
COT 6936: Topics in Algorithms!

Giri Narasimhan
ECS 254A / EC 2443; Phone: x3748

giri@cs.fiu.edu
https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

Reading!
•  Read Background

–  Algorithms & Discrete Math Fundamentals
•  Cormen, et al., Chapters 1-16, 22-25

– NP-Completeness
•  Cormen et al., Chapter 34
•  Appendix (p187-288) form Garey & Johnson

•  Next Class
–  Approximation Algorithms

•  Cormen et al., Chapter 35
•  Kleinberg, Tardos, Chapter 11
•  Books by Vazirani and Hochbaum/Shmoys

1/16/14 Lec 3: COT 6936 2

1/16/14

What are NP-Complete problems?!
•  These are the hardest problems in NP.
•  A problem p is NP-Complete if

–  there is a polynomial-time reduction from every
problem in NP to p.

–  p ∈ NP
•  How to prove that a problem is NP-Complete?

•  Cook’s Theorem: [1972]
– The SAT problem is NP-Complete.

Steve Cook, Richard Karp, Leonid Levin
Lec 3: COT 6936 3

How to prove problem p is NP-Complete?!
•  Show a polynomial-time reduction from every

problem in NP to problem p;
•  OR, Show a polynomial-time reduction from
any NP-complete problem to problem p;

1/16/14 Lec 3: COT 6936 4

What is a reduction?!
•  A reduction from problem q to problem p is

an algorithm A such that
–  Algorithm A takes an instance of problem q (call

it Iq) and outputs an instance of problem p (call it
Ip), and

–  Iq is a YES-instance iff Ip is a YES-instance
•  So what is a polynomial-time reduction?

1/16/14 Lec 3: COT 6936 5

1/16/14

co-NP

The problem classes and their relationships!

NP P NP-C

Lec 3: COT 6936 6

1/16/14

CLIQUE is NP-Complete
•  CLIQUE is in NP.
•  Reduce 3SAT to CLIQUE in polynomial time.
•  F = (x1∨¬x2∨x3) (¬x1∨¬x3∨x4) (x2∨x3∨¬x4) (¬x1∨¬x2∨x3)

x1

¬x2

x3

¬x1 ¬x3
x4

F is satisfiable if and
only if G has a clique
of size k where k is
the number of clauses
in F.

Lec 3: COT 6936 7

1/16/14

Vertex Cover!
A vertex cover is a set of vertices that
“covers” all the edges of the graph.

Examples

Lec 3: COT 6936 8

1/16/14

Hamiltonian Cycle Problem (HCP)!
Input: Graph G
Question: Does G contain a hamiltonian cycle?

•  HCP is in NP.
•  There exists a polynomial-time reduction

from 3SAT to HCP.
•  Thus HCP is NP-Complete.

Lec 3: COT 6936 9

Shortest Path vs Longest Path!
Input: Graph G with edge weights, vertices u

and v, bound B
Question: Does G contain a path from u to v of

length at most B? (SHORTEST PATH)

Question: Does G contain a path from u to v of
length at least B? (LONGEST PATH)

Homework: Listen to Cool MP3:
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3

1/16/14 Lec 3: COT 6936 10

Perfect (2-D) Matching vs 3-D Matching!
1.  Input: Bipartite graph, G(U,V,E)

 Question: Does G have a perfect matching?

2.  Input: Sets U and V, and E = subset of U×V
 Question: Is there a subset of E of size |U|
that covers U and V? [Related to 1.]

3.  Input: Sets U,V,W, & E = subset of U×V×W
 Question: Is there a subset of E of size |U|
that covers U, V and W?

1/16/14 Lec 3: COT 6936 11

Coping with NP-Completeness!
•  Approximation: Search for an "almost"

optimal solution with provable quality.
•  Randomization: Design algorithms that find
“provably” good solutions with high prob
and/or run fast on the average.

•  Restrict the inputs (e.g., planar graphs), or
fix some input parameters.

•  Heuristics: Design algorithms that work
"reasonably well”.

1/16/14 Lec 3: COT 6936 12

Optimization Problems!
•  Problem:

–  A problem is a function (relation) from a set I of
instances of the problem to a set S of solutions.
•  p: I → S

•  Decision Problem:
–  Problem with S = {TRUE, FALSE}

•  Optimization Problem:
–  Problem with a mapping from set S of solutions to a

positive rational number called the solution value
•  p: I → S → m(I,S)

1/16/14 Lec 3: COT 6936 13

Optimization Versions of NP-Complete Problems!

•  TSP
•  CLIQUE
•  Vertex Cover & Set Cover
•  Hamiltonian Cycle
•  Hamiltonian Path
•  SAT & 3SAT
•  3-D matching

1/16/14 Lec 3: COT 6936 14

Optimization Versions of NP-Complete Problems!

•  Computing a minimum TSP tour is NP-hard
(every problem in NP can be reduced to it in
polynomial time)

•  BUT, it is not known to be in NP
•  If a problem P is NP-Complete, then its

optimization version is NP-hard (i.e., it is at
least as hard as any problem in NP, but may
not be in NP)
–  Proof by contradiction!

1/16/14 Lec 3: COT 6936 15

Performance Ratio!
•  Approximation Algorithm A

–  A(I)
•  Optimal Solution

– OPT(I)
•  Performance Ratio on input I for

minimization problems
–  RA(I) = max {A(I)/OPT(I), OPT(I)/A(I)}

•  Performance Ratio of approximation
algorithm A
–  RA = inf {r ≥ 1| RA(I) ≤ r, for all instances}

1/16/14 Lec 3: COT 6936 16

Metric Space!
•  It generalizes concept of Euclidean space
•  Set with a distance function (metric) defined

on its elements
–  D: M X M R (assigns a real number to

distance between every pair of elements from
the metric space M)
•  D(x,y) = 0 iff x = y
•  D(x,y) ≥ 0
•  D(x,y) = D(y,x)
•  D(x,y) + D(y,z) ≥ D(x,z)

1/16/14 Lec 3: COT 6936 17

Examples of metric spaces!
•  Euclidean distance
•  Lp metrics
•  Graph distances

–  Distance between elements is the length of the
shortest path in the graph

1/16/14 Lec 3: COT 6936 18

TSP!
•  TSP in general graphs cannot be

approximated to within a constant (Why?)
– What is the approach?

•  Prove that it is hard to approximate!

•  TSP in general metric spaces holds promise!
– NN heuristic [Rosenkrantz, et al. 77]

• NN(I) ≤ ½ (ceil(log2n) + 1) OPT(I)
–  2-OPT, 3-OPT, k-OPT, Lin-Kernighan Heuristic

•  Can TSP in general metric spaces be
approximated to within a constant?

1/16/14 Lec 3: COT 6936 19

TSP in Euclidean Space!
•  TSP in Euclidean space can be approximated.

– MST Doubling (DMST) Algorithm
•  Compute a MST, M
•  Double the MST to create a tour, T1
• Modify the tour to get a TSP tour, T

–  Theorem: DMST is a 2-approximation algorithm
for Euclidean metrics, i.e., DMST(I) < 2 OPT(I)

–  Analysis:
•  L(T) ≤ L(T1) = 2L(M) ≤ 2L(TOPT)

–  Is the analysis tight?

1/16/14 Lec 3: COT 6936 20

Example of MST Doubling Algorithm!

1/16/14 Lec 3: COT 6936 21

Example of Christofides Algorithm!

1/16/14 Lec 3: COT 6936 22

TSP in Euclidean Metric!
•  Improved algorithms

– MM(I) < 3/2 OPT(I) [Christofides]
•  Christofides observed that DMST has 4 stages:

–  Find MST
–  Double all edges
–  Find Eulerian tour of resulting graph
–  Convert Eulerian tour into TSP tour

• He modified step 2 to the following
–  Add a matching of odd degree vertices

–  PTAS(I) < (1+ε) OPT(I) [Arora]

1/16/14 Lec 3: COT 6936 23

TSP Approximation Algorithm!
Theorem: The MST doubling algorithm is a 2-

approximation algorithm for inputs from any
metric space.

1/16/14 Lec 3: COT 6936 24

Greedy Vertex Cover!
•  Algorithm

– While graph G has at least one edge
•  Pick vertex v of highest degree in G and add to VC
•  Remove all edges incident on v in G

•  Analysis
–  |VC| ≤ log n |VCOPT| [Is this tight?]

1/16/14 Lec 3: COT 6936 25

Greedy Vertex Cover: Analysis!
•  Pay $1 for each vertex picked
•  If vertex v was chosen in an iteration, then

each edge e deleted in that iteration was
covered with cost(e) = $ 1/deg(v)

•  Thus, in each iteration, picking vertex with
max degree is same as picking vertex with
least average cost per incident edge

•  Size of VC picked = sum of edge costs
•  Goal is to bound sum of edge costs

1/16/14 Lec 3: COT 6936 26

Greedy Vertex Cover: Analysis!
•  Let by C be an optimal vertex cover of size K
•  Label edges in deletion order e1,e2,…,em
•  Let ej be edge deleted in iteration i
•  At least m-j+1 edges remain at start of

iteration i which can be covered by C with
average cost K/(m-j+1)

•  Total cost of all edges ≤ ΣjK/(m-j+1)
•  ≤ K log m

1/16/14 Lec 3: COT 6936 27

Greedy Vertex Cover: Analysis!
•  Performance ratio ≤ log n
•  Is the analysis tight?

–  Goal is to find graph such that after K rounds,
we are left with half the edges uncovered

– Make the graph recursive so that we need log n
such rounds before all edges are covered.

•  Challenge!
•  Another challenge: try to generalize to

weighted vertex cover problem

1/16/14 Lec 3: COT 6936 28

Vertex Cover!
•  Find the smallest set of vertices that are

adjacent to all edges in the graph.
•  Approximation Algorithm:

–  Initialize vertex cover C = empty set
–  while (an edge remains in the graph)

•  Choose arbitrary edge e = (u,v)
•  Add u and v to vertex cover C
•  Remove all edges incident on u or v

– Output set C
•  Analysis: |C| ≤ 2|COPT| [Is this tight?]

1/16/14 Lec 3: COT 6936 29

Complements and Approx Algorithms!
•  Complement of a clique subgraph is an

independent set (i.e., a subgraph with no
edges connecting any of the vertices)

•  If a vertex cover is removed (including all
incident edges), what remains?
–  ??

•  If the minimum vertex cover problem can be
2-approximated, what about the maximum
clique or maximum independent set?
–  ??

1/16/14 Lec 3: COT 6936 30

Edge Colorings Example!

1/16/14 Lec 3: COT 6936 31

Edge Colorings!
•  Theorem: Every graph can be edge colored

with at most Δ+1 colors, where Δ is the
maximum degree of the graph.

•  Theorem: No graph can be edge colored with
less than Δ colors.

•  Theorem: It is NP-complete to decide
whether a graph can be edge colored with Δ
colors [Holyer, 1981]
–  Thus it can be approximated to within an additive

constant. Can’t do better than that!
1/16/14 Lec 3: COT 6936 32

Some NP-Complete Number Problems!
•  Input: set S of n integers
•  Question 1: Is there a subset of S that adds

up to 0?
–  Example: { −7, −3, −2, 5, 8}

•  Input: set S of n integers, and integer B
•  Question 2: Is there a subset of S that adds

up to B (part of input)?
–  Example
 S = {267,493,869,961,1000,1153,1246,1598,
1766,1922} and B = 5842

1/16/14

SUBSET-SUM

SUBSET-SUM

Lec 3: COT 6936 33

More NP-Complete Number Problems!
•  Input: set S of n integers
•  Question 3: Is there a partition of S into

two subsets each with the same sum?
–  Example: { −7, −3, −2, 1, 5, 8}

•  Input: set S of 3n integers
•  Question 4: Is there a partition of S into

 |S|/3 subsets each of size 3 and each of
which adds up to the same value?
–  Strongly NP-Complete!

1/16/14

PARTITION

3-PARTITION

Lec 3: COT 6936 34

Load Balancing!
•  Input: m identical machines; n jobs, job j has

processing time tj.

–  Job j must run contiguously on one machine.
–  A machine can process at most one job at a time.

•  Def: The load of machine i is Li = sum of
processing times of assigned jobs.

•  Def: The makespan is the maximum load on
any machine L = maxi Li.

•  Load balancing: Assign each job to a machine
to minimize makespan. NP-Complete problem

1/16/14 Example from Kleinberg & Tardos;
Slides inspired by Kevin Wayne

Lec 3: COT 6936 35

Makespan

Example!

1/16/14

1

4

7

2

3

5 6

8

9

10 Machine 1

Machine 2

Machine 3

Load on Machine 1

Lec 3: COT 6936 36

Greedy Algorithm!
•  Algorithm:

–  for jobs 1 to n (in any order)
•  Assign job j to machine with least load

•  Observations:
1.  LOPT ≥ max {t1, …, tn}
2.  LOPT ≥ Σi ti/m (average load on a machine)
3.  If n > m, then LOPT ≥ 2tsmall

1/16/14 Lec 3: COT 6936 37

Example!

1/16/14

1 4 7

2

3

5

6

8

9

10 Machine 1

Machine 2

Machine 3

1

4

7

2

3

5 6

8

9

10 Machine 1

Machine 2

Machine 3

G
re

ed
y

A
lg

or
ith

m

Lec 3: COT 6936 38

Analysis!
•  Theorem: Greedy Algorithm is 2-approximate
•  Proof:

–  Let i be machine with maximum load Li. Let j be
last job scheduled on it.

–  Before j was assigned, machine i had least load.
–  Thus Li – tj ≤ average load ≤ LOPT
–  tj ≤ LOPT
–  Li ≤ 2LOPT

•  Is the analysis tight?

1/16/14 Lec 3: COT 6936 39

Analysis is tight!!

1/16/14 Lec 3: COT 6936 40

Longest Processing Time (LPT) Algorithm!
•  Algorithm:

–  for jobs 1 to n (in decreasing order of time)
•  Assign job j to machine with least load

•  Proof:
–  Let i be machine with maximum load Li. Let j be

last job scheduled on it.
–  The last job is the shortest and is at most LOPT/2
–  Thus Li is at most (3/2)LOPT [if n > m]

•  Is the analysis tight?
– No! (4/3)-approximation exists [Graham, 1969]

1/16/14 Lec 3: COT 6936 41

1/16/14

Fractional Knapsack Problem!
•  Burglar’s choices:

 n bags of valuables: x1, x2, …, xn
 Unit Value: v1, v2, …, vn
 Max number of units in bag: q1, q2, …, qn
 Weight per unit: w1, w2, …, wn
 Getaway Truck has a weight limit of B.
 Burglar can take “fractional” amount of any item.
 How can burglar maximize value of the loot?

•  Greedy Algorithm works!
 Pick maximum quantity of highest value per weight
item. Continue until weight limit B is reached.

Lec 3: COT 6936 42

1/16/14

0-1 Knapsack Problem!
•  Burglar’s choices:
 Items: x1, x2, …, xn
 Value: v1, v2, …, vn
 Weight: w1, w2, …, wn
 Getaway Truck has a weight limit of B.
 “Fractional” amount of items NOT allowed
 How can burglar maximize value of the loot?

•  Greedy Algorithm does not work! Why?
•  Need dynamic programming!

Lec 3: COT 6936 43

0-1 Knapsack Problem: Example!

Item Value Weight
1 1 1
2 6 2
3 18 5
4 22 6
5 28 7

1/16/14

B = 12

Lec 3: COT 6936 44

1/16/14

0-1 Knapsack Problem!
•  Subproblems?

–  V[j, L] = Optimal solution for knapsack problem assuming
truck weight limit L & choice of items from set {1,2,…, j}.

–  V[n, B] = Optimal solution for original problem
–  V[1, L] = easy to compute for all values of L.

•  Recurrence Relation? [Either xj included or not]
–  V[j, L] = max { V[j-1, L] , vj + V[j-1, L-wj] }

•  Table of solutions?
–  V[1..n, 1..B]

•  Ordering of subproblems?
–  Row-wise

Lec 3: COT 6936 45

Another NP-Complete Number Problem!
•  Input: set S of n items each with values {v1,

…,vn} and weights {w1,…,wn}; Knapsack with
weight limit B and value V

•  Question: Is there a choice of items from S
whose weights add up to at most B and whose
value adds up to at least V?

1/16/14

KNAPSACK

Lec 3: COT 6936 46

Knapsack Problem!
•  The 0-1 Knapsack problem is NP-Complete.
•  The 0-1 Knapsack problem can be solved

exactly in O(nB) time.
•  Does this mean P = NP ? What is going on

here?
•  What we have here is a pseudo-polynomial

time algorithm. Why?

1/16/14 Lec 3: COT 6936 47

Knapsack: Approximations!
•  Greedy Algorithm is 2-approximate

–  Sort items by value/weight
–  Greedily add items to knapsack if it does not

exceed the weight limit
•  Improved algorithm is (1 + 1/k)-approximate

[Sahni, 1975]
–  Time complexity is polynomial in n, logV, and logB
–  Time complexity is exponential in k
–  This is a “approximation scheme”
–  Implies cannot get to within an additive constant!

1/16/14 Lec 3: COT 6936 48

•  Set of points {p1,…,pn} in Rd
•  Typical data mining problem is to find k

clusters in this data

Clustering!

1/16/14 Lec 3: COT 6936 49

Clustering!
•  Requires a distance function

–  Euclidean distance (L2 distance) and Lp metrics
– Mahalanobis distance
–  Pearson Correlation Coefficient
–  General metric distance

•  Requires an objective function to optimize
– Maximum distance to a center
–  Sum of distances to a center
– Median of distance to a center

•  Can any point be center? (finite vs infinite)
1/16/14 Lec 3: COT 6936 50

Clustering!
•  Set of points S = {p1,…,pn} in Rd
•  Find a set of k centers such that the

maximum of the distance of a point to its
closest center is minimized.

•  MinC Maxi d(pi,C)
•  d(pi,C) = Mincj in C dist(pi,cj)

1/16/14 Lec 3: COT 6936 51

Well-known clustering techniques!
•  Algorithms

–  K-Means
– Hierarchical clustering
–  Clustering using MSTs
–  Greedy algorithm

•  Put first center at best possible location for single
center; then keep adding centers to reduce covering
radius each time by as much as possible.

•  Disadvantages
–  All three are heuristic algorithms (solutions not

optimal, no provable approximation factor)
1/16/14 Lec 3: COT 6936 52

Clustering: Approximation Algorithm!
•  Improved Greedy algorithm:

–  Repeatedly choose (k vertices selected) next center to
be site farthest from any existing center. Choose first
center arbitrarily.

1/16/14 Lec 3: COT 6936 53

Clustering: Approximation Analysis!
•  Analysis:

–  Let r = radius of largest greedy cluster
–  Let rOPT = radius of largest optimal cluster
–  If distance from optimal center to every site is ≤ rOPT,

then distance from any site to some optimal center is ≤
rOPT. Take ball of radius rOPT around every greedy center.
All optimal centers are covered;

–  Ball of radius 2rOPT around each greedy center will cover
every site.

–  Thus r ≤ 2 rOPT.

1/16/14 Lec 3: COT 6936 54

Alternative (Corrected) Proof!
•  Improved Greedy algorithm:

–  Repeatedly choose (k vertices selected) next center to
be site farthest from any existing center

•  Analysis:
–  Let r = min distance between 2 greedy centers & rOPT =

radius of largest cluster in optimal clustering
–  Let r > 2rOPT. Take ball of radius ½r around every greedy

center. Exactly one optimal center in each ball (?);
–  Pair optimal and greedy centers (ci,ci*).
–  Let s be any site and ci* be its nearest optimal center
–  d(s, C) ≤ d(s, ci) ≤ d(s, ci*) + d(ci*, ci) ≤ 2r(C*).
–  Thus r(C) ≤ 2r(C*), i.e., r < 2rOPT

1/16/14 Lec 3: COT 6936 55

Observation!
•  Analysis compared r with rOPT without

knowing what the optimal clustering looked
like!

1/16/14 Lec 3: COT 6936 56

Yet Another Proof!!
•  Improved Greedy algorithm:

–  Repeatedly choose (k vertices selected) next center to
be site farthest from any existing center

•  Analysis:
–  Let r = min distance between 2 greedy centers & rOPT =

radius of largest cluster in optimal clustering
–  Let r > 2rOPT. Take ball of radius ½r around every greedy

center. Exactly one optimal center in each ball (?);
–  Ball of radius rOPT around each greedy center will cover

every optimal center. Ball of radius 2rOPT around each
greedy center will cover every site.

–  Thus r ≤ 2 rOPT. CONTRADICTION!
1/16/14 Lec 3: COT 6936 57

Bin Packing!
•  Given an infinite number of unit capacity bins
•  Given finite set of items with rational sizes
•  Place items into minimum number of bins such

that each bin is never filled beyond capacity
•  BIN-PACKING is NP-Complete

–  Reduction from 3-PARTITION

1/16/14 Lec 3: COT 6936 58

Bin Packing: Approx Algorithm!
•  First-Fit:

–  place item in lowest numbered bin that can
accommodate item
•  FF(I) < 2 OPT(I)
•  FF(I) ≤ 17/10 OPT(I) + 2

•  First-Fit Decreasing:
–  Sort items in decreasing size and then do first-

fit placement
•  FFD(I) = 11/9 OPT(I) + 4

1/16/14 Lec 3: COT 6936 59

Bin Packing: Approx Algorithm!
•  Connection to Partition

– Hard even when you have only 2 bins
–  Cannot approximate to within (3/2)-ε unless P =

NP
–  Can get (1+ε)approximation if OPT > 2/ε

1/16/14 Lec 3: COT 6936 60

•  Greedy Algorithm
– While there are uncovered items

•  Find set with most uncovered items and add to cover

•  Analysis
–  Approximation Ratio = log n
–  It is tight. In example below, it will pick 5 sets

instead of 2.

Set Cover!

1/16/14 Lec 3: COT 6936 61

Approximability of NP-Hard Problems!
Approximation Factor Problem/Algorithm

1+ε Euclidean TSP (Arora)
1.5 Euclidean TSP (Christofides)
2 Vertex Cover
c Coloring

log n Set Cover
log2n
√n
nε Independent Set, Clique
n General TSP

1/16/14

Reading
Assignment

Lec 3: COT 6936 62

Required Reading for Feb 6!
•  Network Flow

–  Ford Fulkerson Algorithm
•  Linear Programming

–  Standard LP
–  Dual LP
–  Feasibility and feasible region

1/16/14 Lec 3: COT 6936 63

