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COT 6936: Topics in Algorithms!

Amortized Analysis 
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Amortized Analysis!
§  Consider (worst-case) time complexity of sequence of 

n operations, not cost of a single operation. 
§  Traditional Analysis: Cost of sequence of n 

operations = n S(n), where S(n) = worst case cost of 
each of the n operations 

§  Amortized Cost = T(n)/n, where T(n) = worst case 
total cost of n operations in the sequence.  

§  Amortized cost can be small even with some 
expensive operations. Worst case may not occur in 
every operation, even in worst case.  Cost of 
operations often correlated. 



03/05/12 COT 6936 4 

Problem 1: Binary Counter 
§  Data Structure:  binary counter b. 
§  Operations:  Inc(b).    

§  Cost of Inc(b) = number of bits flipped in the operation. 
§  What’s the total cost of N operations when this counter 

counts up to integer N? 
§  Approach 1:  simple analysis 

§  Size of counter is log(N).  Worst case when every bit flipped. 
For N operations, total worst-case cost = O(Nlog(N)) 
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Approach 2: Binary Counter 
§  Intuition: Worst case cannot happen all the time!  

  000000 
  000001 
  000010 
  000011 
  000100 
  000101 
  000110 
  000111 

Bit 0 flips every time;  
Bit 1 flips every other time;  
Bit 2 flips every fourth time, etc…    
Bit k flips every 2k time.  
So the total bits flipped in  N operations, when 
the counter counts from 1 to N, will be = ? 
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So the amortized cost will be T(N)/N = 2. 
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Approach 3: Binary Counter 
§  For k bit counters, the total cost is  

  t(k) = 2 x t(k-1) + 1   
§  So for N operations, T(N) = t(log(N)). 
§  t(k) = ? 
§  T(N) can be proved to be bounded by 2N. 
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Amortized Analysis: Potential Method 
§  For n operations, the data structure goes through states: D0, D1, 

D2, …, Dn with costs c1, c2, …, cn  
§  Define potential function Φ(Di): represents the potential energy 

of data structure after ith operation.   
§  The amortized cost of the ith operation is defined by: 

§  The total amortized cost is 
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Potential Method for Binary Counter!
§  Potential function = ?? 
§  Φ(D) = # of 1’s in counter 
§  Assume that in i-th iteration Inc(b) changes  

§  1 è 0 (j bits) 
§  0 è 1 (1 bit)  
§ Φ(Di-1) = k; Φ(Di) = k – j + 1 
§  Change in potential = (k – j + 1) – k = 1-j 
§  Real cost = j + 1 
§ Amortized cost = Real cost + change in potential 
§ Amortized cost = j + 1 – j + 1 = 2 
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Problem 2: Stack Operations 
§  Data Structure:  Stack  
§  Operations:  

§  Push(s,x) : Push object x into stack s. 
•  Cost: T(push) = O(1). 

§  Pop(s) : Pop the top object in stack s. 
•  Cost: T(pop) = O(1). 

§  MultiPop(s,k) ; Pop the top k objects in stack s. 
•  Cost: T(mp) = O(size(s)) worst case 

§  Assumption: Start with an empty stack 
§  Simple analysis: For N operations, maximum stack size = N. 

Worst-case cost of MultiPop = O(N). Total worst-case cost of N 
operations is at most N x T(mp) = O(N2). 
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Amortized analysis: Stack Operations 
§  Intuition: Worst case cannot happen all the time!  
§  Idea: pay a dollar for every operation, then count carefully. 
§  Pay $2 for each Push operation, one to pay for operation, 

another for “future use” (pin it to object on stack). 
§  For Pop or MultiPop, instead of paying from pocket, pay 

for operations with extra dollar pinned to popped objects. 
§  Total cost of N operations must be less than 2 x N 
§  Amortized cost = T(N)/N = 2.   



Potential Method for Stack Problem!
§  Potential function Φ(D) = # of items in stack 
§  Push 

§  Change in potential = 1; Real cost = 1 
§ Amortized Cost = 2 

§  MultiPop [Assume j items popped in ith iter] 
§ Φ(Di-1) = k; Φ(Di) = k – j 
§  Real cost = j  
§  Change in potential = -j 
§ Amortized cost = Real cost + change in potential 
§ Amortized cost = j – j = 0 
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Pop: j = 1 



COT 6936: Topics in Algorithms!

Streaming Algorithms 



Massive Data Sets!
§  Examples of large persistent data sets 

§ WalMart Transaction data (1 PB?) 
§ Sloan Digital Sky Survey (100 TB) 
§ Web (over a Trillion pages; over 1 PB of text) 
§  CERN (expected to produce ~40 TB/sec) 

§  Large data sets with time-sensitive data 
§  Financial tickers data (NASDAQ: 50K trans/s) 
§  Credit Card usage traffic 
§ Network Traffic: Telecom & ISP traffic 
§ Sensor data  
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Important Issues for Stream Algorithms!
§  Key parameters 

§ Amount of memory available; window size  
§  Per-item processing time; # of Passes on data 
§  Tolerance to error 

§  What is needed? 
§ Summarizations, synposes, sketches 
§  Randomization and sampling 
§  Pattern Discovery 
§ Anomaly Detection 
§  Clustering and Classifications 
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Streaming Model of Computation!
§  N = # of items seen so far, window size  

§  amount of memory available 
§  ε= error tolerance 
§  Memory usage = poly(1/ε, log N) 
§  Query Time = poly(1/ε, log N) 
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Network Monitoring System!
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DSMS Streaming 
Data 

Anomaly 
Warnings 

Monitoring 
Queries 

Scratch 
Store 

Lookup 
Tables Archive 

Performance 
Metrics 

Based on slide by R. Motwani, 2005 



Frequency Related Problems!

03/05/12 COT 6936 17 

1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 

Find all elements 
 with frequency > 0.1% 

Top-k most frequent elements 

What is the frequency 
 of element 3? What is the total frequency 

 of elements between 8 and 14? 

Find elements that 
 occupy 0.1% of the tail. 

Mean + Variance? 

Median? 

How many elements have non-zero frequency? 

Analytics on Packet Headers – IP Addresses 

Based on slide by R. Motwani, 2005 



Warm up Problems!
§  Given stream of values, find mean. 

§  Easy.  
§ Maintain sum of all values and number of items 

§  Given stream, find standard deviation. 
§ Not so hard 

§  Given stream of bits and window size N, 
count number of 1s in window 
§ Naïve: Store the window: requires N bits 
§  Can you do better? 
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Problem: Finding Missing Label!
§  Packets labeled from set {1,…,n} and arrive in 

random order. Assume one packet is missing.  
§  Find the label of the missing packet.  

§  Bit vector of length n 
•  Space O(n) 
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Problem: Find Missing Label!
6 4 0 1 7 2 5 28-

Sum 
Parity 
Bit 

6 10 10 11 18 20 25 3 
1 1 0 0 1 0 1 0 
1 0 0 0 1 1 0 1 
0 0 0 1 1 0 1 1 
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§  Maintain Sum of Labels and subtract from 
required sum = Σi=[1..n]i = n(n+1)/2 
§ Space = log (n(n+1)/2) < 2 log n 

§  Optimal algorithm [Assume n = 2m] 
§ Store parity sum of each bit of all numbers seen  
§ Missing number = Final parity sum bits 



Problem: Finding Missing Numbers!
§  Same as problem 1, but there may be up to k 

missing numbers.  
§  Instead of sum of numbers, we maintain k 

different functions of the numbers seen. 
§ Decoding is not so easy 

• Needs factoring polynomials 
• No known deterministic algorithms (?) 

§  Randomized algorithms 
• O(k2log n) 
• O(k log k log n) 

03/05/12 COT 6936 21 



Problem: Find number of unique items!
§  Simple hashing scheme to do counting 

§ Space = O(m) 
§  Time = O(1) per item in stream 
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Problem: Find fraction of rare items !
§  Fishing problem 

§ Species U = {1, …, u} 
§  Input stream consists of species caught and 

observed at time t 
§  Rarity: r[t] = |{j| ct[j] = 1}| / u 

§ Number of items in stream that are rare (i.e., 
appear only once in the catch so far) 
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Rarity Problem!
§  Rarity: r[t] = |{j| ct[j] = 1}| / u 

§ Deterministic alg: 2u bits + counter for r (Easy!) 
§  If s[t] is number of species in input stream, then 

deterministic alg has lower bound of Ω(s[t]) bits 
•  It takes Ω(s[t]) bits to keep track of which species 

are in the stream. 
•  If deterministic alg using o(s[t]) bits, then we can 

keep track of species in stream with o(s[t]) bits.  
–  Contradiction!  

§  Randomization? Approximation? 
• Maintain info on k species; report ratio r[t,k] 
•  If r[t,k] > 1/k, then r[t,k] is a good estimate for r[t] 
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Rarity Problem!
§  Randomization? Approximation? 

§ Maintain info on k species; report ratio r[t,k] 
§  If r[t,k] > 1/k, then r[t,k] is a good estimate for 

r[t] 
§ Often does not work if u is very large – then 

modify the definition of rarity 
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Problem: Counting!
§  Given a stream of bits, at every time instant, 

maintain count of number of 1s in last N 
elements 
§ Deterministic algorithms  

• Θ(N) bits of memory to answer in O(1) time [Why?] 
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Problem: Counting!
§  How well can you approximate with o(N) 

memory? [Datar et al. SIAM J C 2002] 
§ Use histogram techniques 

•  Build time-based histograms in which every bucket 
represents a contiguous time interval 

•  Idea: Use uniform buckets 
•  Problem: 1s may not be distributed uniformly 
•  Solution: Use non-uniform buckets 

§  Results 
• O((1/ε)log2N) bits 
•  (1+ε)-approximate count in O(1) time 
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Ω((1/ε)log2(Nε)) 



Other problems!
§  COUNTING: Given a stream of bits, at every 

time instant, maintain count of number of 1s 
in last N elements 

§  SUM: Given a stream of positive integers in 
range [0..R], at every time instant, maintain 
sum of last N elements 
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Clustering!
§  K-Means 

§  Constant-factor approximation, O(nk log k) time, 
O(k) space, single pass [Charikar et al. 1997] 

§  K-Medians 
§  Constant-factor approximation, O(nk log k) time, 

O(nε) space, single pass [Guha et al. 2002] 
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