
COT 6936: Topics in Algorithms!

Giri Narasimhan 
ECS 254A / EC 2443; Phone: x3748 

giri@cs.fiu.edu 
http://www.cs.fiu.edu/~giri/teach/COT6936_S12.html 



Convex Polygons!
§  Convex region: A region in space is called 

convex if line joining any two points in the 
region is completely contained in the region.  

§  Convex hull of a set of points,  
 S, is the smallest convex  
 region containing S.  

3/7/12 COT 6936 2 



Rubber Band Analogy!

3/7/12 COT 6936 3 



§  Convex vs Non-convex 

Non-convex polygons!

3/7/12 COT 6936 4 



3D convex hulls!

3/7/12 COT 6936 5 



Convex Hull: Graham Scan applet!
§  http://www.personal.kent.edu/~rmuhamma/

Compgeometry/MyCG/ConvexHull/
GrahamScan/grahamScan.htm  
§ Main cost: sorting  

• O(n log n) 

3/7/12 COT 6936 6 



Package Wrapping: Jarvis March!

3/7/12 COT 6936 7 



Package Wrapping: Jarvis March!
§  Time complexity  

§  (Cost of iteration) X (# iterations) 
§  Each iteration: O(n) 
§  Number of iterations = O(n) 
§  Cost = O(nh) 

§  h = # of points on convex hull 

3/7/12 COT 6936 8 



Complexity of Convex Hull!
§  Graham Scan: O(n log n) 
§  Jarvis March: O(nh)   [output sensitive] 
§  Lower Bound = Ω(n log h) 

3/7/12 COT 6936 9 



Chan’s Algorithm!
§  Combines the benefits of both algorithms 
§  Partition points into n/m groups of size m 
§  Use Graham scan on each one 

§ O((m log m) (n/m)) = O(n log m) 
§  Merge the n/m convex hulls using a Jarvis 

march algorithm by treating each group as a 
“big point” 
§  Tangent between a point and a convex polygon 

with m points can be computed in O(log m) time 
§ O((n/m)(log m)(h)) = O((n/m)h log m) 

3/7/12 COT 6936 10 



Chan’s Algorithm!
§  Time Complexity = O(n log m + (n/m) h log m) 
§  If m = h, then time = O(n log h) 
§  How to guess h? 

§  Linear Search 
•  Time complexity = O(nh log h) 

§  Binary Search 
•  Time complexity = O(n log2 h) 

§ Doubling Search (m = 1, 2, 4, 8, …) 
•  Time Complexity = O(n log2 h) 

§  ??? 
3/7/12 COT 6936 11 



Chan’s Algorithm: More tricks!
§  What if m = h2? 

§  Then O(n log m) = O(n log h) 
§  So try: m = 2, 4, 16, 256, … 

§ Analysis 

3/7/12 COT 6936 12 



COT 6936 13 

Closest Pair Problem!
§  Input: Set of points S in the plane 
§  Output: The closest pair of points in S 
§  Naïve Solution: O(n2) time 
§  Divide-&-Conquer:  

§  T(n) = 2T(n/2) + M(n) 
§  M(n) = time to merge solutions to the two subproblems 
§  Only need to merge 2 strips on 2 sides of vertical split 
§  Naïve Solutions: M(n) = O(n2) 
§  Sort the points by y-coordinate: M(n) = O(nlogn) 
§  Global sorting at the start: M(n) = O(n) 

§  Lower Bound: O(nlogn) time 
§  Randomized Algorithm: O(n) time [Rabin] 

3/7/12 



COT 6936 14 

Post Office Problem!
§  Preprocess: Given set S of points in the plane 

representing post offices. 
§  Input: Query point p. 
§  Output: Report the closest post office to p. 

3/7/12 



COT 6936 15 

1-d Post Office Problem!
§  Preprocessing: Build balanced BST on S.  

§ O(nlogn) 
§ Alternatively, build a sorted array on S. 

§ Query Algorithm: Given a value p, identify 
the smallest value larger than p and the 
largest value smaller than p and among the 
two pick the one that is closest to p.  
§ O(log n) 

3/7/12 



COT 6936 16 

2-d L∞ Post Office Problem!
§  Lp = ((|ax-bx|)p + (|ay-by|)p)1/p 

§  L2 = Euclidean distance 
§  L∞ = max {|ax-bx|, |ay-by|} 
§  Preprocessing: Build Range Tree on S.  

§ O(nlogn) 
§ Query Algorithm: Given a value p, identify 

the closest point to the right of p and the 
closest point to the left of p and among the 
two pick the one that is closest to p.  
§ O(log n) 

3/7/12 



COT 6936 17 

2-D Range Tree!
§  Build the X-Tree, a balanced binary search tree on 

set S using the x-coordinates of the points.  
§  For each node in the X-Tree, build a Y-Tree, a 

balanced binary search tree on the set of points in 
the subtree of that node using the y-coordinates of 
the points.  

§  Application: Output all points with x-coordinates in 
range [A,B] and y-coordinates in range [C,D]. 

§  Application: Post office problem 

3/7/12 



COT 6936 18 

Definitions!
§  A Geometric Network N has vertices 
S that correspond to points in ℜd and 
edges E whose weights equal the distance 
between the endpoints.  

Examples:  

3/7/12 



Good Network Design!
§  Small size 
§  Small weight 
§  Small degree 
§  Small diameter 
§  Highly connected, highly fault-tolerant 
§  Planar, low genus 
§  Small load factor 
§  SMALL DILATION 

3/7/12 COT 6936 19 



MST on 13,509 cities of US!

3/7/12 COT 6936 20 



COT 6936 21 

Definitions!
§  Dilation or Stretch Factor (t(N)) of a network N is the 
maximum amount by which the distance between some pair of 
vertices in the network is increased. 

    
 
 
 
 
§  t-Spanner is a network with dilation at most t. 

3/7/12 



t = 10 

t = 1.25 t = 1.5 

t = 3 t = 5 

t = 2 

t-Spanner Networks: Examples 

3/7/12 22 COT 6936 



COT 6936 23 

Application of Geometric Spanners!
§  Network Design – Transportation, 

Communication 
§  Distributed Algorithms – Synchronizers 
§  Graphics – Model Simplification 
§  Pattern Recognition – Approx. Nearest 

Neighbors 
§  Robotics – Approximate Shortest Path 

Problems 
§  Approximation Algorithm design [Rao and 

Smith] 
3/7/12 



COT 6936 24 

Design of t-Spanners!
§  Theta graphs 
[Clarkson 87, Keil 88, Althofer et al. 93]  
§  Greedy algorithms 
[Bern 89, Althofer et al. 93] 
§ Well-separated pair decomposition 
[Callahan & Kosaraju 95] 

3/7/12 



COT 6936 25 

Theta Graphs!

t = 1/(cosθ - sinθ) 
 

θ	



3/7/12 



COT 6936 26 

Algorithm GREEDY(G=(V, E),t)!
 Sort E by non-decreasing weights 
 Initialize G’(V,E’) to be empty 

 for each edge e = (u, v) ∈ E do 
  if (dG’(u, v) > t * wt(e)) then 

    Add edge e to E’ 
 output G’ 

3/7/12 



COT 6936 27 

Well-Separated Pair Decomposition!
Definition: [Callahan and Kosaraju, 95] 
Given a set, S, of n points in Rd, and s > 0, a WSPD is sequence 

of pairs of subsets of S, 
{A1, B1}, …, {Am, Bm}, s.t. 

 
1. Every pair of vertices {p, q} is in exactly one pair of the 

decomposition. 
2. Ai and Bi are well-separated for each i = 1, …, m 
3. m = O(n) 
4. The decomposition can be computed in O(nlogn) time. 

3/7/12 



COT 6936 28 

t-Spanner Construction Using WSPD!
[Arya, Das, Mount, Salowe, Smid, 95] 
1.  Compute a WSPD with s = (4t + 4)/(t-1) 
2.  For each well-separated pair (Ai, Bi)  

 add an arbitrary edge between Ai and Bi. 
3.  Pruning Step: Remove unnecessary edges. 
Analysis 
n  Stretch factor = t 
n  Max degree = O(1) 

n  Total weight = O(1) wt(MST) 
 

   

3/7/12 



COT 6936 29 

Theorem!
Given a set S of n sites in Rd, and a real number t > 1, there 
exists an efficient algorithm to construct a network G such 
that: 
§  t(G) ≤ t,  
§ wt(G) = O(1) . wt(MST), and 
§ maximum degree of G is O(1) 
[Gudmundsson, Levcopoulos, Narasimhan 00] 

3/7/12 



COT 6936 30 

Comparison of Spanner Construction Methods!
§  Theta Graphs: O(nlogn) time, O(n) space  

 [Arya, Das, Mount, Salowe, Smid 95] 
§  WSPD Spanners: O(nlogn) time, O(n) space 

 [Callahan & Kosaraju 95] 
§  Greedy Algorithms: Low weight guarantees 

 O(nlogn) time, O(n) space, O(1) wt(MST) weight 
 [Das, Heffernan, Narasimhan, Salowe 93, 94, 95,  
 Gudmundsson, Levcopoulos, Narasimhan ’00] 

3/7/12 



COT 6936 31 

Algorithm NewGREEDY(G=(V, E),t)!
 Sort E by non-decreasing weights 
 Initialize G’(V,E’) to be empty 

 for each edge e = (u, v) ∈ E do 
  if (dG’(u, v) > t(1+ε) * wt(e)) then 

    Add edge e to E’ 
 output G’ 

3/7/12 



COT 6936 32 

Computing Stretch Factors!
Input: A geometric graph N on a set S of n sites 
Output: Compute the stretch factor of N. 
 
 

3/7/12 



COT 6936 33 

Approximate Stretch Factors!
Input: A geometric graph N on a set S of n sites 
Output: Compute (approx) stretch factor of N. 

      
 

Reduction to O(n)  
shortest path queries. 
[Narasimhan, Smid ’01] 

3/7/12 



COT 6936 34 

ε-APPROXIMATION ALGORITHM!
Step 1: Using separation constant s = 4(2+ε)/ε	



 Compute a WSPD: (A1, B1), …, (Am, Bm) 
Step 2: For every well-separated pair (Ai, Bi) pick an 

 arbitrary pair of vertices (ai, bi) such that  
 ai ∈ Ai, bi ∈ Bi.  

Step 3: Return  
  maxi {dN(ai,bi)/|aibi|} 

 
[Narasimhan & Smid ’00] 
[Trivial Exact Algorithm using APSP] 
 

3/7/12 



COT 6936 35 

§  PATH NETWORKS 
  O(nlogn) 

§  CYCLE NETWORKS 
  O(nlogn) 

§  TREE NETWORK 
  O(nlogn) 

§  PLANAR NETWORKS 
  O(nlogn) 

§  ARBITRARY NETWORKS 
  O(m + nlogn)                   [(1+ε)-approx] 
  

Approximate Stretch Factors 

3/7/12 



COT 6936 36 

GEOMETRIC ANALYSIS!
 Input: Set S of n sites; Set E of edges joining sites; 
         Property P Satisfied by E 
 Output: wt(E) ≤ ?? 

 
§  Theta Graph Property [Clarkson, Keil] 
§  Diamond Property [Das] 
§  Gap Property [Das, Narasimhan] 
§  Leapfrog Property [Das, Narasimhan] 
§  Isolation Property [Das, Narasimhan] 

3/7/12 



COT 6936 37 

Spanner Networks with other Properties!
§  Fault-Tolerance [Narasimhan, Smid] 
§  Small Degree  

 [Soares, Salowe, Das, Heffernan, Arya et al.] 
§  Small Diameter [Arya et al.]  
§  Bottleneck Spanners [Narasimhan, Smid]  
§  Steiner Spanners – “Banyans” [Rao, Smith] 
§  Tree Spanners & Planar Spanners [Arikati et al.] 
§  Probabilistic Embeddings [Bartal] 

3/7/12 



COT 6936 38 

Experiments with Spanners!
§  WSPD-based spanners followed by (approximate) greedy algorithm 

performs well.  
  [Narasimhan & Zachariasen ’00] 

3/7/12 



COT 6936 39 

Problem!
 Preprocess a geometric spanner network so 
that  approximate shortest path lengths 
between two query vertices can be reported 
efficiently (using subquadratic space). 

3/7/12 



COT 6936 40 

Applications!
§  Shortest path queries in polygonal domains 

with obstacles.  
§  Approximate closest pair. 
§  Computing approximate stretch factors of 

geometric graphs. 

3/7/12 


