COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2443; Phone: x3748

 giri@cs.fiu.eduhttp://www.cs.fiu.edu/~giri/teach/COT6936_S12.html

COT 6936: Topics in Algorithms

Amortized Analysis

Amortized Analysis

Consider (worst-case) time complexity of sequence of n operations, not cost of a single operation.
Traditional Analysis: Cost of sequence of n operations $=\mathrm{n} S(\mathrm{n})$, where $\mathrm{S}(\mathrm{n})=$ worst case cost of each of the n operations
Amortized Cost $=T(n) / n$, where $T(n)=$ worst case total cost of n operations in the sequence.
Amortized cost can be small even with some expensive operations. Worst case may not occur in every operation, even in worst case. Cost of operations often correlated.

Problem 1: Binary Counter

Data Structure: binary counter b.
Operations: Inc(b).

- Cost of $\operatorname{lnc}(b)=$ number of bits flipped in the operation.
- What's the total cost of N operations when this counter counts up to integer N ?
Approach 1: simple analysis
- Size of counter is $\log (\mathrm{N})$. Worst case when every bit flipped. For N operations, total worst-case cost $=\mathrm{O}(\mathrm{Nlog}(\mathrm{N})$)

Approach 2: Binary Counter

- Intuition: Worst case cannot happen all the time!

000000
000001
000010
000011 000100 000101 000110 000111

Bit 0 flips every time;
Bit 1 flips every other time;
Bit 2 flips every fourth time, etc...
Bit k flips every 2^{k} time.
So the total bits flipped in N operations, when the counter counts from 1 to N , will be = ?

$$
T(N)=\sum_{k=0}^{\log N} \frac{N}{2^{k}}<N \sum_{k=0}^{\infty} \frac{1}{2^{k}}=2 N
$$

So the amortized cost will be $\mathrm{T}(\mathrm{N}) / \mathrm{N}=2$.

Approach 3: Binary Counter

For k bit counters, the total cost is

$$
t(k)=2 x t(k-1)+1
$$

So for N operations, $T(N)=t(\log (N))$. $\mathrm{t}(\mathrm{k})=$?
$\mathrm{T}(\mathrm{N})$ can be proved to be bounded by 2 N .

Amortized Analysis: Potential Method

For n operations, the data structure goes through states: $\mathrm{D}_{0}, \mathrm{D}_{1}$, D_{2}, \ldots, D_{n} with costs $c_{1}, c_{2}, \ldots, c_{n}$

- Define potential function $\Phi\left(D_{i}\right)$: represents the potential energy of data structure after $i_{t h}$ operation.
The amortized cost of the $i_{\text {th }}$ operation is defined by:

$$
\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)
$$

The total amortized cost is

$$
\begin{aligned}
& \sum_{i=1}^{n} \hat{c}_{i}=\sum_{i=1}^{N}\left(c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right)=\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right)+\sum_{i=1}^{n} c_{i} \\
& \sum_{i=1}^{n} c_{i}=-\left(\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right)\right)+\sum_{i=1}^{n} \hat{c}_{i}
\end{aligned}
$$

Potential Method for Binary Counter

Potential function = ??
$\Phi(D)=\#$ of 1's in counter
Assume that in i-th iteration Inc(b) changes
$-1 \rightarrow 0$ (j bits)

- $0 \rightarrow 1$ (1 bit)
- $\Phi\left(\mathrm{D}_{\mathrm{i}-1}\right)=\mathrm{k} ; \Phi\left(\mathrm{D}_{\mathrm{i}}\right)=\mathrm{k}-\mathrm{j}+1$
- Change in potential $=(k-j+1)-k=1-j$
- Real cost = j + 1
- Amortized cost = Real cost + change in potential
- Amortized cost $=j+1-j+1=2$

Problem 2: Stack Operations

Data Structure: Stack

Operations:

- Push (s, x) : Push object x into stack s.
- Cost: T (push) $=0(1)$.
- Pop(s) : Pop the top object in stack s.
- Cost: $T(p o p)=0(1)$.
- MultiPop(s,k) ; Pop the top k objects in stack s.
- Cost: $T(\mathrm{mp})=0($ size(s)) worst case

Assumption: Start with an empty stack
Simple analysis: For N operations, maximum stack size $=\mathrm{N}$. Worst-case cost of MultiPop $=\mathrm{O}(\mathrm{N})$. Total worst-case cost of N operations is at most $\mathrm{NxT}(\mathrm{mp})=\mathrm{O}\left(\mathrm{N}^{2}\right)$.

Amortized analysis: Stack Operations

- Intuition: Worst case cannot happen all the time!
- Idea: pay a dollar for every operation, then count carefully.
- Pay $\$ 2$ for each Push operation, one to pay for operation, another for "future use" (pin it to object on stack).
- For Pop or MultiPop, instead of paying from pocket, pay for operations with extra dollar pinned to popped objects.
Total cost of N operations must be less than $2 \times \mathrm{N}$
- Amortized cost = T(N)/N=2.

Potential Method for Stack Problem

Potential function $\Phi(\mathrm{D})=\#$ of items in stack Push

- Change in potential $=1$; Real cost $=1$
- Amortized Cost = 2

MultiPop [Assume j items popped in $i^{\text {th }}$ iter]

- $\Phi\left(D_{i-1}\right)=k ; \Phi\left(D_{i}\right)=k-j$
- Real cost = j

$$
\text { Pop: } j=1
$$

- Change in potential = $-j$
- Amortized cost = Real cost + change in potential
- Amortized cost $=j-j=0$

COT 6936: Topics in Algorithms

Streaming Algorithms

Massive Data Sets

Examples of large persistent data sets

- WalMart Transaction data (1 PB?)
- Sloan Digital Sky Survey (100 TB)
- Web (over a Trillion pages; over 1 PB of text)
- CERN (expected to produce ~40 TB/sec)

Large data sets with time-sensitive data

- Financial tickers data (NASDAQ: 50K trans/s)
- Credit Card usage traffic
- Network Traffic: Telecom \& ISP traffic
- Sensor data

Important Issues for Stream Algorithms

Key parameters

- Amount of memory available; window size
- Per-item processing time; \# of Passes on data
- Tolerance to error
- What is needed?
- Summarizations, synposes, sketches
- Randomization and sampling
- Pattern Discovery
- Anomaly Detection
- Clustering and Classifications

Streaming Model of Computation

$N=\#$ of items seen so far, window size - amount of memory available $\varepsilon=$ error tolerance Memory usage $=\operatorname{poly}(1 / \varepsilon, \log N)$ Query Time $=\operatorname{poly}(1 / \varepsilon, \log N)$

Network Monitoring System

Frequency Related Problems

Analytics on Packet Headers - IP Addresses

How many elements have non-zero frequency?

Warm up Problems

Given stream of values, find mean.

- Easy.
- Maintain sum of all values and number of items

Given stream, find standard deviation.

- Not so hard

Given stream of bits and window size N, count number of 1 s in window

- Naïve: Store the window: requires N bits
- Can you do better?

Problem: Finding Missing Label

Packets labeled from set $\{1, \ldots, n\}$ and arrive in random order. Assume one packet is missing.
Find the label of the missing packet.

- Bit vector of length n
- Space O(n)

Problem: Find Missing Label

6	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{7}$	$\mathbf{2}$	$\mathbf{5}$	28- Sum	Parity Bit
6	10	10	11	18	20	25	3	
1	1	0	0	1	0	1		0
1	0	0	0	1	1	0		1
0	0	0	1	1	0	1		1

Maintain Sum of Labels and subtract from required sum $=\Sigma_{i=[1 . n]}{ }^{i}=n(n+1) / 2$

- Space $=\log (n(n+1) / 2)<2 \log n$

Optimal algorithm [Assume $n=2^{m}$]

- Store parity sum of each bit of all numbers seen
- Missing number = Final parity sum bits

Problem: Finding Missing Numbers

Same as problem 1, but there may be up to k missing numbers.
Instead of sum of numbers, we maintain k different functions of the numbers seen.

- Decoding is not so easy
- Needs factoring polynomials
- No known deterministic algorithms (?)
- Randomized algorithms
- $O\left(k^{2} \log n\right)$
- $O(k \log k \log n)$

Problem: Find number of unique items

Simple hashing scheme to do counting

- Space $=0(\mathrm{~m})$
- Time $=O(1)$ per item in stream

Problem: Find fraction of rare items

Fishing problem

- Species $U=\{1, \ldots$, u $\}$

Input stream consists of species caught and observed at time †

Rarity: $r[\dagger]=\left|\left\{j \mid c_{+}[j]=1\right\}\right| / u$

- Number of items in stream that are rare (i.e., appear only once in the catch so far)

Rarity Problem

Rarity: $r[t]=\left|\left\{j \mid c_{+}[j]=1\right\}\right| / u$

- Deterministic alg: 2u bits + counter for r (Easy!)
- If $s[\dagger]$ is number of species in input stream, then deterministic alg has lower bound of $\Omega(s[\dagger])$ bits
- It takes $\Omega(s[\dagger])$ bits to keep track of which species are in the stream.
- If deterministic alg using o(s[t]) bits, then we can keep track of species in stream with o(s[t]) bits.
- Contradiction!
- Randomization? Approximation?
- Maintain info on k species; report ratio $r[t, k]$
- If $r[t, k]>1 / k$, then $r[t, k]$ is a good estimate for $r[t]$

Rarity Problem

Randomization? Approximation?

- Maintain info on k species; report ratio r[t,k]
- If $r[t, k]>1 / k$, then $r[t, k]$ is a good estimate for r [\dagger]
- Often does not work if u is very large - then modify the definition of rarity

Problem: Counting

Given a stream of bits, at every time instant, maintain count of number of 1 s in last N elements

- Deterministic algorithms
- $\Theta(N)$ bits of memory to answer in $O(1)$ time [Why?]

Problem: Counting

How well can you approximate with o(N) memory? [Datar et al. SIAM J C 2002]

- Use histogram techniques
- Build time-based histograms in which every bucket represents a contiguous time interval
- Idea: Use uniform buckets
- Problem: 1s may not be distributed uniformly
- Solution: Use non-uniform buckets
- Results
- $O\left((1 / \varepsilon) \log ^{2} N\right)$ bits
$\Omega\left((1 / \varepsilon) \log ^{2}(N \varepsilon)\right)$
- (1+ ε)-approximate count in $O(1)$ time

Other problems

COUNTING: Given a stream of bits, at every time instant, maintain count of number of 1 s in last N elements
SUM: Given a stream of positive integers in range [O..R], at every time instant, maintain sum of last N elements

Clustering

K-Means

- Constant-factor approximation, $O(n k \log k)$ time, O(k) space, single pass [Charikar et al. 1997]
K-Medians
- Constant-factor approximation, $O(n k \log k)$ time, $O\left(n^{\varepsilon}\right)$ space, single pass [Guha et al. 2002]

