COT 6936: Topics in Algorithms

Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/COT6936_S10.html https://online.cis.fiu.edu/portal/course/view.php?id=427

Spectral Methods

- Graph Connectivity problems
 - Google Page Rank
- Graph Partitioning problems
 - Clustering (even linearly non-separable case)
- Markov Chain Mixing problems
 - Random walks in graphs

Matrices and Eigenvalues

- Array of values
- Linear Transformation

- Eigenvalues and Eigenvectors
 - $Ax = \lambda x$

λν

 $A\mathbf{x} = \lambda \mathbf{x}$

• $A = Q \wedge Q^{-1}$ 4/2/12

Graph Bisection

- Construct adjacency matrix A
- Construct Laplacian L = D A
 - D = diagonal matrix with degrees along diagonal
- L is positive semi-definite (PSD); has non-neg eigenvalues; has smallest eigenvalue = 0
- Second eigenvector provides information about bisection.
 - Signs of 2nd eigenvector give a good bisection
 - <u>Extreme case</u>: Connected components have constant values in 2nd eigenvector

Graph Bisection (Continued)

- Eigenvalues indicate strength of bisection
- How to get bisections with n/2 vertices?
 - Use median value in second eigenvector
- How to get k partitions?
 - Perform bisections recursively
 - Use more eigenvectors

Spectral Clustering: Strategy

- Given data points and a distance function, construct a weighted graph
- Let A be its adjacency matrix; let D be diagonal matrix with degrees along diagonal
- Construct Laplacian L (PSD, non-neg eigenv.)
 - Unnormalized: L = D A
 - Normalized symmetric: L = D^{-1/2}LD^{1/2}
 - Random Walk: L = D⁻¹L
- Matrix L_k has cols = first k eigenvectors of L
- Cluster rows of L_k

Spectral Clustering

- Need distance measure (need not be a metric), i.e., triangle inequality not needed
- Not Model-based
- Global method
- Turns discrete problem into continuous

Randomized Algorithm for MAX 3-SAT

- Assume each clause has 3 distinct literals
- Randomly assign 0/1 to all variables
 - Each clause is satisfied with prob 7/8
 - Expected number of clauses = 7m/8
 - There exists a truth assignment that satisfies 7m/8 clauses

Problem:

How can we find a satisfying truth assignment with at least 7m/8 clauses satisfied?

Derandomization

- Consider randomized algorithm from slide 8
- $E[S\phi] = \frac{1}{2} E[S\phi | x_1 = T] + \frac{1}{2} E[S\phi | x_1 = F]$
- E[Sφ | x₁ = T], E[Sφ | x₁ = F] can be computed in polynomial time. WHY?
- If $(E[S\phi | x_1 = T] \ge E[S\phi | x_1 = F])$, then $E[S\phi | x_1 = T] \ge E[S\phi] \ge 7m/8$
- Set $x_1 = T$, and reduce φ to φ' .
- Find value for x₂ and so on.

How to compute the expected values

- $E[X] = \Sigma_i P(C_i = T)$ • For example, let • $C_i = (x_1 \vee -x_2 \vee x_3)$ • $P(C_i = T | x_1 = T) = 1$ • $P(C_i = T | x_1 = T) = 1$
- $P(C_i = T|x1 = F) = 1 P(C_i = F|x_1 = F) = \frac{3}{4}$