COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2443; Phone: x3748

 giri@cs.fiu.eduhttp://www.cs.fiu.edu/~giri/teach/COT6936_S12.html

Convex Polygons

Convex region: A region in space is called convex if line joining any two points in the region is completely contained in the region.
Convex hull of a set of points,
S, is the smallest convex region containing S.

Rubber Band Analogy

Non-convex polygons

Convex vs Non-convex

3D convex hulls

Convex Hull: Graham Scan applet

http://www.personal.kent.edu/~rmuhamma/
Compgeometry/MyCG/ConvexHull/ GrahamScan/grahamScan.htm

- Main cost: sorting
- $O(n \log n)$

Package Wrapping: Jarvis March

Package Wrapping: Jarvis March

Time complexity

- (Cost of iteration) X (\# iterations)

Each iteration: $O(n)$
Number of iterations $=O(n)$
Cost = O(nh)

- h = \# of points on convex hull

Complexity of Convex Hull

- Graham Scan: O(n $\log n$)

Jarvis March: O(nh)
[output sensitive]
Lower Bound $=\Omega(n \log h)$

Chan's Algorithm

Combines the benefits of both algorithms Partition points into n / m groups of size m Use Graham scan on each one

- $O((m \log m)(n / m))=O(n \log m)$

Merge the n / m convex hulls using a Jarvis march algorithm by treating each group as a "big point"

- Tangent between a point and a convex polygon with m points can be computed in $O(\log m)$ time
- $O((n / m)(\log m)(h))=O((n / m) h \log m)$

Chan's Algorithm

Time Complexity $=O(n \log m+(n / m) h \log m)$
If $m=h$, then time $=O(n \log h)$
How to guess h?

- Linear Search
- Time complexity $=O(n h \log h)$
- Binary Search
- Time complexity $=O\left(n \log ^{2} h\right)$
- Doubling Search ($m=1,2,4,8, \ldots$)
- Time Complexity $=O\left(n \log ^{2} h\right)$
- ???

Chan’s Algorithm: More tricks

- What if $m=h^{2 ?}$?
- Then $O(n \log m)=O(n \log h)$

So try: $m=2,4,16,256, \ldots$

- Analysis

$$
\sum_{t=1}^{\lg \lg h} n 2^{t}=n \sum_{t=1}^{\lg \lg h} 2^{t} \leq n 2^{1+\lg \lg h}=2 n \lg h=O(n \log h)
$$

Closest Pair Problem

Input: Set of points S in the plane
Output: The closest pair of points in S
Naïve Solution: $O\left(n^{2}\right)$ time
Divide-\&-Conquer:

- $T(n)=2 T(n / 2)+M(n)$
- $M(n)=$ time to merge solutions to the two subproblems
- Only need to merge 2 strips on 2 sides of vertical split
- Naïve Solutions: $M(n)=O\left(n^{2}\right)$
- Sort the points by y-coordinate: $M(n)=O(n \log n)$
- Global sorting at the start: $M(n)=O(n)$

Lower Bound: O(nlogn) time
Randomized Algorithm: $O(n)$ time [Rabin]

Post Office Problem

- Preprocess: Given set S of points in the plane representing post offices.
Input: Query point p.
Output: Report the closest post office to p.

1-d Post Office Problem

Preprocessing: Build balanced BST on S.

- O(nlogn)
- Alternatively, build a sorted array on S.

Query Algorithm: Given a value p, identify the smallest value larger than p and the largest value smaller than p and among the two pick the one that is closest to p.

- O(log n)

2-d L_{∞} Post Office Problem

$L_{p}=\left(\left(\left|a_{x}-b_{x}\right|\right)^{p}+\left(\left|a_{y}-b_{y}\right|\right)^{p}\right)^{1 / p}$
$L_{2}=$ Euclidean distance
$L_{\infty}=\max \left\{\left|a_{x}-b_{x}\right|,\left|a_{y}-b_{y}\right|\right\}$
Preprocessing: Build Range Tree on S.

- O(nlogn)

Query Algorithm: Given a value p, identify the closest point to the right of p and the closest point to the left of p and among the two pick the one that is closest to p.

- $O(\log n)$

2-D Range Tree

Build the X-Tree, a balanced binary search tree on set S using the x-coordinates of the points.
For each node in the X-Tree, build a Y-Tree, a balanced binary search tree on the set of points in the subtree of that node using the y-coordinates of the points.
Application: Output all points with x-coordinates in range $[A, B]$ and y-coordinates in range $[C, D]$.
Application: Post office problem

Definitions

A Geometric Network N has vertices

S that correspond to points in \Re^{d} and edges E whose weights equal the distance between the endpoints.

Examples:

Good Network Design

Small size
Small weight
Small degree
Small diameter

- Highly connected, highly fault-tolerant Planar, low genus
Small load factor
SMALL DILATION

MST on 13,509 cities of US

Definitions

Dilation or Stretch Factor ($\dagger(\mathrm{N})$) of a network N is the maximum amount by which the distance between some pair of vertices in the network is increased.

$$
t(N)=\max _{a, b \in N}\left\{\frac{d_{N}(a, b)}{|a b|}\right\}
$$

- \dagger-Spanner is a network with dilation at mos \dagger t.

t-Spanner Networks: Examples

$\mathrm{t}=10$

$t=5$

$\mathrm{t}=1.5$

$t=3$

$\mathrm{t}=1.25$

Application of Geometric Spanners

Network Design - Transportation, Communication
Distributed Algorithms - Synchronizers
Graphics - Model Simplification
Pattern Recognition - Approx. Neares \dagger Neighbors
Robotics - Approximate Shortest Path Problems

Approximation Algorithm design [Rao and Smith]

Design of t-Spanners

- Theta graphs

[Clarkson 87, Keil 88, Althofer et al. 93]
Greedy algorithms
[Bern 89, Althofer et al. 93]
Well-separated pair decomposition [Callahan \& Kosaraju 95]

Theta Graphs

$$
t=1 /(\cos \theta-\sin \theta)
$$

Algorithm GREEDY(G=(V, E),t)

Sort E by non-decreasing weights
Initialize $G^{\prime}\left(V, E^{\prime}\right)$ to be empty
for each edge $e=(u, v) \in E$ do

$$
\text { if }\left(d_{G}(u, v)>t^{*} w t(e)\right) \text { then }
$$

Add edge e to E^{\prime}
output G^{\prime}

Well-Separated Pair Decomposition

Definition: [Callahan and Kosaraju, 95]

Given a set, S, of n points in R^{d}, and $s>0$, a WSPD is sequence of pairs of subsets of S,

$$
\left\{A_{1}, B_{1}\right\}, \ldots,\left\{A_{m}, B_{m}\right\} \text {, s.t. }
$$

1. Every pair of vertices $\{p, q\}$ is in exactly one pair of the decomposition.
2. A_{i} and B_{i} are well-separated for each $i=1, \ldots, m$
3. $m=O(n)$
4. The decomposition can be computed in $O(n \log n)$ time.

t-Spanner Construction Using WSPD

[Arya, Das, Mount, Salowe, Smid, 95]

1. Compute a WSPD with $s=(4 t+4) /(t-1)$
2. For each well-separated pair $\left(A_{i}, B_{i}\right)$ add an arbitrary edge between A_{i} and B_{i}.
3. Pruning Step: Remove unnecessary edges. Analysis

Stretch factor $=\mathrm{t}$
Max degree $=0(1)$
Total weight $=\mathrm{O}(1) \mathrm{wt}(\mathrm{MST})$

Theorem

Given a set S of n sites in R^{d}, and a real number $\dagger>1$, there exists an efficient algorithm to construct a network G such that:
$-t(G) \leq t$, " $w t(G)=O(1) \cdot w t(M S T)$, and
-maximum degree of G is $O(1)$
[Gudmundsson, Levcopoulos, Narasimhan 00]

Comparison of Spanner Construction Methods

Theta Graphs: $O(n \log n$) time, $O(n)$ space
[Arya, Das, Mount, Salowe, Smid 95]
WSPD Spanners: $O(n \operatorname{logn}$) time, $O(n)$ space
[Callahan \& Kosaraju 95]

- Greedy Algorithms: Low weight guarantees
$O(n \operatorname{logn})$ time, $O(n)$ space, $O(1) w t(M S T)$ weight
[Das, Heffernan, Narasimhan, Salowe 93, 94, 95,
Gudmundsson, Levcopoulos, Narasimhan '00]

Algorithm NewGREEDY(G=(V, E),t)

Sort E by non-decreasing weights
Initialize $G^{\prime}\left(V, E^{\prime}\right)$ to be empty
for each edge $e=(u, v) \in E$ do

$$
\text { if }\left(d_{G}(u, v)>t(1+\varepsilon) * w t(e)\right) \text { then }
$$

Add edge e to E^{\prime}
output G^{\prime}

Computing Stretch Factors

Input: A geometric graph N on a set S of n sites Output: Compute the stretch factor of N .

Approximate Stretch Factors

Input: A geometric graph N on a set S of n sites Output: Compute (approx) stretch factor of N.

Reduction to $\mathrm{O}(\mathrm{n})$
 shortest path queries.
 [Narasimhan, Smid '01]

ε-APPROXIMATION ALGORITHM

Step 1: Using separation constant $s=4(2+\varepsilon) / \varepsilon$ Compute a WSPD: $\left(A_{1}, B_{1}\right), \ldots,\left(A_{m}, B_{m}\right)$
Step 2: For every well-separated pair $\left(A_{i}, B_{i}\right)$ pick an arbitrary pair of vertices $\left(a_{i}, b_{i}\right)$ such that $a_{i} \in A_{i}, b_{i} \in B_{i}$.
Step 3: Return

$$
\max _{i}\left\{d_{N}\left(a_{i}, b_{i}\right) /\left|a_{i} b_{i}\right|\right\}
$$

[Narasimhan \& Smid '00]
[Trivial Exact Algorithm using APSP]

Approximate Stretch Factors

- PATH NETWORKS

O(nlogn)

- CYCLE NETWORKS

O(nlogn)
TREE NETWORK
$O(n \operatorname{logn})$
PLANAR NETWORKS
O(nlogn)
ARBITRARY NETWORKS

$$
O(m+n \log n) \quad[(1+\varepsilon) \text {-approx }]
$$

GEOMETRIC ANALYSIS

Input: Set S of n sites; Set E of edges joining sites; Property P Satisfied by E

Output: $w \dagger(E) \leq$??

Theta Graph Property [Clarkson, Keil]
Diamond Property [Das]
Gap Property [Das, Narasimhan]
Leapfrog Property [Das, Narasimhan]
Isolation Property [Das, Narasimhan]

Spanner Networks with other Properties

Fault-Tolerance [Narasimhan, Smid]
Small Degree
[Soares, Salowe, Das, Heffernan, Arya et al.]
Small Diameter [Arya et al.]
Bottleneck Spanners [Narasimhan, Smid]
Steiner Spanners - "Banyans" [Rao, Smith]
Tree Spanners \& Planar Spanners [Arikati et al.]
Probabilistic Embeddings [Bartal]

Experiments with Spanners

WSPD-based spanners followed by (approximate) greedy algorithm performs well.
[Narasimhan \& Zachariasen '00]

Problem

Preprocess a geometric spanner network so that approximate shortest path lengths between two query vertices can be reported efficiently (using subquadratic space).

Applications

Shortest path queries in polygonal domains with obstacles.
Approximate closest pair. Computing approximate stretch factors of geometric graphs.

