COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2443; Phone: x3748

 giri@cs.fiu.eduhttp://www.cs.fiu.edu/~giri/teach/COT6936_S10.html https://online.cis.fiu.edu/portal/course/view.php?id=427

Spectral Methods

Graph Connectivity problems

- Google Page Rank

Graph Partitioning problems

- Clustering (even linearly non-separable case)

Markov Chain Mixing problems

- Random walks in graphs

Matrices and Eigenvalues

Array of values

Linear Transformation

Eigenvalues and Eigenvectors

- $A x=\lambda x$

- Under transformation A, eigenvectors only experience change in magnitude, not direction
- $A=Q \wedge Q^{-1}$

Graph Bisection

Construct adjacency matrix A
Construct Laplacian L = D - A

- $D=$ diagonal matrix with degrees along diagonal
L is positive semi-definite (PSD); has non-neg eigenvalues; has smallest eigenvalue $=0$
Second eigenvector provides information about bisection.
- Signs of $2^{\text {nd }}$ eigenvector give a good bisection
- Extreme case: Connected components have constant values in $2^{\text {nd }}$ eigenvector

Graph Bisection (Continued)

Eigenvalues indicate strength of bisection How to get bisections with $n / 2$ vertices?

- Use median value in second eigenvector

How to get k partitions?

- Perform bisections recursively
- Use more eigenvectors

Spectral Clustering: Strategy

Given data points and a distance function, construct a weighted graph Let A be its adjacency matrix; let D be diagonal matrix with degrees along diagonal Construct Laplacian L (PSD, non-neg eigenv.)

- Unnormalized: L = D - A
- Normalized symmetric: $L=D^{-1 / 2} L D^{1 / 2}$
- Random Walk: L = D-1L

Matrix L_{k} has cols = first k eigenvectors of L Cluster rows of L_{k}

Spectral Clustering

Need distance measure (need not be a metric), i.e., triangle inequality not needed
Not Model-based
Global method
Turns discrete problem into continuous

Randomized Algorithm for MAX 3-SAT

Assume each clause has 3 distinct literals
Randomly assign $0 / 1$ to all variables

- Each clause is satisfied with prob 7/8
- Expected number of clauses $=7 \mathrm{~m} / 8$
- There exists a truth assignment that satisfies $7 \mathrm{~m} / 8$ clauses
Problem:
- How can we find a satisfying truth assignment with at least $7 \mathrm{~m} / 8$ clauses satisfied?

Derandomization

Consider randomized algorithm from slide 8
$E[S \varphi]=\frac{1}{2} E\left[S \varphi \mid x_{1}=T\right]+\frac{1}{2} E\left[S \varphi \mid x_{1}=F\right]$
$E\left[S \varphi \mid x_{1}=T\right], E\left[S \varphi \mid x_{1}=F\right]$ can be computed in polynomial time. WHY?
If $\left(E\left[S \varphi \mid x_{1}=T\right] \geq E\left[S \varphi \mid x_{1}=F\right]\right)$, then $E\left[S \varphi \mid x_{1}=T\right] \geq E[S \varphi] \geq 7 \mathrm{~m} / 8$
Set $x_{1}=T$, and reduce φ to φ^{\prime}.
Find value for x_{2} and so on.

How to compute the expected values

$E[X]=\Sigma_{i} P\left(C_{i}=T\right)$
For example, let

- $C_{i}=\left(x_{1} \vee-x_{2} \vee x_{3}\right)$
$\mathrm{P}\left(C_{\mathrm{i}}=\mathrm{T} \mid x_{1}=\mathrm{T}\right)=1$
$P\left(C_{i}=T \mid x 1=F\right)=1-P\left(C_{i}=F \mid x_{1}=F\right)=\frac{3}{4}$

