COT 6936: Topics in Algorithms

Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

Reading

- Read Background
 - Algorithms & Discrete Math Fundamentals
 - Cormen, et al., Chapters 1-16, 22-25
 - NP-Completeness
 - Cormen et al., Chapter 34
 - Appendix (p187-288) form Garey & Johnson
- Next Class
 - Approximation Algorithms
 - Cormen et al., Chapter 35
 - Kleinberg, Tardos, Chapter 11
 - Books by Vazirani and Hochbaum/Shmoys

What are *MP-Complete* problems?

- These are the hardest problems in *7*
- A problem p is *MP-Complete* if
 - there is a polynomial-time reduction from <u>every</u> problem in *m* to p.
 - $p \in \mathcal{HP}$
- How to prove that a problem is *MP-Complete*?
 - Cook's Theorem: [1972]

-The <u>SAT</u> problem is *MP-Complete*.

Steve Cook, Richard Karp, Leonid Levin

Lec 3: COT 6936

How to prove problem p is *MP-Complete*?

- Show a polynomial-time reduction from <u>every</u> problem in *m* to problem p;
- OR, Show a polynomial-time reduction from any NP-complete problem to problem p;

What is a reduction?

- A reduction from problem q to problem p is an algorithm A such that
 - Algorithm A takes an instance of problem q (call it I_q) and outputs an instance of problem p (call it I_p), and
 - I_q is a YES-instance iff I_p is a YES-instance
- So what is a polynomial-time reduction?

The problem classes and their relationships

CLIQUE is *MP-Complete*

- CLIQUE is in 72.
- Reduce 3SAT to CLIQUE in polynomial time.
- $F = (x_1 \vee \neg x_2 \vee x_3) (\neg x_1 \vee \neg x_3 \vee x_4) (x_2 \vee x_3 \vee \neg x_4) (\neg x_1 \vee \neg x_2 \vee x_3)$

F is satisfiable if and only if G has a clique of size k where k is the number of clauses in F.

0

Vertex Cover

A vertex cover is a set of vertices that "covers" all the edges of the graph.

Hamiltonian Cycle Problem (HCP)

Input: Graph G Question: Does G contain a hamiltonian cycle?

- HCP is in *MP*.
- There exists a polynomial-time reduction from 3SAT to HCP.
- Thus HCP is *MP-Complete*.

Shortest Path vs Longest Path

- Input: Graph G with edge weights, vertices u and v, bound B
- Question: Does G contain a path from u to v of length at most B? (SHORTEST PATH)
- Question: Does G contain a path from u to v of length at least B? (LONGEST PATH)

Homework: Listen to Cool MP3:

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/longest-path.mp3

Perfect (2-D) Matching vs 3-D Matching

- Input: Bipartite graph, G(U,V,E)
 Question: Does G have a perfect matching?
- 2. Input: Sets U and V, and E = subset of U×V Question: Is there a subset of E of size |U| that covers U and V? [Related to 1.]
- 3. Input: Sets U,V,W, & E = subset of U×V×W Question: Is there a subset of E of size |U| that covers U, V and W?

Coping with NP-Completeness

- Approximation: Search for an "almost" optimal solution with provable quality.
- Randomization: Design algorithms that find "provably" good solutions with high prob and/or run fast on the average.
- Restrict the inputs (e.g., planar graphs), or fix some input parameters.
- Heuristics: Design algorithms that work "reasonably well".

Optimization Problems

- Problem:
 - A <u>problem</u> is a function (relation) from a set I of instances of the problem to a set S of solutions.
 - $p: I \rightarrow S$
- Decision Problem:

- Problem with **S** = {TRUE, FALSE}

- Optimization Problem:
 - Problem with a mapping from set S of solutions to a positive rational number called the solution value

• $p: I \rightarrow S \rightarrow m(I,S)$

Optimization Versions of NP-Complete Problems

- TSP
- · CLIQUE
- Vertex Cover & Set Cover
- Hamiltonian Cycle
- Hamiltonian Path
- · SAT & 3SAT
- 3-D matching

Optimization Versions of NP-Complete Problems

- Computing a minimum TSP tour is NP-hard (every problem in NP can be reduced to it in polynomial time)
- BUT, it is not known to be in NP
- If a problem P is NP-Complete, then its optimization version is NP-hard (i.e., it is at least as hard as any problem in NP, but may not be in NP)
 - Proof by contradiction!

Performance Ratio

- Approximation Algorithm A
 - A(I)
- Optimal Solution
 OPT(I)
- Performance Ratio on input I for minimization problems
 - $R_A(I) = \max \{A(I)/OPT(I), OPT(I)/A(I)\}$
- Performance Ratio of approximation algorithm A
 - $R_A = \inf \{r \ge 1 \mid R_A(I) \le r, \text{ for all instances} \}$ 1/16/14 Lec 3: COT 6936

Metric Space

- It generalizes concept of Euclidean space
- Set with a distance function (metric) defined on its elements
 - D: M X M R (assigns a real number to distance between every pair of elements from the metric space M)
 - D(x,y) = 0 iff x = y
 - D(x,y) ≥ 0
 - $\cdot D(x,y) = D(y,x)$
 - $D(x,y) + D(y,z) \ge D(x,z)$

Examples of metric spaces

- Euclidean distance
- L_p metrics
- Graph distances
 - Distance between elements is the length of the shortest path in the graph

TSP

- TSP in general graphs cannot be approximated to within a constant (Why?)
 - What is the approach?
 - Prove that it is hard to approximate!
- TSP in general metric spaces holds promise!
 - NN heuristic [Rosenkrantz, et al. 77]
 - $NN(I) \leq \frac{1}{2} (ceil(log_2n) + 1) OPT(I)$
 - 2-OPT, 3-OPT, k-OPT, Lin-Kernighan Heuristic
- Can TSP in general metric spaces be approximated to within a constant?

TSP in Euclidean Space

- TSP in Euclidean space can be approximated.
 - MST Doubling (DMST) Algorithm
 - Compute a MST, M
 - Double the MST to create a tour, T_1
 - Modify the tour to get a TSP tour, T
 - Theorem: <u>DMST</u> is a <u>2-approximation</u> algorithm for Euclidean metrics, i.e., DMST(I) < 2 OPT(I)
 - Analysis:
 - $L(T) \leq L(T_1) = 2L(M) \leq 2L(T_{OPT})$
 - Is the analysis tight?

Example of MST Doubling Algorithm

Example of Christofides Algorithm

TSP in Euclidean Metric

- Improved algorithms
 - MM(I) < 3/2 OPT(I)

- [Christofides]
- Christofides observed that DMST has 4 stages:
 - Find MST
 - Double all edges
 - Find Eulerian tour of resulting graph
 - Convert Eulerian tour into TSP tour
- He modified step 2 to the following
 - Add a matching of odd degree vertices
- $PTAS(I) < (1+\epsilon) OPT(I)[Arora]$

TSP Approximation Algorithm

Theorem: The <u>MST doubling algorithm</u> is a 2approximation algorithm for inputs from any metric space.

Greedy Vertex Cover

- Algorithm
 - While graph G has at least one edge
 - Pick vertex v of highest degree in G and add to VC
 - Remove all edges incident on v in G
- Analysis
 - $|VC| \le \log n |VC_{OPT}|$

[Is this tight?]

Greedy Vertex Cover: Analysis

- Pay \$1 for each vertex picked
- If vertex v was chosen in an iteration, then each edge e deleted in that iteration was covered with cost(e) = \$ 1/deg(v)
- Thus, in each iteration, picking vertex with max degree is same as picking vertex with least average cost per incident edge
- Size of VC picked = sum of edge costs
- Goal is to bound sum of edge costs

Greedy Vertex Cover: Analysis

- Let by C be an optimal vertex cover of size K
- Label edges in deletion order e_1, e_2, \dots, e_m
- Let e_i be edge deleted in iteration i
- At least m-j+1 edges remain at start of iteration i which can be covered by C with average cost K/(m-j+1)
- Total cost of all edges $\leq \sum_{j} \frac{K}{(m-j+1)}$

Greedy Vertex Cover: Analysis

- Performance ratio ≤ log n
- Is the analysis tight?
 - Goal is to find graph such that after K rounds, we are left with half the edges uncovered
 - Make the graph recursive so that we need log n such rounds before all edges are covered.
- Challenge!
- Another challenge: try to generalize to weighted vertex cover problem

Vertex Cover

- Find the smallest set of vertices that are adjacent to all edges in the graph.
- Approximation Algorithm:
 - Initialize vertex cover C = empty set
 - while (an edge remains in the graph)
 - Choose arbitrary edge e = (u,v)
 - Add u and v to vertex cover C
 - Remove all edges incident on u or v
 - Output set C
- Analysis: $|C| \leq 2|C_{OPT}|$

[Is this tight?]

Complements and Approx Algorithms

- Complement of a clique subgraph is an independent set (i.e., a subgraph with no edges connecting any of the vertices)
- If a vertex cover is removed (including all incident edges), what remains?
 ??
- If the minimum vertex cover problem can be 2-approximated, what about the maximum clique or maximum independent set?
 - ??

Edge Colorings Example

Edge Colorings

- Theorem: Every graph can be edge colored with at most Δ +1 colors, where Δ is the maximum degree of the graph.
- Theorem: No graph can be edge colored with less than Δ colors.
- Theorem: It is NP-complete to decide whether a graph can be edge colored with ∆ colors [Holyer, 1981]
 - Thus it can be approximated to within an additive constant. Can't do better than that!

Some NP-Complete Number Problems

- Input: set S of n integers
- Question 1: Is there a subset of S that adds up to 0?
 - Example: { -7, -3, -2, 5, 8}
- Input: set S of n integers, and integer B
- Question 2: Is there a subset of S that adds up to B (part of input)?
 SUBSET-SUM
 - Example

S = {267,493,869,961,1000,1153,1246,1598, 1766,1922} and **B** = 5842

More NP-Complete Number Problems

- Input: set S of n integers
- Question 3: Is there a partition of S into two subsets each with the same sum?

- Input: set S of 3n integers
- Question 4: Is there a partition of S into |S|/3 subsets each of size 3 and each of which adds up to the same value?
 - Strongly NP-Complete!

3-PARTITION

PARTITION

Load Balancing

- Input: m identical machines; n jobs, job j has processing time t_i.
 - Job j must run contiguously on one machine.
 - A machine can process at most one job at a time.
- Def: The load of machine i is L_i = sum of processing times of assigned jobs.
- Def: The makespan is the maximum load on any machine L = max_i L_i.
- Load balancing: Assign each job to a machine to minimize makespan. NP-Complete problem

Example

Greedy Algorithm

- Algorithm:
 - for jobs 1 to n (in any order)
 - Assign job j to machine with least load
- Observations:
 - 1. $L_{OPT} \ge \max{\{t_1, ..., t_n\}}$
 - 2. $L_{OPT} \ge \Sigma_i t_i / m$ (average load on a machine)
 - 3. If n > m, then $L_{OPT} \ge 2t_{small}$

Example

Analysis

- Theorem: Greedy Algorithm is 2-approximate
- Proof:
 - Let i be machine with maximum load L_i . Let j be last job scheduled on it.
 - Before j was assigned, machine i had least load.
 - Thus $L_i t_j \leq average \ load \leq L_{OPT}$
 - $t_j \leq L_{OPT}$
 - $L_i \leq 2L_{OPT}$
- Is the analysis tight?

Analysis is tight!

Longest Processing Time (LPT) Algorithm

- Algorithm:
 - for jobs 1 to n (in decreasing order of time)
 - Assign job j to machine with least load
- Proof:
 - Let i be machine with maximum load $L_{\rm i}.$ Let j be last job scheduled on it.
 - The last job is the shortest and is at most $L_{\mbox{\scriptsize OPT}}/2$
 - Thus L_i is at most (3/2) L_{OPT} [if n > m]
- Is the analysis tight?
 - No! (4/3)-approximation exists [Graham, 1969]

Fractional Knapsack Problem

- Burglar's choices: n bags of valuables: x₁, x₂, ..., x_n Unit Value: v_1, v_2, \dots, v_n Max number of units in bag: $q_1, q_2, ..., q_n$ Weight per unit: $w_1, w_2, ..., w_n$ Getaway Truck has a weight limit of **B**. Burglar can take "fractional" amount of any item. How can burglar maximize value of the loot? Greedy Algorithm works! Pick maximum quantity of highest value per weight
 - item. Continue until weight limit B is reached.

0-1 Knapsack Problem

- Burglar's choices: Items: $x_1, x_2, ..., x_n$ Value: v_1, v_2, \dots, v_n Weight: w_1, w_2, \dots, w_n Getaway Truck has a weight limit of B. "Fractional" amount of items NOT allowed How can burglar maximize value of the loot? Greedy Algorithm does not work! Why?
- Need dynamic programming!

0-1 Knapsack Problem: Example

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

B = 12

0-1 Knapsack Problem

- Subproblems?
 - V[j, L] = <u>Optimal</u> solution for knapsack problem assuming truck weight limit L & choice of items from set {1,2,..., j}.
 - V[n, B] = <u>Optimal</u> solution for original problem
 - V[1, L] = easy to compute for all values of L.
- Recurrence Relation? [Either x_j included or not]
 V[j, L] = max { V[j-1, L] , v_j + V[j-1, L-w_j] }
- Table of solutions?
 - V[1..n, 1..B]
- Ordering of subproblems?
 - Row-wise

Another NP-Complete Number Problem

- Input: set S of n items each with values {v₁, ..., v_n} and weights {w₁,..., w_n}; Knapsack with weight limit B and value V
- Question: Is there a choice of items from S whose weights add up to at most B and whose value adds up to at least V?

KNAPSACK

Knapsack Problem

- The 0-1 Knapsack problem is NP-Complete.
- The 0-1 Knapsack problem can be solved exactly in O(nB) time.
- Does this mean <u>P = MP</u>? What is going on here?
- What we have here is a pseudo-polynomial time algorithm. Why?

Knapsack: Approximations

- Greedy Algorithm is 2-approximate
 - Sort items by value/weight
 - Greedily add items to knapsack if it does not exceed the weight limit
- Improved algorithm is (1 + 1/k)-approximate [Sahni, 1975]
 - Time complexity is polynomial in n, logV, and logB
 - Time complexity is exponential in k
 - This is a "approximation scheme"
 - Implies cannot get to within an additive constant!

Clustering

- Set of points {p₁,...,p_n} in R^d
- Typical data mining problem is to find k clusters in this data

Clustering

- Requires a distance function
 - Euclidean distance (L_2 distance) and L_p metrics
 - Mahalanobis distance
 - Pearson Correlation Coefficient
 - General metric distance
- Requires an objective function to optimize
 - Maximum distance to a center
 - Sum of distances to a center
 - Median of distance to a center
- Can any point be center? (finite vs infinite)

Clustering

- Set of points $S = \{p_1, \dots, p_n\}$ in R^d
- Find a set of k centers such that the maximum of the distance of a point to its closest center is minimized.
- Min_c Max_i d(p_i,C)
- $d(p_i, C) = Min_{cj in C} dist(p_i, c_j)$

Well-known clustering techniques

- Algorithms
 - K-Means
 - Hierarchical clustering
 - Clustering using MSTs
 - Greedy algorithm
 - Put first center at best possible location for single center; then keep adding centers to reduce covering radius each time by as much as possible.
- Disadvantages
 - All three are heuristic algorithms (solutions not optimal, no provable approximation factor)

Clustering: Approximation Algorithm

- Improved Greedy algorithm:
 - Repeatedly choose (k vertices selected) next center to be site farthest from any existing center. Choose first center arbitrarily.

Clustering: Approximation Analysis

- Analysis:
 - Let r = radius of largest greedy cluster
 - Let r_{OPT} = radius of largest optimal cluster
 - If distance from optimal center to every site is $\leq r_{OPT}$, then distance from any site to some optimal center is $\leq r_{OPT}$. Take ball of radius r_{OPT} around every greedy center. All optimal centers are covered;
 - Ball of radius $2r_{\text{OPT}}$ around each greedy center will cover every site.
 - Thus $r \le 2 r_{OPT}$.

Alternative (Corrected) Proof

- Improved Greedy algorithm:
 - Repeatedly choose (k vertices selected) next center to be site farthest from any existing center
- Analysis:
 - Let r = min distance between 2 greedy centers & $r_{OPT} = radius$ of largest cluster in optimal clustering
 - Let $r > 2r_{OPT}$. Take ball of radius $\frac{1}{2}r$ around every greedy center. Exactly one optimal center in each ball (?);
 - Pair optimal and greedy centers (c_i, c_i^*) .
 - Let s be any site and c_i^* be its nearest optimal center
 - $d(s, C) \leq d(s, c_i) \leq d(s, c_i^*) + d(c_i^*, c_i) \leq 2r(C^*).$
 - Thus $r(C) \leq 2r(C^*)$, i.e., $r < 2r_{OPT}$

Observation

 Analysis compared r with r_{OPT} without knowing what the optimal clustering looked like!

Yet Another Proof!

- Improved Greedy algorithm:
 - Repeatedly choose (k vertices selected) next center to be site farthest from any existing center
- Analysis:
 - Let r = min distance between 2 greedy centers & $r_{OPT} = radius$ of largest cluster in optimal clustering
 - Let r > 2r_{OPT}. Take ball of radius ¹/₂r around every greedy center. Exactly one optimal center in each ball (?);
 - Ball of radius r_{OPT} around each greedy center will cover every optimal center. Ball of radius $2r_{OPT}$ around each greedy center will cover every site.
 - Thus $r \le 2 r_{OPT}$. CONTRADICTION!

Bin Packing

- Given an infinite number of unit capacity bins
- Given finite set of items with rational sizes
- Place items into minimum number of bins such that each bin is never filled beyond capacity
- BIN-PACKING is NP-Complete

- Reduction from 3-PARTITION

Bin Packing: Approx Algorithm

- First-Fit:
 - place item in lowest numbered bin that can accommodate item
 - FF(I) < 2 OPT(I)</pre>
 - FF(I) ≤ 17/10 OPT(I) + 2
- First-Fit Decreasing:
 - Sort items in decreasing size and then do firstfit placement
 - FFD(I) = 11/9 OPT(I) + 4

Bin Packing: Approx Algorithm

- Connection to Partition
 - Hard even when you have only 2 bins
 - Cannot approximate to within (3/2)- ϵ unless P = NP
 - Can get (1+ ε)approximation if OPT > 2/ ε

Set Cover

- Greedy Algorithm
 - While there are uncovered items
 - Find set with most uncovered items and add to cover
- Analysis
 - Approximation Ratio = log n
 - It is tight. In example below, it will pick 5 sets instead of 2.

Approximability of NP-Hard Problems

Approximation Factor	Problem/Algorithm
1+ε	Euclidean TSP (Arora)
1.5	Euclidean TSP (Christofides)
2	Vertex Cover
с	Coloring
log n	Set Cover
log²n	
√n	
n٤	Independent Set, Clique
n	General TSP
Reading Assignment	

Required Reading for Feb 6

- Network Flow
 - Ford Fulkerson Algorithm
- Linear Programming
 - Standard LP
 - Dual LP
 - Feasibility and feasible region