
TU Eindhoven Advanced Algorithms (2IL45) — Course Notes

Lecture 4: Randomized routing & The probabilistic method

4.1 Routing in a parallel computer

In this section we consider a beautiful example of the power of randomization in parallel
computing.

Consider a parallel machine with n processors, labeled 0, . . . , n � 1. The processors are
linked together in a network, so that they can communicate. However, not every pair of
processors has a link between them, which means that some processors can only communicate
via other processors. A fairly standard topology for such a network of processors is the
hypercube. Here the number of processors, n, is a power of 2 and there is a (bidirectional) link
between processors i and j if and only if the binary representation of i and j di↵er in exactly
one bit. For example, a hypercube with n = 8 processors will have the following links:

(0, 1), (0, 2), (0, 4), (1, 3), (1, 5), (2, 3), (2, 6), (3, 7), (4, 5), (4, 6), (5, 7), (6, 7).

The link (1, 3) exists, for instance, because 001 (=1) and 011 (=3) di↵er only in the second
bit. From now on we will consider the two opposite links of a bidirectional link as separate
links. (So for n = 8 we would, besides the links above, also have the links (1, 0), (2, 0), etc.)

Now suppose each processor i, for 1 6 i 6 n, wants to send a message mess(i) to
some other processor dest(i). We consider the case of permutation routing, where the set
{dest(1), . . . , dest(n)} of destinations forms a permutation of 1, . . . , n. In other words, each
processor i wants to send exactly one message and wants to receive exactly one message.
Sending these messages is done in rounds. In each round, a processor can send at most one
message to each of its neighbors. Each processor i has a collection of log n bu↵ers, one for
each outgoing link. We denote the bu↵er for the link (i, j) by Bi(j). Bu↵er Bi(j) will store
messages that processor i needs to forward to its neighbor j, but that have to wait because i

also needs to forward other messages to j. Each processor i executes the following algorithm
in every round:

Algorithm RoutingStrategy(i)
1. B Send phase:

2. for each outgoing link (i, j)
3. do Select a message from Bi(j) and send it along link (i, j).
4. B Receive phase:

5. for each incoming message whose destination is not i

6. do Store that message in Bi(j), where j is the next processor on its route.

The main question now is how the routes are chosen. The goal is to do this in such a way
that the total number of rounds needed before every message has arrived at its destination is
as small as possible. Thus we would like the routes to be short. Moreover, we do not want
too many routes to use the same links in the network because that will lead to congestion:
the bu↵ers of these congested links will have to store many messages, and consequently these
messages will have to wait a long time before they are finally forwarded. This raises another
issue that we still have to address: how does a processor i select from its bu↵ers Bi(j)
which messages to send in each round? Note that a processor i does not necessarily know
the destinations dest(j) of the messages of the other processors. Hence, the route-planning
algorithm should be oblivious: each processor should determine route(mess(i)) based only on
i and dest(i), not on any dest(j) for j 6= i.

1

TU Eindhoven Advanced Algorithms (2IL45) — Course Notes

A simple routing strategy is the following:

• Each bu↵er Bi(j) is implemented as a queue, and the incoming messages in each round
are put into the queue in arbitrary order. (Note: arbitrary means that the order in
which the messages are put in the queue does not matter, it does not mean that we put
them into the queue in random order.)

• The route followed by each message is determined using the bit-fixing strategy, which
is defined as follows. Suppose we have already constructed some initial portion of
route(mess(i)) and let j be the last processor on this initial portion. To determine
the next processor j

0 on the route we look at the bits in the binary representation of
dest(i) from left to right, and determine the leftmost bit b that is di↵erent from the
corresponding bit of the binary representation of j. We then take j

0 such that its binary
representation is the same as that of j, except for the bit b. (Note that because we are
routing on a hypercube, the link (j, j0) exists.) For example, if n = 32 and processor
01101 wants to send a message to 00110, then the route would be

01101! 00101! 00111! 00110.

This routing strategy is pretty simple and it is oblivious. Moreover, it has the advantage that
a processor does not need to include the whole route for mess(i) into the message header, it
su�ces to put dest(i) into the header. (Based on dest(i) and its own processor number j,
the processor j knows where to send the message mess(i) to.) Unfortunately, the number of
rounds can be fairly large: there are sets of destinations on which this routing strategy needs
⌦(
p

n) rounds. In fact, one can prove that for any deterministic routing strategy there is a set
of destinations that will require ⌦(

p
n/ log n) rounds. Surprisingly, using randomization one

can do much better. The trick is to let each processor i first route its message to a random
intermediate destination:

Algorithm DetermineRoute(i)
1. ri Random(0, n� 1)
2. Construct a route from processor i to processor ri using the bit-fixing strategy, and

construct a route from processor ri to processor dest(i) using the bit-fixing strategy. Let
route(mess(i)) be the concatenation of these two routes.

Next we analyze the expected number of rounds this randomized routing algorithm needs.
For simplicity we will slightly change the algorithm so that it consists of two phases: in
the first phase all messages mess(i) will be routed from i to ri, and in the second phase all
messages will be routed from ri to dest(i). Thus the messages wait at their intermediate
destination until all messages have arrived at their intermediate destination. We will analyze
the number of rounds needed in the first phase. By symmetry the same analysis holds for the
second phase. From now on, we let route(i) denote the route from i to ri, as prescribed by
the bit-fixing strategy. Our analysis will be based on the following lemma, which we will not
prove:

Lemma 4.1 Let Si be the set of messages whose route uses at least one of the links in

route(i). Then the delay incurred by mess(i) in phase 1 is at most |Si|. In other words,

mess(i) reaches its intermediate destination ri after at most |route(i)| + |Si| rounds, where

|route(i)| is the length of the path route(i).

2

TU Eindhoven Advanced Algorithms (2IL45) — Course Notes

To analyze the algorithm, we introduce indicator random variables Xij :

Xij :=
⇢

1 if j 6= i and route(i) and route(j) share at least one link
0 otherwise

Now fix some processor i. By the previous lemma, mess(i) will reach ri after at most

|route(i)| +
X

06j<n

Xij

steps.
First we observe that |route(i)| is equal to the number of bits in the binary representa-

tion of i that are di↵erent from the corresponding bits in the representation of ri. Hence,
E[|route(i)|] = (log n)/2.

Next we want to bound E[
P

06j<n Xij]. To this end we use the fact that the expected
length of each route is (log n)/2, as observed earlier. Hence, the expected total number of
links used over all routes is (n/2) log n. On the other hand, the total number of links in the
hypercube is n log n—recall that (i, j) and (j, i) are considered di↵erent links. By symmetry,
all links in the hypercube have the same expected number of routes passing through them.
Since we expect to use (n/2) log n links in total and the hypercube has n log n links, the
expected number of routes passing through any link is therefore (n/2) log n

n log n = 1/2. This implies
that if we look at a single link on route(i) then we expect less than 1/2 other routes to use
this link. Since |route(i)| 6 log n, we get

E[
X

06j<n

Xij] < |route(i)|/2 6 (log n)/2.

This is good news: message mess(i) is expected to arrive at its intermediate destination ri

within log n rounds. But we are not there yet. We want to achieve that all messages arrive
at their destination quickly. To argue this, we need a high-probability bound on the delay
of a message. To get such a bound we note that for fixed i, the random variables Xij are
independent. This is true because the intermediate destinations rj are chosen independently.
This means we are in the setting of independent Poisson trials: each Xij is 1 or 0 with a
certain probability, and the Xij are independent. Hence we can use tail estimates for Poisson
trials—see p.2 of the handouts on basic probability theory—to conclude that for � > 0

Pr[X > (1 + �)µ] 6
✓

e

�

(1 + �)1+�

◆µ

,

where X =
P

06j<n Xij and µ = E[X]. Plugging in � = 3 log n
µ �1 and using that µ 6 (log n)/2

(note that this implies � > 5) one can deduce that

Pr[X > 3 log n] 6 (1/2)2 log n = 1/n

2

.

This implies that with probability at least 1 � 1/n all messages arrive with a delay of at
most 3 log n steps—much better than the ⌦(

p
n/ log n) lower bound for deterministic routing

strategies.

3

TU Eindhoven Advanced Algorithms (2IL45) — Course Notes

4.2 The probabilistic method

Randomization can not only be used to obtain simple and e�cient algorithms, it can also be
used in combinatorial proofs. This is called the probabilistic method. The general idea is to
use one of the following two facts.

• Let X be a random variable. There is at least one elementary event for which the value
X is less than or equal to E[X], and there is at least one elementary event for which
the value of X is at least E[X].

• Consider a collection S of objects. If an object chosen at random from S has a certain
property with probability greater than zero, then there must be an object in S with
that property.

Note: to prove the existence of an object in S with the desired property it is su�cient
to prove that a random object in S has the property with positive probability. If you
can even prove that a random object has the desired property with “large” probability,
say at least some constant p > 0 that is independent of |S|, and you can check whether
the object has the property, then you immediately obtain a Las Vegas algorithm for
finding an object with the property.

We will consider two simple applications of the probabilistic method.

MaxSat. Let x

1

, . . . , xn be a set of n boolean variables. A boolean formula is a CNF
formula—in other words, is in conjunctive normal form—if it has the form

C

1

^ C

2

^ · · · ^ Cm,

where each clause Cj is the disjunction of a number of literals (a literal is a variable xi or its
negation xi). For example, the following is a CNF formula with three clauses.

(x
1

_ x

3

_ x

4

) ^ (x
2

_ x

3

_ x

5

) ^ (x
1

_ x

5

).

Given a CNF formula with m clauses, the MaxSat problem is to find a truth assignment
satisfying as many clauses as possible.

Instead of looking at this algorithmic question, we can also consider the combinatorial
question of how many clauses one can always satisfy. The following simple example shows
there are CNF formulas where we cannot satisfy more than half the clauses:

(x
1

) ^ (x
1

) ^ (x
2

) ^ (x
2

) ^ · · · ^ (xm/2

) ^ (xm/2

).

Can we always satisfy at least half the clauses? And what if all the clauses have more than
a single variable, can we perhaps satisfy more than m/2 clauses? The next theorem shows
that this is indeed the case.

Theorem 4.2 Any CNF formula with m clauses such that each clause has at least k variables

has a truth assignment satisfying at least (1� (1/2)k)m clauses.

Proof. Let C

1

^ · · · ^ Cm be a CNF formula. Take a random truth assignment: For each
variable xi independently, flip a fair coin; if it comes up Heads then we set xi = true,
otherwise we set xi := false. For each clause Cj , let Xj be the indicator random variable

4

TU Eindhoven Advanced Algorithms (2IL45) — Course Notes

that is 1 if Cj is true and 0 otherwise. Then the number of satisfied clauses is
Pm

j=1

Xj . By
linearity of expectation we have

E[
mX

j=1

Xj] =
mX

j=1

E[Xj] =
mX

j=1

Pr[Cj is satisfied].

Now consider a clause Cj with ` > k literals. Since Cj is the disjunction of its literals, the
only way in which Cj can be false is that all its literals are false. Since the truth values of
the random variables are set randomly and independently, this happens with probability at
most (1/2)`. Hence,

Pr[Cj is satisfied] > 1� (1/2)` > 1� (1/2)k
.

It follows that the expected number of satisfied clauses is at least (1� (1/2)k)m. We conclude
that there must be one truth assignment that satisfies at least this many clauses. ⇤
It follows for instance that any CNF formula has a truth assignment with at least dm/2e
satisfied clauses. Also, any 3-CNF formula—any CNF formula where every clause has three
literals—has a truth assignment where at least 7m/8 clauses are satisfied.

Independent set. Let G = (V,E) be a graph. A subset V

⇤ ⇢ V is called an independent

set in G if no two vertices in V

⇤ are connected by an edge in E.

Theorem 4.3 Let G = (V,E) be a graph with |E| > |V |/2. Then G has an independent set

of size at least

|V |2
4|E| .

Proof. Pick a random subset VR ⇢ V by taking each vertex with probability p independently,
where p is a parameter to be determined later. Note that the expected number of vertices
in VR is p|V |. Let GR be the subgraph induced by R, that is, GR = (VR, ER) where ER =
{(u, v) : u, v 2 VR and (u, v) 2 E}. An edge (u, v) 2 E is present in ER with probability p

2.
For an edge e = (u, v) 2 E, define Xe as the indicator random variable that is 1 if e 2 Er

and 0 otherwise. Using linearity of expectation we can bound the expected number of edges
in ER by

E[|ER|] = E[
X

e2E

Xe] =
X

e2E

E[Xe] = p

2|E|.

One idea would be to choose p < 1/

p
|E|. Then the expected number of edges in ER is less

than 1, so that VR would be an independent set with positive probability. This would give an
independent set of size p|V | < |V |/

p
|E|. The statement of the theorem, however, promises

a much larger independent set, namely (1/4) · (|V |/
p

|E|)2. We therefore proceed di↵erently.
Instead of taking VR itself as the independent set, we remove for each edge e 2 ER one of its
endpoints from VR. Let V

⇤ denote the resulting set of vertices. Clearly V

⇤ is an independent
set, and the size of V

⇤ is at least

E[|VR|� |ER|] = E[|VR|]� E[|ER|] > p|V |� p

2|E|.

Setting p = |V |/(2|E|)—note that 0 < p < 1 because |E| > |V |/2—gives the desired bound.
⇤

5

