
COT 6936: Topics in Algorithms!

Giri Narasimhan
ECS 254A / EC 2443; Phone: x3748

giri@cs.fiu.edu
https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

1/14/14 COT 6936 2

What are NP-Complete problems?!
•  These are the hardest problems in NP.
•  A problem p is NP-Complete if

–  there is a polynomial-time reduction from every
problem in NP to p.

–  p ∈ NP
•  How to prove that a problem is NP-Complete?

•  Cook’s Theorem: [1972]
– The SAT problem is NP-Complete.

Steve Cook, Richard Karp, Leonid Levin

1/14/14 COT 6936 3

The SAT Problem: an example!
•  Consider the boolean expression:

 C = (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (a ∨ ¬d ∨ ¬c)
•  Is C satisfiable? [Does there exist a True/False

assignments to the boolean variables a, b, c, d, e,
such that C is True?]

•  If there are n boolean variables, then there are 2n
different truth value assignments.

•  However, a solution can be quickly verified!

1/14/14 COT 6936 4

The SAT (Satisfiability) Problem!
•  Input: Boolean expression C in Conjunctive normal

 form (CNF) in n variables and m clauses.
•  Question: Is C satisfiable?

–  Let C = C1 ∧ C2 ∧ … ∧ Cm
–  Where each Ci =
–  And each ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}
–  We want to know if there exists a truth assignment to all the

variables in the boolean expression C that makes it true.
•  Steve Cook showed that the problem of deciding whether a

non-deterministic Turing machine T accepts an input w or
not can be written as a boolean expression CT for a SAT
problem. The boolean expression will have length bounded by
a polynomial in the size of T and w.

()ikii
i
yyy ∨∨∨ 21

•  How to now prove Cook’s theorem? Is SAT in NP?
•  Can every problem in NP be poly. reduced to it ?

i
jy

1/14/14 COT 6936 5

co-NP

The problem classes and their relationships!

NP P NP-C

1/14/14 COT 6936 6

More NP-Complete problems!

3SAT
•  Input: Boolean expression C in Conjunctive normal

form (CNF) in n variables and m clauses. Each
clause has at most three literals.

•  Question: Is C satisfiable?
–  Let C = C1 ∧ C2 ∧ … ∧ Cm
–  Where each Ci =
–  And each ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}
–  We want to know if there exists a truth assignment to all

the variables in the boolean expression C that makes it
true.

i
jy
()iii yyy 321 ∨∨

3SAT is NP-Complete.

1/14/14 COT 6936 7

3SAT is NP-Complete !
•  3SAT is in NP.
•  SAT can be reduced in polynomial time to 3SAT.
•  This implies that every problem in NP can be

reduced in polynomial time to 3SAT. Therefore,
3SAT is NP-Complete.

•  So, we have to design an algorithm such that:
–  Input: an instance C of SAT
–  Output: an instance C’ of 3SAT such that satisfiability is

retained. In other words, C is satisfiable if and only if C’
is satisfiable.

1/14/14 COT 6936 8

3SAT is NP-Complete
•  Let C be a SAT instance with clauses C1, C2, …, Cm
•  Let Ci be a disjunction of k > 3 literals.

 Ci = y1 ∨ y2 ∨ … ∨ yk
•  Rewrite Ci as follows:

C’i = (y1 ∨ y2 ∨ z1) ∧
 (¬ z1 ∨ y3 ∨ z2) ∧
 (¬ z2 ∨ y4 ∨ z3) ∧
 …
 (¬ zk-3 ∨ yk-1 ∨ yk)

•  Claim: Ci is satisfiable if and only if C’i is
satisfiable.

1/14/14 COT 6936 9

More NP-Complete problems?!

2SAT
•  Input: Boolean expression C in Conjunctive normal

form (CNF) in n variables and m clauses. Each
clause has at most three literals.

•  Question: Is C satisfiable?
–  Let C = C1 ∧ C2 ∧ … ∧ Cm
–  Where each Ci =
–  And each ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}
–  We want to know if there exists a truth assignment to all

the variables in the boolean expression C that makes it
true.

i
jy

()ii yy 21 ∨

2SAT is in P.

1/14/14 COT 6936 10

2SAT is in P
•  If there is only one literal in a clause, it must

be set to true.
•  If there are two literals in some clause, and

if one of them is set to false, then the other
must be set to true.

•  Using these constraints, it is possible to
check if there is some inconsistency.

•  How? Homework: do not submit!

1/14/14 COT 6936 11

The CLIQUE Problem

CLIQUE
•  Input: Graph G(V,E) and integer k
•  Question: Does G have a clique of size k?

•  A clique is a completely connected subgraph.

1/14/14 COT 6936 12

CLIQUE is NP-Complete
•  CLIQUE is in NP.
•  Reduce 3SAT to CLIQUE in polynomial time.
•  F = (x1∨¬x2∨x3) (¬x1∨¬x3∨x4) (x2∨x3∨¬x4) (¬x1∨¬x2∨x3)

x1

¬x2

x3

¬x1 ¬x3
x4

F is satisfiable if and
only if G has a clique
of size k where k is
the number of clauses
in F.

1/14/14 COT 6936 13

Vertex Cover!
A vertex cover is a set of vertices that
“covers” all the edges of the graph.

Examples

1/14/14 COT 6936 14

Vertex Cover (VC)!
Input: Graph G, integer k
Question: Does G contain a vertex cover of size k?
•  VC is in NP.
•  polynomial-time reduction from CLIQUE to VC.
•  Thus VC is NP-Complete.

S

G

S

G’

Claim: G’ has a clique of size k’ if and only if G has a
VC of size k = n – k’

1/14/14 COT 6936 15

Hamiltonian Cycle Problem (HCP)!
Input: Graph G
Question: Does G contain a hamiltonian cycle?

•  HCP is in NP.
•  There exists a polynomial-time reduction

from 3SAT to HCP.
•  Thus HCP is NP-Complete.

Shortest Path vs Longest Path!
Input: Graph G with edge weights, vertices u

and v, bound B
Question: Does G contain a shortest path from

u to v of length at most B?

Question: Does G contain a longest path from u
to v of length at most B?

Homework: Listen to Cool MP3:
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3

1/14/14 COT 6936 16

Perfect (2-D) Matching vs 3-D Matching!
1.  Input: Bipartite graph, G(U,V,E)

 Question: Does G have a perfect matching?

2.  Input: Sets U and V, and E = subset of U×V
 Question: Is there a subset of E of size |U|
that covers U and V? [Related to 1.]

3.  Input: Sets U,V,W, & E = subset of U×V×W
 Question: Is there a subset of E of size |U|
that covers U, V and W?

1/14/14 COT 6936 17

Coping with NP-Completeness!
•  Approximation: Search for an "almost"

optimal solution with provable quality.
•  Randomization: Design algorithms that find
“provably” good solutions with high prob
and/or run fast on the average.

•  Restrict the inputs (e.g., planar graphs), or
fix some input parameters.

•  Heuristics: Design algorithms that work
"reasonably well”.

1/14/14 COT 6936 18

Reading!
•  Read Background

–  Algorithms & Discrete Math Fundamentals
•  Cormen, et al., Chapters 1-16, 22-25

– NP-Completeness
•  Cormen et al., Chapter 34
•  Appendix (p187-288) form Garey & Johnson

•  Next Class
–  Approximation Algorithms

•  Cormen et al., Chapter 35
•  Kleinberg, Tardos, Chapter 11
•  Books by Vazirani and Hochbaum/Shmoys

1/14/14 COT 6936 19

Required Reading for Feb 6!
•  Network Flow

–  Ford Fulkerson Algorithm
•  Linear Programming

–  Standard LP
–  Dual LP
–  Feasibility and feasible region

1/14/14 COT 6936 20

