
SPRING 2012: COT 6936 Topics in Algorithms

Notes on Probability

Giri Narasimhan

These notes are (mostly) compiled from (a) Probability and Computing by
Mitzenmacher and Upfal, (b) Randomized Algorithms by Motwani and Ragha-
van, (c) Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein,
(d) The Analysis of Algorithms by Purdom and Brown, and (e) Algorithm
Design by Kleinberg and Tardos. This is an evolving document that
was started in Jan 2010.

1 Useful Terms and Concepts

Sample Space It is a set of elementary events to be thought of as possible
outcomes of an experiment. Probabilities are defined in terms of sample
spaces.

Probability Distribution on a sample space is a mapping from events in
the sample space to probabilities (i.e., real numbers from [0, 1] satisfying
probability axioms).

(Discrete) Random Variable (Abbreviated as r.v.) is a function from
the sample space (assumed to be finite or countably infinite) to real
numbers associated with outcomes of an experiment.

Bernoulli or indicator random variable Associated with events and has
a value of 1 (or 0) if the event occurs (does not occur).

Probability Density Function of the random variable X is the function:
f(x) = Pr{X = x}.

Expectation E[X] =
∑
i iPr(X = i).

Alternative formulation If X only takes on non-negtaive integer
values, then E[X] =

∑∞
i=1 Pr(X ≥ i).

Binomial random variable B(n, p) is the r.v. representing the number
of successes in n independent experiments, each with probability p of
success. Pr(X = j) =

(
n
j

)
pj(1− p)n−j. Expected value is np.

1

Geometric random variable is the r.v. representing the number of ex-
periments before success is attained when the probability of success is
p on each experiment. Pr(X = n) = (1 − p)n−1p. Expected value is
1/p. Variance is 1−p

p2
.

k-th moment of a r.v. X = E[Xk].

Variance and Covariance V ar[X] = E[(X −E[X])2] = E[X2]− (E[X])2

and Cov(X, Y) = E[(X − E[X])(Y − E[Y])].

Standard Deviation σ[X] =
√
V ar[X].

Monte Carlo Algorithms are randomized algorithms that might fail. They
are often referred to as “always fast, not always correct”.

Las Vegas Algorithms are randomized algorithms that are always correct.
They are often referred to as “always correct, not always fast”. A Monte
Carlo algorithm can be turned into a Las Vegas algorithm by repeating
it until it succeeds.

Bernoulli trials Sum of independent 0-1 iid r.v.s. Thus they are a special
case of Poisson trials.

Poisson Trials Sum of independent 0-1 r.v.s. The r.v.s don’t have to be
iids.

Poisson distribution is often thought of as the distribution of rare events,
e.g., the number of accidents or lotteries per person. It is different from
the Poisson trials defined above. When we throw m balls randomly
into n bins, the probability that a bin has r balls is approximately the
Poisson distribution with mean m/n. It is also thought of as the limit
of the Binomial distribution. A discrete Poisson r.v. X with parameter
µ is given by: Pr(X = j) = e−uµj

j!
. Expected value = µ.

2 Important Theorems

Union of Events The probability of the union of events is no more than
the sum of their probabilities. The events need not be independent.

2

Linearity of Expectation Expectation of sum (of finite number of discrete
r.v.s) is the sum of the expectations. (Note that the independence is
not required.)

Linearity of Variances Variance of sum (of finite number of independent
discrete r.v.s) is the sum of the variances. (Note that independence is
required.)

Jensen’s Inequality If f is convex (U-shaped), then E[f(X)] ≥ f(E[X])

Markov’s Inequality Pr(X ≥ a) ≤ E[X]/a, for all a > 0 and for all r.v.s
that only assume non-negative values. A corollary: Pr(X ≥ kE[X]) ≤
1/k, for positive integer k.

Chebyshev’s Inequality uses the variance to bound the deviation from
the expected value. Pr(|X − E[X]| ≥ a) ≤ V ar[X]/a2. Variants:

1. Pr(|X − E[X]| ≥ t · σ[X]) ≤ 1/t2

2. Pr(|X − E[X]| ≥ t · E[X]) ≤ V ar[X]
t2(E[X])2

3. (Using higher moments) Pr(|X − E[X]| > t k

√
E[(X − E[X])k] ≤

1/tk.

Chernoff’s Bounds for a r.v. is obtained by applying Markov’s inequality
to etX for some well chosen t. For a given δ > 0, these bounds give
the probability that X deviates from its expectation µ by δµ or more.
Often, Chernoff’s bounds give stronger bounds than Chebyshev’s in-
equality.

Let X1, . . . , Xn be n independent random variables with sum X. Let
µ ≥ E[X]. Then for any δ > 0, we have

Pr[X > (1 + δ)µ] <

[
eδ

(1 + δ)(1+δ)

]µ

Weak Law of Large Numbers states that as a sample becomes larger
and larger, the sample mean tends closer and closer to the population
mean.

Balls-in-Bins Given m balls thrown into n bins (independently and uni-
formly at random), the probability that the maximum load is more
than 3 lnn/ ln lnn is at most 1/n for n sufficiently large.

3

Sum of Poissons The sume of a finite number of independent Poisson r.v.s
is a Poisson r.v.

Expected number of trials before success If we repeatedly perform in-
dependent trials of an experiment, each of which succeeds with proba-
bility p > 0, then the expected number of trials needed before the first
success is 1/p.

3 Some useful equalities and inequalities

1. If n is a positive integer, then
n∑
k=1

1

k
= H(n) = lnn+O(1)

2.
(
n
i

)
≤ (ne

i
)i

3. k! > (k
e
)k

4. ex = 1 + x + 1
2
x2 + 1

6
x3 + . . . =

∞∑
i=1

xi

i!
. Consequently, if x > 0, then

ex ≥ 1 + x. Also, if x < 3, then e−x ≥ 1− x.

5. ln (1 + x) = x− 1
2
x2 1

3
x3 + . . . =

∞∑
i=1

(−1)i+1x
i

i
. Consequently, if 0 ≤ x ≤

1, then ln (1 + x) ≤ x.

6. Useful Asymptotic Bounds

(a) The function
(
1− 1

n

)n
converges monotonically from 1

4
up to 1

e
as

n increases from 2.

(b) The function
(
1− 1

n

)n−1
converges monotonically from 1

2
up to 1

e

as n increases from 2.

4 Summation from the QuickSort analysis

E[X] =
n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

4

=
n−1∑
i=1

n−i+1∑
k=2

2

k

=
n∑
k=2

n+1−k∑
i=1

2

k

=
n∑
k=2

(n+ 1− k)
2

k

= (n+ 1)2H(k)− 2(n− 1)

= 2n lnn+ Θ(n)

5 Summation from the Min-Cut analysis

Let Ei be the event that the edge contracted in iteration i is not in C. Let
Fi be the event that no edge of C was contracted in the first i iterations.

Pr(E1) = Pr(F1) ≥ 1− k

kn/2
= 1− 2

n
.

Similarly,

Pr(Ei|Fi−1) ≥ 1− k

k(n− i+ 1)/2
= 1− 2

n− i+ 1
.

We need to compute Pr(Fn−2). Thus,

Pr(Fn−2) = Pr(En−2 ∩ Fn−3) = Pr(En−2|Fn−3)Pr(Fn−3)
= Pr(En−2|Fn−3) · Pr(En−3|Fn−4) . . . P r(E2|F1)Pr(F1)

≥
n−2∏
i=1

(
1− 2

n− i+ 1

)
=

n−2∏
i=1

n− i− 1

n− I + 1

=
(
n− 2

n

)(
n− 3

n− 1

)
. . .

4

6

3

5

2

4

1

3

=
2

n(n− 1)
.

Repeating the algorithm n(n− 1) lnn times, the probability that the output
is not a min-cut set is bounded by(

1− 2

n(n− 1)

)n(n−1) lnn
≤ e−2 lnn =

1

n2

5

The inequality above arises from the fact that 1 − x ≤ e−x and replacing x
by 2

n(n−1) . You are probably more familiar with the following fact:

lim
x→0

(1− x)1/x =
1

e
= e−1

6 Analysis of the Greedy Set Cover Algo-

rithm

In each iteration, the algorithm adds the set containing the greatest number
of uncovered elements. We want to show that the above algorithm (ALG) is
a ln n

OPT
–approximate algorithm. Here’s the proof.

Let K = OPT be the size of optimal set cover. Let Et be the set of
elements uncovered after step t, with E0 = E. The optimal set cover covers
every Et with no more than K sets. ALG always picks the largest set over
Et in step t+ 1. The size of this set is at least |Et|/K, which is the average
size of a set in the set cover. Thus |Et+1| ≤ |Et| − |Et|/K, and, |Et| ≤
|E0|(1− 1/K)t ≤ n(1− 1/K)t. We stop when Et| < 1, which happens when
(1− 1

K
)t < 1

n
. This is when

n >
(

K

K − 1

)t
lnn > t ln

(
1 +

1

K − 1

)
≈ t

K
t ≤ K lnn.

7 Birthday Paradox Analysis

Probability that m balls are put in distinct bins is

(
1− 1

n

)(
1− 2

n

)
. . .
(

1− m− 1

n

)
=

m−1∏
j=1

(
1− j

n

)
.

When k � n, 1− k/n ≈ e−k/n, we can simplify the above as follows:

m−1∏
j=1

(
1− j

n

)
=

m−1∏
j=1

e−j/n

6

= exp
{
−

m−1∑
j=1

j

n

}
= e−m(m−1)/2n

≈ e−m
2/2n

For what value of m is the above probability at least 1/2? This happens for
m ≥

√
2n ln 2. Thus, if there are at least 23 people in a room, then with

probability at least 1/2, there will be two people in the room with the same
birthday.

8 Hashing with Chaining

LetN be the number of possible hash values. LetM be the maximum number
of items that may be stored in the hash table. Let k be the number of items
stored in the table currently. The probability that any item is hashed to a
certain value is 1/N .

Unsuccessful Search; Average Cost We first compute the probability
that exactly i out of the k items are hashed to the same hash value. The
probability that i items are hashed to a specific value is N−i. The probability
that k− i items are not hashed to that value is (N−1

N
)k−i. Since there are

(
k
i

)
ways of choosing i items from a possible set of k items, the probability that
exactly i out of the k items are hashed to the same hash value is thus:

pi =

(
k

i

)
(N − 1)k−iN−k.

It is also the probability that we will search a list of length i (making i +
1 comparisons. Note that

∑
i pi = 1. Therefore, the average number of

comparisons made during an unsuccessful search is given by

A =
∑
i

(i+ 1)pi =
∑
i

(
k

i

)
(i+ 1)(N − 1)k−iN−k

=
∑
i

(
k

i

)
i(N − 1)k−iN−k +

∑
i

(
k

i

)
(N − 1)k−iN−k

7

=
∑
i

k

(
k − 1

i− 1

)
(N − 1)k−iN−k + 1

= kN−k
∑
i

(
k − 1

i

)
(N − 1)k−i−1 + 1

= kN−kNk−1 + 1 = 1 + k/N

The variance can be shown to be k
N

(
1− 1

N

)
. The variance can be calcu-

lated using the following relationship

V =
∑
i

(i+ 1)2pi − A2.

When k is small compared to N , the average number of comparisons for
an unsuccessful search is at most 2 and the variance is small.

Successful Search; Average Cost Since there are k items in the hash
table, the probability that we have i items hashed to the same value (i.e., a

specific list has i items) is pi =
(
k
i

)
(N−1)k−iN−k and the probability that an

arbitrary item we are looking for is in a list of length i is i/k. The probability
that an arbitrary item we are looking for is in a specific list is (i/k)pi. The
search time for the item depends on where it is on the list. The item has
probability 1/i of being the j-th item on the list. Hence the probability qij
that it is the j-th item on a list of length i is equal to Npi

k
, if 1 ≤ j ≤ i and

0 otherwise. We are now ready to compute the average as follows

A′ =
∑
i,j

jqij = 1 +
k − 1

2N

It should be no surprise that the average time is roughly half of that for an
unsuccessful search.

Maximum Load The maximum load is the number of items in the largest
list. We show the following: if n balls are thrown into n bins independently
and uniformly at random, then the probability that the maximum load is
more than 3 lnn/ ln lnn is at most 1/n for n sufficiently large.

8

The following is the proof of the above statememt. The probability that
any bin has at least j balls is at most(

n

j

)(
1

n

)j
≤ 1

j!
≤
(
e

j

)j
The second inequality above is due to the approximation for j! (see Sec 3,
formula 3.

The probability that one of the n bins has at least j = 3 lnn/ ln lnn balls
is bounded by

n
(
e

j

)j
≤ n

(
e ln lnn

3 lnn

)3 lnn/ ln lnn

≤ n
(

ln lnn

3 lnn

)3 lnn/ ln lnn

= elnn(eln ln lnn−ln lnn)3 lnn/ ln lnn

= e−2 lnn+3(lnn)(ln ln lnn)/ln lnn

≤ 1

n

for n sufficiently large. Note that when n is sufficiently large, we can make
3 ln ln lnn
ln lnn

< 1. Hence the result.

9

