COT 6936: Topics in Algorithms

Giri Narasimhan
ECS 2B54A / EC 2443; Phone: x3748

giri@cs.fiu.edu
http://www.cs.fiu.edu/~giri/teach/COT6936_512 html

COT 6936: Topics in Algorithms

Amortized Analysis

Amortized Analysis

Consider (worst-case) time complexity of sequence of
n operations, not cost of a single operation.

Traditional Analysis: Cost of sequence of n
operations = n S(n), where S(n) = worst case cost of
each of the n operations

Amortized Cost = T(n)/n, where T(n) = worst case
total cost of n operations in the sequence.

Amortized cost can be small even with some
expensive operations. Worst case may not occur in
every operation, even in_worst case. Cost of
operations often correlated.

03/05/12 COT 6936 3

Problem 1: Binary Counter

Data Structure: binary counter b.
Operations: Inc(b).
= Cost of Inc(b) = number of bits flipped in the operation.
What" s the total cost of N operations when this counter
counts up to integer N?

Approach 1: simple analysis

= Size of counter is log(N). Worst case when every bit flipped.
For N operations, total worst-case cost = O(Nlog(N))

03/05/12 COT 6936 4

Approach 2: Binary Counter

Intuition: Worst case cannot happen all the time!

000000 Bit O flips every time;

Bit 1 flips every other time;
000007 Bit 2 flips every fourth time, etc...
000010 Bit k flips every 2 time.
000011 So the total bits flipped in N operations, when

the counter counts from 1 to N, will be = ?
000100

log N 0

000101 T(N) S N NkE zk
000110
000111 So the amortized cost will be T(N)/N = 2.

03/05/12 COT 6936 5

Approach 3: Binary Counter

For k bit counters, the total cost is
t(k) =2 x t(k-1) + 1
So for N operations, T(N) = t(log(N)).
t(k) =7
T(N) can be proved to be bounded by 2N.

03/05/12 COT 6936

Amortized Analysis: Potential Method

For n operations, the data structure goes through states: D, D,,
D,, ..., D, withcosts c,, c,, ..., C,

Define potential function ©(D): represents the potential energy
of data structure after i, operation.

The amortized cost of the iy, operation is defined by:
C;=¢; + (I)(Di)_ (I)(Di—l)
The total amortized cost is

26‘ - g(ci +@(D,)-®(D._,))=2(D)-d(D,)+ 26"

=

e =@(p,)-a(D,)+

i=1

03/05/12 COT 6936 7

Potential Method for Binary Counter

Potential function = 2?
®(D) = # of 1's in counter

Assume that in i-th iteration Inc(b) changes
= 1> 0 (] bits)

= 0= 1(1bit)

= ®d(D;_ ;) =k ®D;) =k-j+1

= Change in potential = (k- j+1)-k=1-j

= Real cost = j+1

= Amortized cost = Real cost + change in potential
= Amortized cost=j+1-j+1=2

03/05/12 COT 6936 8

Problem 2: Stack Operations

Data Structure: Stack

Operations:
= Push(s,x) : Push object x into stack s.
* Cost: T(push) = O(1).
= Pop(s) : Pop the top object in stack s.
 Cost: T(pop) = O(1).
= MultiPop(s,k) ; Pop the top k objects in stack s.
 Cost: T(mp) = O(size(s)) worst case

Assumption: Start with an empty stack

Simple analysis: For N operations, maximum stack size = N.
Worst-case cost of MultiPop = O(N). Total worst-case cost of N
operations is at most N x T(mp) = O(N?).

03/05/12 COT 6936 9

Amortized analysis: Stack Operations

Intuition: Worst case cannot happen all the time!
Idea: pay a dollar for every operation, then count carefully.

Pay $2 for each Push operation, one to pay for operation,
another for “future use” (pin it to object on stack).

For Pop or MultiPop, instead of paying from pocket, pay
for operations with extra dollar pinned to popped objects.

Total cost of N operations must be less than 2 x N
Amortized cost = T(N)/N = 2.

03/05/12 COT 6936 10

Potential Method for Stack Problem

Potential function ®(D) = # of items in stack
Push

= Change in potential = 1; Real cost = 1
= Amortized Cost = 2
MultiPop [Assume j items popped in ith iter]
g CD(Di_l) = k; CD(Di) = k ’J
= Real cost = | Pop: j = 1
= Change in potential = -j
= Amortized cost = Real cost + change in potential
= Amortized cost=j- =0

03/05/12 COT 6936 11

COT 6936: Topics in Algorithms

Streaming Algorithms

Massive Data Sets

Examples of large persistent data sets

= WalMart Transaction data (1 PB?)

= Sloan Digital Sky Survey (100 TB)

= Web (over a Trillion pages; over 1 PB of text)
= CERN (expected to produce ~40 TB/sec)

Large data sets with time-sensitive data

= Financial tickers data (NASDAQ: 50K trans/s)
= Credit Card usage traffic

= Network Traffic: Telecom & ISP traffic

= Sensor data

03/05/12 COT 6936 13

Important Issues for Stream Algorithms

Key parameters

= Amount of memory available; window size

= Per-item processing time; # of Passes on data
= Tolerance to error

What is needed?

= Summarizations, synposes, sketches
= Randomization and sampling

= Pattern Discovery

= Anomaly Detection

= Clustering and Classifications

03/05/12 COT 6936 14

Streaming Model of Computation

N = # of items seen so far, window size
= amount of memory available

e= error tolerance
Memory usage = poly(1/¢, log N)
Query Time = poly(1/¢, log N)

03/05/12 COT 6936

15

Network Monitoring System

Monitoring Anomaly Performance

Queries \ Warnings / Metrics
Streaming
Mg) DSMS

RN

Scratch Lookup .
Store Tables el

03/05/12 COT 6936 16
Based on slide by R. Motwani, 2005

Frequency Related Problems

Analytics on Packet Headers — IP Addresses

Top-k most frequent elements

Find elements that
occupy 0.1% of the tail.

Mean + Variance?

Median?

12

Find all elements
with frequency > 0.1%

What is the frequency

of element 3? What is the total frequency
of elements between 8 and 14?

How many elements have non-zero frequency?

03/05/12 COT 6936 17
Based on slide by R. Motwani, 2005

Warm up Problems

Given stream of values, find mean.

= Easy.

= Maintain sum of all values and number of items
Given stream, find standard deviation.

= Not so hard

Given stream of bits and window size N,
count number of 1s in window

= Naive: Store the window: requires N bits

= Can you do better?

03/05/12 COT 6936 18

Problem: Finding Missing Label

Packets labeled from set {1,....n} and arrive in
random order. Assume one packet is missing.

Find the label of the missing packet.

= Bit vector of length n
» Space O(n)

03/05/12 COT 6936 19

Problem: Find Missing Label

6 4 0 1 7 2 5 28- Parity
Sum Bit

6 10 10 11 18 20 25 3

1 1 0) 0) 1 0) 1 0)

1 0) 0) 0) 1 1 0) 1

0) 0) 0) 1 1 0) 1 1

Maintain Sum of Labels and subtract from
required sum = X_y i = n(n+1)/2

= Space = log (n(n+1)/2) < 2 log n

Optimal algorithm [Assume n = 2]

= Store parity sum of each bit of all numbers seen
= Missing number = Final parity sum bits

03/05/12 COT 6936 20

Problem: Finding Missing Numbers

Same as problem 1, but there may be up to k
missing numbers.

Instead of sum of numbers, we maintain k
different functions of the numbers seen.

= Decoding is not so easy

* Needs factoring polynomials

* No known deterministic algorithms (?)
= Randomized algorithms

* O(k?log n)

* O(k log k log n)

03/05/12 COT 6936 21

Problem: Find number of unigue items

Simple hashing scheme to do counting
= Space = O(m)
= Time = O(1) per item in stream

03/05/12 COT 6936 22

Problem: Find fraction of rare items

Fishing problem

= Species U = {1, ..., u}

Input stream consists of species caught and
observed at time t

Rarity: r[t]= |{j| c;[j1=1} / u

= Number of items in stream that are rare (i.e.,
appear only once in the catch so far)

03/05/12 COT 6936 23

Rarity Problem
= Rarity: r[t] = |{jl| ¢;[j1=1} / u

= Deterministic alg: 2u bits + counter for r (Easy!)

= If s[t] is number of species in input stream, then
deterministic alg has lower bound of €2(s[t]) bits

» Tt takes ()(s[t]) bits to keep track of which species
are in the stream.

» If deterministic alg using o(s[t]) bits, then we can
keep track of species in stream with o(s[t]) bits.
- Contradiction!
= Randomization? Approximation?
* Maintain info on k species; report ratio r[t,k]
» If r[t,k] > 1/k, then r[t k] is a good estimate for r[T]

03/05/12 COT 6936

Rarity Problem

Randomization? Approximation?
= Maintain info on k species; report ratio r[t,k]

= If r[t,k]> 1/k, then r[t k] is a good estimate for
r(t]

= Often does not work if u is very large - then
modify the definition of rarity

03/05/12 COT 6936 25

Problem: Counting

Given a stream of bits, at every time instant,
maintain count of number of 1s in last N
elements

= Deterministic algorithms
* O(N) bits of memory to answer in O(1) time [Why?]

03/05/12 COT 6936 26

Problem: Counting

= How well can you approximate with o(N)
memory? [Datar et al. STAM J € 2002]

= Use histogram techniques

» Build time-based histograms in which every bucket
represents a contiguous time interval

- ITdea: Use uniform buckets
* Problem: 1s may not be distributed uniformly
- Solution: Use non-uniform buckets

= Results :
. O((1/€)log?N) bits £2(1/2)log*(Ne))

* (1+g)-approximate count in O(1) time

03/05/12 COT 6936 27

Other problems

COUNTING: Given a stream of bits, at every
time instant, maintain count of number of 1s
in last N elements

SUM: Given a stream of positive integers in
range [0..R], at every time instant, maintain
sum of last N elements

03/05/12 COT 6936 28

Clustering

K-Means

= Constant-factor approximation, O(nk log k) time,
O(k) space, single pass [Charikar et al. 1997]

K-Medians

= Constant-factor approximation, O(nk log k) time,
O(n¢) space, single pass [Guha et al. 2002]

03/05/12 COT 6936 29

