…,n} and arrive in

random order. Assume one packet is missing.
§  Find the label of the missing packet.

§  Bit vector of length n
•  Space O(n)

03/05/12 COT 6936 19

Problem: Find Missing Label!
6 4 0 1 7 2 5 28-

Sum
Parity
Bit

6 10 10 11 18 20 25 3
1 1 0 0 1 0 1 0
1 0 0 0 1 1 0 1
0 0 0 1 1 0 1 1

03/05/12 COT 6936 20

§  Maintain Sum of Labels and subtract from
required sum = Σi=[1..n]i = n(n+1)/2
§ Space = log (n(n+1)/2) < 2 log n

§  Optimal algorithm [Assume n = 2m]
§ Store parity sum of each bit of all numbers seen
§ Missing number = Final parity sum bits

Problem: Finding Missing Numbers!
§  Same as problem 1, but there may be up to k

missing numbers.
§  Instead of sum of numbers, we maintain k

different functions of the numbers seen.
§ Decoding is not so easy

• Needs factoring polynomials
• No known deterministic algorithms (?)

§  Randomized algorithms
• O(k2log n)
• O(k log k log n)

03/05/12 COT 6936 21

Problem: Find number of unique items!
§  Simple hashing scheme to do counting

§ Space = O(m)
§  Time = O(1) per item in stream

03/05/12 COT 6936 22

Problem: Find fraction of rare items !
§  Fishing problem

§ Species U = {1, …, u}
§  Input stream consists of species caught and

observed at time t
§  Rarity: r[t] = |{j| ct[j] = 1}| / u

§ Number of items in stream that are rare (i.e.,
appear only once in the catch so far)

03/05/12 COT 6936 23

Rarity Problem!
§  Rarity: r[t] = |{j| ct[j] = 1}| / u

§ Deterministic alg: 2u bits + counter for r (Easy!)
§  If s[t] is number of species in input stream, then

deterministic alg has lower bound of Ω(s[t]) bits
•  It takes Ω(s[t]) bits to keep track of which species

are in the stream.
•  If deterministic alg using o(s[t]) bits, then we can

keep track of species in stream with o(s[t]) bits.
–  Contradiction!

§  Randomization? Approximation?
• Maintain info on k species; report ratio r[t,k]
•  If r[t,k] > 1/k, then r[t,k] is a good estimate for r[t]

03/05/12 COT 6936 24

Rarity Problem!
§  Randomization? Approximation?

§ Maintain info on k species; report ratio r[t,k]
§  If r[t,k] > 1/k, then r[t,k] is a good estimate for

r[t]
§ Often does not work if u is very large – then

modify the definition of rarity

03/05/12 COT 6936 25

Problem: Counting!
§  Given a stream of bits, at every time instant,

maintain count of number of 1s in last N
elements
§ Deterministic algorithms

• Θ(N) bits of memory to answer in O(1) time [Why?]

03/05/12 COT 6936 26

Problem: Counting!
§  How well can you approximate with o(N)

memory? [Datar et al. SIAM J C 2002]
§ Use histogram techniques

•  Build time-based histograms in which every bucket
represents a contiguous time interval

•  Idea: Use uniform buckets
•  Problem: 1s may not be distributed uniformly
•  Solution: Use non-uniform buckets

§  Results
• O((1/ε)log2N) bits
•  (1+ε)-approximate count in O(1) time

03/05/12 COT 6936 27

Ω((1/ε)log2(Nε))

Other problems!
§  COUNTING: Given a stream of bits, at every

time instant, maintain count of number of 1s
in last N elements

§  SUM: Given a stream of positive integers in
range [0..R], at every time instant, maintain
sum of last N elements

03/05/12 COT 6936 28

Clustering!
§  K-Means

§  Constant-factor approximation, O(nk log k) time,
O(k) space, single pass [Charikar et al. 1997]

§  K-Medians
§  Constant-factor approximation, O(nk log k) time,

O(nε) space, single pass [Guha et al. 2002]

03/05/12 COT 6936 29

