
SPRING 2012: COT 6936 Topics in Algorithms
[Homework 1; Due Feb 13 at start of class]

General submission guidelines and policies: Add the following signed state-
ment. Without this statement, your homework will not be graded.

I have adhered to the collaboration policy for this class. In other
words, everything written down in this submission is my own work.
For problems where I received any help, I have cited the source,
and/or named the collaborator.

Read the handout on Homework guidelines and collaboration policy from your course
website before you start on this homework. This is very important.

As mentioned in that handout, the problem labels mean the following: (Exercise) – turn
in, but will not be graded; (Regular) – turn in and will be graded; or (Extra Credit) – if
turned in, they will be graded but extra credit will be given only if it is completely correct.
(Extra Credit) scores wil be used only if your grade is on the border between two grades.

Problems

0. (Regular) Did you follow the instructions above?

1. (Exercise) Write down precisely (see Problem 8 below for an example) the decision
and optimization versions of the VertexCover problem.

This homework was inspired by an excellent question asked in class by one of the stu-
dents. In this homework, we will explore three greedy algorithms for VertexCover,
which we will refer to as GreedyOne, GreedyBoth, and GreedyMax. By the
end of this homework, you should be able to understand why GreedyBoth is the
best greedy approximation algorithm for the VertexCover problem.

GreedyOne works as follows: Initialize the vertex cover to the empty set. Repeatedly
pick an (arbitrary) uncovered edge and (arbitrarily) choose one of its endpoints to add
to the vertex cover.

2. (Exercise) Show that GreedyOne produces a vertex cover.

3. (Regular) Show that the performance ratio of GreedyOne cannot be bounded by
any constant. (Hint: assume the contrary and construct graphs to contradict. Also,
note that whenever the algorithm is allowed to make an arbitrary choice, you may
assume that it makes the worst choice.)

GreedyBoth was discussed in class and works as follows: Initialize the vertex cover
to the empty set. Repeatedly pick an (arbitrary) uncovered edge and choose both of its
endpoints to add to the vertex cover.

4. (Exercise) Convince yourself that GreedyBoth produces a vertex cover and that
its performance ratio is bounded by 2.

5. (Regular) Show that there exists graphs for which the GreedyBoth algorithm can-
not achieve a performance ratio better than 2. GreedyMax works as follows: Initial-
ize the vertex cover to the empty set. While there are uncovered edges, repeatedly pick
a vertex of maximum degree (if more than one candidate exists, pick one arbitrarily),
add it to the vertex cover, and delete all covered edges.

6. (Exercise) Convince yourself that GreedyMax produces a vertex cover and that its
performance ratio is bounded by log n. (See slide 16 and 17 from Lec 4).

Using the steps outlined below, show that there exists graphs for which GreedyMax
cannot achieve a performance ratio better than log n.

Construct a bipartite graph G(A,B,E) (i.e., graph G has vertex bipartitions A and B
and the edges in set E only connect vertices in A with vertices in B). Let the size of
set B be equal to K. The intention is to make set A as large as possible. Divide the
set A into K subsets A1, . . . , AK . Set Ai is adjacent to i vertices in B in such a way
that no two vertices in Ai share a common neighbor. Let the size of set Ai be bK/ic.

7. (Regular)

(a) Argue that the number of vertices in the graph, n = |A|+ |B| = K + K logK =
Θ(K logK). (See Appendix A of Cormen, Leiserson, Rivest and Stein and read
up the notes on Harmonic series). Thus log n = Θ(logK).

(b) Show that the size of an optimal vertex cover is K.

(c) Show that the (only) vertex in AK has maximum degree in G.

(d) Show that GreedyMax can pick all vertices in AK , followed by all vertices in
AK−1, and so on, thus picking all vertices in A and no vertices in B.

(e) Show that the performance ratio of GreedyMax on this graph is no less than
Ω(log n).

The decision version of the SetCover problem can be stated as follows:

Input: Universe, U = {x1, . . . , xn}. Collection of sets, S = {S1, . . . , Sm}, such that
Si ⊆ U, 1 ≤ i ≤ m. Integer K.

Question: Is there a collection of K sets from S whose union equals U?

The obvious version of GreedyMax as applied to the maximization version of Set-
Cover is as follows: repeatedly pick the set from S containing the largest number of
uncovered items from the universe.

8. (Exercise) Argue that using the example in Problem 7 above one can show that
GreedyMax cannot have a performance ratio better than Ω(log n) for SetCover.

Given an instance of the SetCover, assume that no item from the universe U is part
of more than R sets from the collection S. Now consider algorithm GreedyAll (a
simple generalization of GreedyBoth above), which works as follows: initialize the
set cover to the empty collection; repeatedly pick an arbitrary uncovered item from the
universe and add (to the set cover) all sets that contain it.

9. (Regular) Show that GreedyAll achieves a performance ratio of R. (Hint: Follow
the analysis for GreedyBoth. For SetCover, which is a better approximation
algorithm – GreedyAll or GreedyMax?

