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What are NP-Complete problems?!
•  These are the hardest problems in NP. 
•  A problem p is NP-Complete if  

–  there is a polynomial-time reduction from every 
problem in NP to p. 

–  p ∈ NP 
•  How to prove that a problem is NP-Complete? 

•  Cook’s Theorem: [1972] 
– The SAT problem is NP-Complete. 

 

Steve Cook, Richard Karp, Leonid Levin 
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The SAT Problem: an example!
•  Consider the boolean expression: 

 C = (a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (a ∨ ¬d ∨ ¬c) 
•  Is C satisfiable? [Does there exist a True/False 

assignments to the boolean variables a, b, c, d, e, 
such that C is True?] 

•  If there are n boolean variables, then there are 2n 
different truth value assignments.  

•  However, a solution can be quickly verified! 
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The SAT (Satisfiability) Problem!
•  Input: Boolean expression C in Conjunctive normal  

 form (CNF) in n variables and m clauses. 
•  Question: Is C satisfiable?  

–  Let C = C1 ∧ C2 ∧  …  ∧ Cm 
–  Where each Ci =    
–  And each        ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}  
–  We want to know if there exists a truth assignment to all the 

variables in the boolean expression C that makes it true.  
•  Steve Cook showed that the problem of deciding whether a 

non-deterministic Turing machine T accepts an input w or 
not can be written as a boolean expression CT for a SAT 
problem. The boolean expression will have length bounded by 
a polynomial in the size of T and w. 
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•  How to now prove Cook’s theorem? Is SAT in NP?  
•  Can every problem in NP be poly. reduced to it ? 
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co-NP 

The problem classes and their relationships!

NP P NP-C 
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More NP-Complete problems!

3SAT 
•  Input: Boolean expression C in Conjunctive normal 

form (CNF) in n variables and m clauses. Each 
clause has at most three literals. 

•  Question: Is C satisfiable?  
–  Let C = C1 ∧ C2 ∧  …  ∧ Cm 
–  Where each Ci =    
–  And each        ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}  
–  We want to know if there exists a truth assignment to all 

the variables in the boolean expression C that makes it 
true.  
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3SAT  is NP-Complete.  
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3SAT is NP-Complete !
•  3SAT is in NP. 
•  SAT can be reduced in polynomial time to 3SAT. 
•  This implies that every problem in NP can be 

reduced in polynomial time to 3SAT. Therefore, 
3SAT is NP-Complete. 

•  So, we have to design an algorithm such that: 
–  Input: an instance C of SAT 
–  Output: an instance C’ of 3SAT such that satisfiability is 

retained. In other words, C is satisfiable if and only if C’ 
is satisfiable. 
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3SAT is NP-Complete 
•  Let C be a SAT instance with clauses C1, C2, …, Cm 
•  Let Ci be a disjunction of k > 3 literals. 

 Ci =  y1 ∨ y2 ∨ …  ∨ yk 
•  Rewrite Ci as follows: 

C’i =  (y1 ∨ y2 ∨ z1) ∧ 
   (¬ z1 ∨ y3 ∨ z2) ∧ 
   (¬ z2 ∨ y4 ∨ z3) ∧ 
   … 
   (¬ zk-3 ∨ yk-1 ∨ yk)  

•  Claim: Ci is satisfiable if and only if C’i is 
satisfiable.   
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More NP-Complete problems?!

2SAT 
•  Input: Boolean expression C in Conjunctive normal 

form (CNF) in n variables and m clauses. Each 
clause has at most three literals. 

•  Question: Is C satisfiable?  
–  Let C = C1 ∧ C2 ∧  …  ∧ Cm 
–  Where each Ci =    
–  And each        ∈ {x1, ¬ x1, x2, ¬ x2, …, xn, ¬ xn}  
–  We want to know if there exists a truth assignment to all 

the variables in the boolean expression C that makes it 
true.  
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2SAT  is in P.  
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2SAT is in P 
•  If there is only one literal in a clause, it must 

be set to true. 
•  If there are two literals in some clause, and 

if one of them is set to false, then the other 
must be set to true.  

•  Using these constraints, it is possible to 
check if there is some inconsistency.  

•  How? Homework: do not submit! 
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The CLIQUE Problem 

CLIQUE 
•  Input: Graph G(V,E) and integer k 
•  Question: Does G have a clique of size k? 

•  A clique is a completely connected subgraph. 



1/14/14 COT 6936 12 

CLIQUE is NP-Complete 
•  CLIQUE is in NP. 
•  Reduce 3SAT to CLIQUE in polynomial time.  
•  F = (x1∨¬x2∨x3) (¬x1∨¬x3∨x4) (x2∨x3∨¬x4) (¬x1∨¬x2∨x3) 

x1 

¬x2 

x3 

¬x1 ¬x3 
x4 

F is satisfiable if and  
only if G has a clique  
of size k where k is  
the number of clauses 
in F. 
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Vertex Cover!
A vertex cover is a set of vertices that 
“covers” all the edges of the graph. 

Examples 
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Vertex Cover (VC)!
Input: Graph G, integer k 
Question: Does G contain a vertex cover of size k? 
•  VC is in NP. 
•  polynomial-time reduction from CLIQUE to VC. 
•  Thus VC is NP-Complete. 

S 

G

S 

G’ 

Claim: G’ has a clique of size k’ if and only if G has a 
VC of size k = n – k’ 
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Hamiltonian Cycle Problem (HCP)!
Input: Graph G 
Question: Does G contain a hamiltonian cycle? 
 
•  HCP is in NP. 
•  There exists a polynomial-time reduction 

from 3SAT to HCP. 
•  Thus HCP is NP-Complete. 



Shortest Path vs Longest Path!
Input: Graph G with edge weights, vertices u 

and v, bound B 
Question: Does G contain a shortest path from 

u to v of length at most B? 

Question: Does G contain a longest path from u 
to v of length at most B? 

Homework: Listen to Cool MP3: 
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3 
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Perfect (2-D) Matching vs 3-D Matching!
1.  Input: Bipartite graph, G(U,V,E) 

 Question: Does G have a perfect matching? 

2.  Input: Sets U and V, and E = subset of U×V 
 Question: Is there a subset of E of size |U| 
that covers U and V? [Related to 1.] 

3.  Input: Sets U,V,W, & E = subset of U×V×W 
 Question: Is there a subset of E of size |U| 
that covers U, V and W?  
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Coping with NP-Completeness!
•  Approximation: Search for an "almost" 

optimal solution with provable quality. 
•  Randomization: Design algorithms that find 
“provably” good solutions with high prob 
and/or run fast on the average.  

•  Restrict the inputs (e.g., planar graphs), or 
fix some input parameters. 

•  Heuristics: Design algorithms that work 
"reasonably well”.  
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Reading!
•  Read Background 

–  Algorithms & Discrete Math Fundamentals 
•  Cormen, et al., Chapters 1-16, 22-25 

– NP-Completeness 
•  Cormen et al., Chapter 34 
•  Appendix (p187-288) form Garey & Johnson 

•  Next Class 
–  Approximation Algorithms 

•  Cormen et al., Chapter 35 
•  Kleinberg, Tardos, Chapter 11 
•  Books by Vazirani and Hochbaum/Shmoys 
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Required Reading for Feb 6!
•  Network Flow 

–  Ford Fulkerson Algorithm  
•  Linear Programming 

–  Standard LP 
–  Dual LP 
–  Feasibility and feasible region 
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