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Reading!
•  Read Background 

–  Algorithms & Discrete Math Fundamentals 
•  Cormen, et al., Chapters 1-16, 22-25 

– NP-Completeness 
•  Cormen et al., Chapter 34 
•  Appendix (p187-288) form Garey & Johnson 

•  Next Class 
–  Approximation Algorithms 

•  Cormen et al., Chapter 35 
•  Kleinberg, Tardos, Chapter 11 
•  Books by Vazirani and Hochbaum/Shmoys 
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What are NP-Complete problems?!
•  These are the hardest problems in NP. 
•  A problem p is NP-Complete if  

–  there is a polynomial-time reduction from every 
problem in NP to p. 

–  p ∈ NP 
•  How to prove that a problem is NP-Complete? 

•  Cook’s Theorem: [1972] 
– The SAT problem is NP-Complete. 

 

Steve Cook, Richard Karp, Leonid Levin 
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How to prove problem p is NP-Complete?!
•  Show a polynomial-time reduction from every 

problem in NP to problem p; 
•  OR, Show a polynomial-time reduction from 
any NP-complete problem to problem p; 
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What is a reduction?!
•  A reduction from problem q to problem p is 

an algorithm A such that 
–  Algorithm A takes an instance of problem q (call 

it Iq) and outputs an instance of problem p (call it 
Ip), and 

–  Iq is a YES-instance iff Ip is a YES-instance 
•  So what is a polynomial-time reduction?  
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co-NP 

The problem classes and their relationships!

NP P NP-C 
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CLIQUE is NP-Complete 
•  CLIQUE is in NP. 
•  Reduce 3SAT to CLIQUE in polynomial time.  
•  F = (x1∨¬x2∨x3) (¬x1∨¬x3∨x4) (x2∨x3∨¬x4) (¬x1∨¬x2∨x3) 

x1 

¬x2 

x3 

¬x1 ¬x3 
x4 

F is satisfiable if and  
only if G has a clique  
of size k where k is  
the number of clauses 
in F. 
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Vertex Cover!
A vertex cover is a set of vertices that 
“covers” all the edges of the graph. 

Examples 
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Hamiltonian Cycle Problem (HCP)!
Input: Graph G 
Question: Does G contain a hamiltonian cycle? 
 
•  HCP is in NP. 
•  There exists a polynomial-time reduction 

from 3SAT to HCP. 
•  Thus HCP is NP-Complete. 
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Shortest Path vs Longest Path!
Input: Graph G with edge weights, vertices u 

and v, bound B 
Question: Does G contain a path from u to v of 

length at most B? (SHORTEST PATH) 

Question: Does G contain a path from u to v of 
length at least B? (LONGEST PATH) 

Homework: Listen to Cool MP3: 
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3 
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Perfect (2-D) Matching vs 3-D Matching!
1.  Input: Bipartite graph, G(U,V,E) 

 Question: Does G have a perfect matching? 

2.  Input: Sets U and V, and E = subset of U×V 
 Question: Is there a subset of E of size |U| 
that covers U and V? [Related to 1.] 

3.  Input: Sets U,V,W, & E = subset of U×V×W 
 Question: Is there a subset of E of size |U| 
that covers U, V and W?  
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Coping with NP-Completeness!
•  Approximation: Search for an "almost" 

optimal solution with provable quality. 
•  Randomization: Design algorithms that find 
“provably” good solutions with high prob 
and/or run fast on the average.  

•  Restrict the inputs (e.g., planar graphs), or 
fix some input parameters. 

•  Heuristics: Design algorithms that work 
"reasonably well”.  
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Optimization Problems!
•  Problem:  

–  A problem is a function (relation) from a set I of 
instances of the problem to a set S of solutions.  
•  p: I → S 

•  Decision Problem:  
–  Problem with S = {TRUE, FALSE}  

•  Optimization Problem:  
–  Problem with a mapping from set S of solutions to a 

positive rational number called the solution value  
•  p: I → S → m(I,S) 
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Optimization Versions of NP-Complete Problems!

•  TSP 
•  CLIQUE 
•  Vertex Cover & Set Cover 
•  Hamiltonian Cycle  
•  Hamiltonian Path 
•  SAT & 3SAT 
•  3-D matching 
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Optimization Versions of NP-Complete Problems!

•  Computing a minimum TSP tour is NP-hard 
(every problem in NP can be reduced to it in 
polynomial time) 

•  BUT, it is not known to be in NP 
•  If a problem P is NP-Complete, then its 

optimization version is NP-hard (i.e., it is at 
least as hard as any problem in NP, but may 
not be in NP) 
–  Proof by contradiction! 
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Performance Ratio!
•  Approximation Algorithm A 

–  A(I)  
•  Optimal Solution 

– OPT(I) 
•  Performance Ratio on input I for 

minimization problems 
–  RA(I) = max {A(I)/OPT(I), OPT(I)/A(I)} 

•  Performance Ratio of approximation 
algorithm A 
–  RA = inf {r ≥ 1| RA(I) ≤ r, for all instances} 

1/16/14 Lec 3: COT 6936 16 



Metric Space!
•  It generalizes concept of Euclidean space 
•  Set with a distance function (metric) defined 

on its elements 
–  D: M X M       R (assigns a real number to 

distance between every pair of elements from 
the metric space M) 
•  D(x,y) = 0 iff x = y 
•  D(x,y) ≥ 0 
•  D(x,y) = D(y,x) 
•  D(x,y) + D(y,z) ≥ D(x,z) 
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Examples of metric spaces!
•  Euclidean distance 
•  Lp metrics 
•  Graph distances 

–  Distance between elements is the length of the 
shortest path in the graph 
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TSP!
•  TSP in general graphs cannot be 

approximated to within a constant (Why?) 
– What is the approach? 

•  Prove that it is hard to approximate! 

•  TSP in general metric spaces holds promise!  
– NN heuristic [Rosenkrantz, et al. 77] 

• NN(I) ≤ ½ (ceil(log2n) + 1) OPT(I) 
–  2-OPT, 3-OPT, k-OPT, Lin-Kernighan Heuristic 

•  Can TSP in general metric spaces be 
approximated to within a constant?  
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TSP in Euclidean Space!
•  TSP in Euclidean space can be approximated. 

– MST Doubling (DMST) Algorithm  
•  Compute a MST, M 
•  Double the MST to create a tour, T1 
• Modify the tour to get a TSP tour, T 

–  Theorem: DMST is a 2-approximation algorithm 
for Euclidean metrics, i.e., DMST(I) < 2 OPT(I) 

–  Analysis:  
•  L(T) ≤ L(T1) = 2L(M) ≤ 2L(TOPT)   

–  Is the analysis tight? 
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Example of MST Doubling Algorithm!
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Example of Christofides Algorithm!
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TSP in Euclidean Metric!
•  Improved algorithms  

– MM(I) < 3/2 OPT(I)   [Christofides]  
•  Christofides observed that DMST has 4 stages: 

–  Find MST 
–  Double all edges 
–  Find Eulerian tour of resulting graph 
–  Convert Eulerian tour into TSP tour 

• He modified step 2 to the following 
–  Add a matching of odd degree vertices 

–  PTAS(I) < (1+ε) OPT(I) [Arora] 
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TSP Approximation Algorithm!
Theorem: The MST doubling algorithm is a  2-

approximation algorithm for inputs from any 
metric space. 
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Greedy Vertex Cover!
•  Algorithm 

– While graph G has at least one edge 
•  Pick vertex v of highest degree in G and add to VC 
•  Remove all edges incident on v in G 

•  Analysis 
–  |VC| ≤ log n |VCOPT|   [Is this tight?] 
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Greedy Vertex Cover: Analysis!
•  Pay $1 for each vertex picked 
•  If vertex v was chosen in an iteration, then 

each edge e deleted in that iteration was 
covered with cost(e) = $ 1/deg(v) 

•  Thus, in each iteration, picking vertex with 
max degree is same as picking vertex with 
least average cost per incident edge 

•  Size of VC picked = sum of edge costs 
•  Goal is to bound sum of edge costs 
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Greedy Vertex Cover: Analysis!
•  Let by C be an optimal vertex cover of size K 
•  Label edges in deletion order e1,e2,…,em 
•  Let ej be edge deleted in iteration i 
•  At least m-j+1 edges remain at start of 

iteration i which can be covered by C with 
average cost K/(m-j+1) 

•  Total cost of all edges ≤ ΣjK/(m-j+1) 
•  ≤ K log m  
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Greedy Vertex Cover: Analysis!
•  Performance ratio ≤ log n 
•  Is the analysis tight?  

–  Goal is to find graph such that after K rounds,  
we are left with half the edges uncovered 

– Make the graph recursive so that we need log n 
such rounds before all edges are covered. 

•  Challenge!  
•  Another challenge: try to generalize to 

weighted vertex cover problem 
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Vertex Cover!
•  Find the smallest set of vertices that are 

adjacent to all edges in the graph. 
•  Approximation Algorithm:  

–  Initialize vertex cover C = empty set 
–  while (an edge remains in the graph)  

•  Choose arbitrary edge e = (u,v)  
•  Add u and v to vertex cover C 
•  Remove all edges incident on u or v 

– Output set C 
•  Analysis: |C| ≤ 2|COPT|   [Is this tight?] 
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Complements and Approx Algorithms!
•  Complement of a clique subgraph is an 

independent set (i.e., a subgraph with no 
edges connecting any of the vertices) 

•  If a vertex cover is removed (including all 
incident edges), what remains? 
–  ?? 

•  If the minimum vertex cover problem can be 
2-approximated, what about the maximum 
clique or maximum independent set? 
–  ?? 
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Edge Colorings Example!
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Edge Colorings!
•  Theorem: Every graph can be edge colored 

with at most Δ+1 colors, where Δ is the 
maximum degree of the graph. 

•  Theorem: No graph can be edge colored with 
less than Δ colors. 

•  Theorem: It is NP-complete to decide 
whether a graph can be edge colored with Δ 
colors [Holyer, 1981] 
–  Thus it can be approximated to within an additive 

constant. Can’t do better than that! 
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Some NP-Complete Number Problems!
•  Input: set S of n integers  
•  Question 1: Is there a subset of S that adds 

up to 0?    
–  Example: { −7, −3, −2, 5, 8} 

•  Input: set S of n integers, and integer B 
•  Question 2: Is there a subset of S that adds 

up to B (part of input)?   
–  Example  
 S = {267,493,869,961,1000,1153,1246,1598, 
1766,1922} and B = 5842 
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SUBSET-SUM 

SUBSET-SUM 
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More NP-Complete Number Problems!
•  Input: set S of n integers 
•  Question 3: Is there a partition of S into 

two subsets each with the same sum? 
–  Example: { −7, −3, −2, 1, 5, 8} 

•  Input: set S of 3n integers 
•  Question 4: Is there a partition of S into 

 |S|/3 subsets each of size 3 and each of 
which adds up to the same value? 
–  Strongly NP-Complete! 
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PARTITION 

3-PARTITION 
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Load Balancing!
•  Input: m identical machines; n jobs, job j has 

processing time tj.  

–  Job j must run contiguously on one machine. 
–  A machine can process at most one job at a time. 

•  Def: The load of machine i is Li = sum of 
processing times of assigned jobs. 

•  Def: The makespan is the maximum load on 
any machine L = maxi  Li. 

•  Load balancing: Assign each job to a machine 
to minimize makespan. NP-Complete problem 

1/16/14 Example from Kleinberg & Tardos; 
Slides inspired by Kevin Wayne  
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Makespan 

Example!
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Greedy Algorithm!
•  Algorithm: 

–  for jobs 1 to n (in any order) 
•  Assign job j to machine with least load 

•  Observations: 
1.  LOPT ≥ max {t1, …, tn} 
2.  LOPT ≥ Σi ti/m (average load on a machine) 
3.  If n > m, then LOPT ≥ 2tsmall 
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Example!
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Analysis!
•  Theorem: Greedy Algorithm is 2-approximate 
•  Proof:  

–  Let i be machine with maximum load Li. Let j be 
last job scheduled on it.  

–  Before j was assigned, machine i  had least load. 
–  Thus Li – tj ≤ average load ≤ LOPT 
–  tj ≤ LOPT 
–  Li ≤ 2LOPT 

•  Is the analysis tight? 
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Analysis is tight!!
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Longest Processing Time (LPT) Algorithm!
•  Algorithm: 

–  for jobs 1 to n (in decreasing order of time) 
•  Assign job j to machine with least load 

•  Proof:  
–  Let i be machine with maximum load Li. Let j be 

last job scheduled on it.  
–  The last job is the shortest and is at most LOPT/2 
–  Thus Li is at most (3/2)LOPT   [if n > m] 

•  Is the analysis tight? 
– No! (4/3)-approximation exists [Graham, 1969] 
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Fractional Knapsack Problem!
•  Burglar’s choices: 

 n bags of valuables: x1, x2, …, xn 
 Unit Value:  v1, v2, …, vn 
 Max number of units in bag: q1, q2, …, qn 
 Weight per unit: w1, w2, …, wn 
 Getaway Truck has a weight limit of B. 
 Burglar can take “fractional” amount of any item.  
 How can burglar maximize value of the loot? 

•  Greedy Algorithm works! 
 Pick maximum quantity of highest value per weight 
item. Continue until weight limit B is reached. 
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0-1 Knapsack Problem!
•  Burglar’s choices: 
 Items: x1, x2, …, xn 
 Value:  v1, v2, …, vn 
 Weight: w1, w2, …, wn 
 Getaway Truck has a weight limit of B. 
 “Fractional” amount of items NOT allowed  
 How can burglar maximize value of the loot? 

•  Greedy Algorithm does not work! Why? 
•  Need dynamic programming! 
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0-1 Knapsack Problem: Example!

Item Value Weight 
1 1 1 
2 6 2 
3 18 5 
4 22 6 
5 28 7 

1/16/14 

B = 12 
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0-1 Knapsack Problem!
•  Subproblems? 

–  V[j, L] = Optimal solution for knapsack problem assuming 
truck weight limit L & choice of items from set {1,2,…, j}. 

–  V[n, B] = Optimal solution for original problem 
–  V[1, L] = easy to compute for all values of L. 

•  Recurrence Relation? [Either xj included or not] 
–  V[j, L] = max { V[j-1, L]  ,  vj + V[j-1, L-wj] }  

•  Table of solutions? 
–  V[1..n, 1..B] 

•  Ordering of subproblems? 
–  Row-wise 
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Another NP-Complete Number Problem!
•  Input: set S of n items each with values {v1,

…,vn} and weights {w1,…,wn}; Knapsack with 
weight limit B and value V  

•  Question: Is there a choice of items from S 
whose weights add up to at most B and whose 
value adds up to at least V? 

1/16/14 

KNAPSACK 
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Knapsack Problem!
•  The 0-1 Knapsack problem is NP-Complete.  
•  The 0-1 Knapsack problem can be solved 

exactly in O(nB) time.  
•  Does this mean P = NP ? What is going on 

here? 
•  What we have here is a pseudo-polynomial 

time algorithm. Why? 
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Knapsack: Approximations!
•  Greedy Algorithm is 2-approximate 

–  Sort items by value/weight 
–  Greedily add items to knapsack if it does not 

exceed the weight limit 
•  Improved algorithm is (1 + 1/k)-approximate 

[Sahni, 1975] 
–  Time complexity is polynomial in n, logV, and logB 
–  Time complexity is exponential in k 
–  This is a “approximation scheme” 
–  Implies cannot get to within an additive constant! 

1/16/14 Lec 3: COT 6936 48 



•  Set of points {p1,…,pn} in Rd 
•  Typical data mining problem is to find k 

clusters in this data 

Clustering!
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Clustering!
•  Requires a distance function 

–  Euclidean distance (L2 distance) and Lp metrics 
– Mahalanobis distance 
–  Pearson Correlation Coefficient 
–  General metric distance 

•  Requires an objective function to optimize 
– Maximum distance to a center 
–  Sum of distances to a center 
– Median of distance to a center 

•  Can any point be center? (finite vs infinite) 
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Clustering!
•  Set of points S = {p1,…,pn} in Rd 
•  Find a set of k centers such that the 

maximum of the distance of a point to its 
closest center is minimized. 

•  MinC Maxi d(pi,C)  
•  d(pi,C) = Mincj in C dist(pi,cj) 
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Well-known clustering techniques!
•  Algorithms 

–  K-Means 
– Hierarchical clustering 
–  Clustering using MSTs 
–  Greedy algorithm 

•  Put first center at best possible location for single 
center; then keep adding centers to reduce covering 
radius each time by as much as possible. 

•  Disadvantages 
–  All three are heuristic algorithms (solutions not 

optimal, no provable approximation factor) 
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Clustering: Approximation Algorithm!
•  Improved Greedy algorithm:  

–  Repeatedly choose (k vertices selected) next center to 
be site farthest from any existing center. Choose first 
center arbitrarily. 
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Clustering: Approximation Analysis!
•  Analysis: 

–  Let r = radius of largest greedy cluster  
–  Let rOPT = radius of largest optimal cluster 
–  If distance from optimal center to every site is ≤ rOPT, 

then distance from any site to some optimal center is ≤ 
rOPT. Take ball of radius rOPT around every greedy center. 
All optimal centers are covered;  

–  Ball of radius 2rOPT around each greedy center will cover 
every site.  

–  Thus r ≤ 2 rOPT.  
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Alternative (Corrected) Proof!
•  Improved Greedy algorithm:  

–  Repeatedly choose (k vertices selected) next center to 
be site farthest from any existing center 

•  Analysis: 
–  Let r = min distance between 2 greedy centers & rOPT = 

radius of largest cluster in optimal clustering 
–  Let r > 2rOPT. Take ball of radius ½r around every greedy 

center. Exactly one optimal center in each ball (?);  
–  Pair optimal and greedy centers (ci,ci*). 
–  Let s be any site and ci* be its nearest optimal center 
–  d(s, C) ≤ d(s, ci) ≤ d(s, ci*) + d(ci*, ci) ≤ 2r(C*). 
–  Thus r(C) ≤ 2r(C*), i.e., r < 2rOPT 
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Observation!
•  Analysis compared r with rOPT without 

knowing what the optimal clustering looked 
like!  
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Yet Another Proof!!
•  Improved Greedy algorithm:  

–  Repeatedly choose (k vertices selected) next center to 
be site farthest from any existing center 

•  Analysis: 
–  Let r = min distance between 2 greedy centers & rOPT = 

radius of largest cluster in optimal clustering 
–  Let r > 2rOPT. Take ball of radius ½r around every greedy 

center. Exactly one optimal center in each ball (?);  
–  Ball of radius rOPT around each greedy center will cover 

every optimal center. Ball of radius 2rOPT around each 
greedy center will cover every site.  

–  Thus r ≤ 2 rOPT. CONTRADICTION! 
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Bin Packing!
•  Given an infinite number of unit capacity bins 
•  Given finite set of items with rational sizes 
•  Place items into minimum number of bins such 

that each bin is never filled beyond capacity 
•  BIN-PACKING is NP-Complete 

–  Reduction from 3-PARTITION 
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Bin Packing: Approx Algorithm!
•  First-Fit:  

–  place item in lowest numbered bin that can 
accommodate item 
•  FF(I) < 2 OPT(I) 
•  FF(I) ≤ 17/10 OPT(I) + 2 

•  First-Fit Decreasing: 
–  Sort items in decreasing size and then do first-

fit placement 
•  FFD(I) = 11/9 OPT(I) + 4 
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Bin Packing: Approx Algorithm!
•  Connection to Partition 

– Hard even when you have only 2 bins 
–  Cannot approximate to within (3/2)-ε unless  P = 

NP 
–  Can get (1+ε)approximation if OPT > 2/ε 
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•  Greedy Algorithm 
– While there are uncovered items 

•  Find set with most uncovered items and add to cover 

•  Analysis  
–  Approximation Ratio = log n 
–  It is tight. In example below, it will pick 5 sets 

instead of 2.  

Set Cover!
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Approximability of NP-Hard Problems!
Approximation Factor Problem/Algorithm 

1+ε Euclidean TSP (Arora) 
1.5 Euclidean TSP (Christofides) 
2 Vertex Cover 
c Coloring 

log n Set Cover 
log2n 
√n 
nε Independent Set, Clique 
n General TSP 

1/16/14 

Reading 
Assignment 
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Required Reading for Feb 6!
•  Network Flow 

–  Ford Fulkerson Algorithm  
•  Linear Programming 

–  Standard LP 
–  Dual LP 
–  Feasibility and feasible region 
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