COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu
https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

What are WP-Complete problems?

- These are the hardest problems in NP^{P}.
- A problem p is \mathbb{T}-Complete if
- there is a polynomial-time reduction from every problem in $2 p$ to p.
$-p \in m p$
- How to prove that a problem is vp -Complete?
- Cook's Theorem: [1972]
-The SAT problem is WP-Complete.
Steve Cook, Richard Karp, Leonid Levin

The SAT Problem: an example

- Consider the boolean expression:
$C=(a \vee \neg b \vee c) \wedge(\neg a \vee d \vee \neg e) \wedge(a \vee \neg d \vee \neg c)$
- Is C satisfiable? [Does there exist a True/False assignments to the boolean variables a, b, c, d, e, such that C is True?]
- If there are n boolean variables, then there are 2^{n} different truth value assignments.
- However, a solution can be quickly verified!

The SAT (Satisfiability) Problem

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses.
- Question: Is C satisfiable?
- Let $C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- Where each $C_{i}=\left(y_{1}^{i} \vee y_{2}^{i} v \cdots \vee y_{k_{i}}^{i}\right)$
- And each $y_{j}^{i} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.
- Steve Cook showed that the problem of deciding whether a non-deterministic Turing machine T accepts an input w or not can be written as a boolean expression C_{T} for a SAT problem. The boolean expression will have length bounded by a polynomial in the size of T and w.
- How to now prove Cook's theorem? Is SAT in थp?
- Can every problem in WPb poly. reduced to it?

The problem classes and their relationships

More NP-Complete problems

3SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
- Let $C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- Where each $C_{i}=\left(y_{1}^{i} \vee y_{2}^{i} \vee y_{3}^{i}\right)$
- And each $\quad y_{j}^{i} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.
3SAT is Ip-Complede.

3SAT is IP-Complete

- 3SAT is in 2 .
- SAT can be reduced in polynomial time to 3SAT.
- This implies that every problem in 20 can be reduced in polynomial time to 3SAT. Therefore, 3SAT is up-Complete.
- So, we have to design an algorithm such that:
- Input: an instance C of SAT
- Output: an instance C' of 3SAT such that satisfiability is retained. In other words, C is satisfiable if and only if C^{\prime} is satisfiable.

3SAT is NP-Complete

- Let C be a SAT instance with clauses $C_{1}, C_{2}, \ldots, C_{m}$ - Let C_{i} be a disjunction of $k>3$ literals.
$C_{i}=\quad y_{1} \vee y_{2} \vee \ldots \vee y_{k}$
- Rewrite C_{i} as follows:

$$
\begin{aligned}
C_{i}^{\prime}= & \left(y_{1} \vee y_{2} \vee z_{1}\right) \wedge \\
& \left(\neg z_{1} \vee y_{3} \vee z_{2}\right) \wedge \\
& \left(\neg z_{2} \vee y_{4} \vee z_{3}\right) \wedge \\
& \cdots \\
& \left(\neg z_{k-3} \vee y_{k-1} \vee y_{k}\right)
\end{aligned}
$$

- Claim: C_{i} is satisfiable if and only if C_{i}^{\prime} is satisfiable.

More WP-Complete problems?

2SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
- Let $C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- Where each $C_{i}=\left(y_{1}^{i} \vee y_{2}^{i}\right)$
- And each $y_{j}^{i} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

$$
\text { 2SAT is in } P \text {. }
$$

2SAT is in P

- If there is only one literal in a clause, it must be set to true.
- If there are two literals in some clause, and if one of them is set to false, then the other must be set to true.
- Using these constraints, it is possible to check if there is some inconsistency.
- How? Homework: do not submit!

The CLIQUE Problem

- A clique is a completely connected subgraph.

CLIQUE

- Input: Graph G(V,E) and integer k - Question: Does G have a clique of size k ?

CLIQUE is NP-Complete

- CLIQUE is in \%p.

- Reduce 3SAT to CLIQUE in polynomial time.
- $F=\left(x_{1} v-x_{2} v x_{3}\right)\left(\neg x_{1} v-x_{3} v x_{4}\right)\left(x_{2} v x_{3} v-x_{4}\right)\left(\neg x_{1} v-x_{2} v x_{3}\right)$

F is satisfiable if and only if G has a clique of size k where k is the number of clauses in F.

Vertex Cover

A vertex cover is a set of vertices that "covers" all the edges of the graph.

Examples

Vertex Cover (VC)

Input: Graph G, integer K
Question: Does G contain a vertex cover of size k?

- VC is in kP .
- polynomial-time reduction from CLIQUE to $V C$.
- Thus VC is vp -Complete.

Claim: G^{\prime} has a clique of size k ' if and only if G has a VC of size $k=n-k$ '

Hamiltonian Cycle Problem (HCP)

Input: Graph G

Question: Does G contain a hamiltonian cycle?

- HCP is in 2 p .
- There exists a polynomial-time reduction from 3SAT to HCP.
- Thus HCP is שp-Complete.

Shortest Path vs Longest Path

Input: Graph G with edge weights, vertices u and v, bound B
Question: Does G contain a shortest path from u to v of length at most B ?

Question: Does G contain a longest path from u to v of length at most B ?

Homework: Listen to Cool MP3:
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3

Perfect (2-D) Matching vs 3-D Matching

1. Input: Bipartite graph, $G(U, V, E)$

Question: Does G have a perfect matching?
2. Input: Sets U and V, and $E=$ subset of $U \times V$ Question: Is there a subset of E of size $|U|$ that covers U and V ? [Related to 1.]
3. Input: Sets $U, V, W, \& E=$ subset of $U \times V \times W$ Question: Is there a subset of E of size $|U|$ that covers U, V and W ?

Coping with NP-Completeness

- Approximation: Search for an "almost" optimal solution with provable quality.
- Randomization: Design algorithms that find "provably" good solutions with high prob and/or run fast on the average.
- Restrict the inputs (e.g., planar graphs), or fix some input parameters.
- Heuristics: Design algorithms that work "reasonably well".

Reading

- Read Background
- Algorithms \& Discrete Math Fundamentals
- Cormen, et al., Chapters 1-16, 22-25
- NP-Completeness
- Cormen et al., Chapter 34
- Appendix (p187-288) form Garey \& Johnson
- Next Class
- Approximation Algorithms
- Cormen et al., Chapter 35
- Kleinberg, Tardos, Chapter 11
- Books by Vazirani and Hochbaum/Shmoys

Required Reading for Feb 6

- Network Flow
- Ford Fulkerson Algorithm
- Linear Programming
- Standard LP
- Dual LP
- Feasibility and feasible region

