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Online Problems!
•  Should I buy a car/skis/camping gear or rent 

them when needed? 
•  Should I buy Google stocks today or sell 

them or hold on to them? 
•  Should I work on my homework in Algorithms 

or my homework in OS or on my research? 
•  Decisions have to be made based on past and 

current request/task 
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How to Analyze Online Algorithms?!
•  Competitive analysis 

–  Compare with optimal offline algorithm (OPT) 
•  Algorithm A is α-competitive if there exists 

constants b such that for every sequence of 
inputs σ: 
–  costA(σ) ≤ αcostOPT(σ) + b 
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Ski Rental Problem!
•  Should I buy skis or rent them? 

–  Rental is $A per trip 
–  Purchase costs $B  

•  Idea: 
–  Rent for m trips, where 

• m = B/A 
–  Then purchase skis 

•  Analysis: 
–  Competitiveness ratio = 2. Why? 
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Paging Problem!
•  Given 2-level storage system 

–  Limited Faster Memory (k pages) “CACHE” 
–  Unlimited Slower Memory 

•  Input: Sequence of page requests 
•  Assumption: “Lazy” response (Demand Paging) 

–  If page is in CACHE, no changes to contents 
–  If page is not in CACHE, make place for it in 

CACHE by replacing an existing page 
•  Need: A “page replacement” algorithm 
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Well-known Page Replacement Algorithms!
•  LRU: evict page whose most recent access 

was earliest among all pages 
•  FIFO: evict page brought in earliest 
•  LIFO: evict page brought in most recently 
•  LFU: evict page least frequently used 
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Comparing online algorithms?!
•  Analyze: time? performance? 

–  Input length?  
–  Performance depends on request sequence 

•  Probabilistic models? Markov Decision process 

•  Competitive analysis [Sleator and Tarjan] 
–  Compare with optimal offline algorithm (OPT) 

• OPT is clairvoyant; no prob assumptions; “worst-case” 

•  Algorithm A is α-competitive if there exists 
constants b such that for every σ: 
–  costA(σ) ≤ αcostOPT(σ) + b 
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Optimal Algorithm for Paging!
•  MIN (Longest Forward Distance): Evict the 

page whose next access is latest. 
•  Cost: # of page faults 
•  Competitive Analysis: Compare  

– # of page faults of algorithm A with 
– # of page faults of algorithm MIN 

•  We want to compute the competitiveness of 
LRU, LIFO, FIFO, LFU, etc.  
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Lower Bound for any online algorithm!
•  Cannot achieve better than k-competitive! 

– No deterministic algorithm is α-competitive, α < k 
•  Fix online algorithm A, 
•  Construct a request sequence σ, and 
•  Show that: costA(σ) ≥ k costOPT(σ) 

•  Sequence σ will only have k+1 possible pages 
– make 1..k+1 the first k+1 requests 
– make next request as the page evicted by A 

•  A will fault on every request 
• OPT? Will not fault more than once every k requests 
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Upper Bound: LRU is k-Competitive!
•  Lemma 1: If any subseq has k+1 distinct 

pages, MIN (any alg) faults at least once 
•  Lemma 2: Between 2 LRU faults on same 

page, there must be k other distinct faults 
–  Let Τ be any subsequence of σ with exactly k 

faults for LRU & with p accessed just before Τ. 
–  LRU cannot fault on same page twice within Τ 
–  LRU cannot fault on p within Τ 
–  Thus, p followed by Τ requests k+1 distinct pages 

and MIN must fault at least once on Τ 
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LRU is k-competitive!
•  Partition σ into subsequences as follows:  

–  Let s0 include the first request, p, and the first 
k faults for LRU 

–  Let si include subsequence after si-1 with the 
next k faults for LRU 

–  Argument applies for Τ = si, for every i > 0 
–  If both algorithms start with empty CACHE or 

identical CACHE, then it applies to i = 0 also 
– Otherwise, LRU incurs k extra faults 

•  Thus, costA(σ) ≤ k costOPT(σ) + k 
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Other Page Replacement Algorithms!
•  FIFO is k-competitive (Homework!) 
•  MFU and LIFO?  
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How to Analyze Online Algorithms?!
•  Competitive analysis 

–  Compare with optimal offline algorithm (OPT) 
•  Algorithm A is α-competitive if there exists 

constants b such that for every sequence of 
inputs σ: 
–  costA(σ) ≤ αcostOPT(σ) + b 
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Alternative Analysis Technique!
•  Cannot consider requests separately since 

–  If costA = 1 and costOPT = 0, ratio = infinity 
•  So amortize on a sequence of requests 
•  We achieve this using a Potential Function  

–  Let’s first do this for LRU 
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LRU Analysis using potential functions!
•  Define the potential function as follows: 

–  Φ(t) = Σxε (LRU – OPT)  Rank(x) 
– Here Rank(x) is its position in LRU counted from 

the least recently used item 
•  Consider an arbitrary request 
•  Assume that OPT serves request first 
•  Then LRU serves request 
•  We will show that for each step t, we have 

–  costLRU(t) + Φ(t) - Φ(t-1) ≤ k costOPT(t) 
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LRU Analysis (Cont’d): OPT serves!
•  We will show that for each step t, we have 

–  costLRU(t) + Φ(t) - Φ(t-1) ≤ k costOPT(t) 
•  If OPT has a hit, then  

–  costLRU(t) = costOPT(t) = ΔΦ = 0 
•  If OPT has a miss, then  

–  costLRU(t) = 0 
–  costOPT(t) = 1 
– ΔΦ ≤ k 

•  Because OPT may evict something in LRU 
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LRU Analysis (Cont’d): LRU serves!
•  We will show that for each step t, we have 

–  costLRU(t) + Φ(t) - Φ(t-1) ≤ k costOPT(t) 
•  If LRU has a hit, then  

–  costLRU(t) = costOPT(t) = ΔΦ = 0 
•  If LRU has a miss, then  

–  costLRU(t) = 1; costOPT(t) = 0 
–  There exists at least one item x in ARC – OPT  
–  If x is evicted, then ΔΦ ≤ -w(x) ≤ -1 
–  If x is not evicted, then its rank is reduced by at 

least 1. Thus ΔΦ ≤ -1 
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LRU Analysis!
•  Thus for each step t, we have 

–  costLRU(t) + Φ(t) - Φ(t-1) ≤ k costOPT(t) 
•  Adding over all steps t, we get  

– ΣcostLRU(t) + Σ(Φ(t) - Φ(t-1)) ≤ k ΣcostOPT(t) 
– ΣcostLRU(t) + Φ(m) – Φ(0) ≤ k ΣcostOPT(t) 
–  But Φ(0) = 0, and  
–  Φ(m) ≥ 0 
–  Thus, costA(σ) ≤ k costOPT(σ)  
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DBL(2c)!
•  DBL(2c) has 2 lists 

–  L1 is list of pages accessed once 
–  L2 is list of pages accessed once 
–  Any hit moves item to MRU(L2) 
–  Any miss has 2 cases 

•  If L1 has c items, then move new item to MRU(L1) and 
delete LRU(L1) 

•  If L1 has at most c items, then move new item to 
MRU(L1) and delete LRU(L2) 
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Adaptive Replacement Cache (ARC)!
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2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 123

ARC

INPUT: The request stream .
INITIALIZATION: Set and set the LRU lists , , , and to empty.

For every and any , one and only one of the following four cases must occur.
Case I: is in or . A cache hit has occurred in ARC and DBL .

Move to MRU position in .

Case II: is in . A cache miss (resp. hit) has occurred in ARC (resp. DBL ).

ADAPTATION: Update where
if
otherwise

REPLACE . Move from to the MRU position in (also fetch to the cache).

Case III: is in . A cache miss (resp. hit) has occurred in ARC (resp. DBL ).

ADAPTATION: Update where
if
otherwise

REPLACE . Move from to the MRU position in (also fetch to the cache).

Case IV: is not in . A cache miss has occurred in ARC and DBL .

Case A: has exactly pages.
If )

Delete LRU page in . REPLACE .
else

Here is empty. Delete LRU page in (also remove it from the cache).
endif

Case B: has less than pages.
If )

Delete LRU page in , if .
REPLACE .

endif
Finally, fetch to the cache and move it to MRU position in .

Subroutine REPLACE
If ( ( is not empty) and ( ( exceeds the target ) or ( is in and )) )

Delete the LRU page in (also remove it from the cache), and move it to MRU position in .
else

Delete the LRU page in (also remove it from the cache), and move it to MRU position in .
endif

Fig. 4. Algorithm for Adaptive Replacement Cache. This algorithm is completely self-contained, and can directly be used as a
basis for an implementation. No tunable parameters are needed as input to the algorithm. We start from an empty cache and an
empty cache directory. ARC corresponds to and DBL corresponds to .

Pages that are discarded from the list are not put
on the list. The list will have a variable time-
dependent size. At any time, is the longest list such
that (a) and (b) the least recent page in is
more recent than the least recent page in the list .
The list is related to the LIRS stack in [21].

The list can be constructed and used as follows.
Whenever the LRU page of is discarded in Case
IV(A) of the Figure 4, make the discarded page the
MRU page in the list . Discard the LRU page in ,
if . Now, whenever the LRU page of is

discarded in Case IV(B) of the Figure 4, ensure that the
least recent page in is more recent than the new least
recent page in the list ; otherwise, discard pages in
the list until this condition is satisfied. This latter step
may have to discard arbitrarily large number of pages
from , and, hence the resulting algorithm is constant-
time in an expected sense only. Finally, on a hit in the
list , move the hit page to the top of the list . No
adaptation takes place on a hit in . We refer to the
resulting algorithm as ARC . In our experiments,
we will focus on ARC = ARC .

Megiddo & 
Modha,  
FAST 2003 



How to Analyze Rand Online Algorithms?!
•  Algorithm A is α-competitive if there exists 

constants b such that for every sequence of 
inputs σ: 
–  costA(σ) ≤ αcostOPT(σ) + b 

•  Randomized Algorithm R is α-competitive if 
there exists constants b such that for every 
sequence of inputs σ: 
–  E[costR(σ)] ≤ αcostOPT(σ) + b 
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