COT 6936: Topics in Algorithms

Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

Online Problems

- Should I buy a car/skis/camping gear or rent them when needed?
- Should I buy Google stocks today or sell them or hold on to them?
- Should I work on my homework in Algorithms or my homework in OS or on my research?
- Decisions have to be made based on past and current request/task

How to Analyze Online Algorithms?

- Competitive analysis
 - Compare with optimal offline algorithm (OPT)
- Algorithm A is a-competitive if there exists constants b such that for every sequence of inputs σ:
 - $cost_A(\sigma) \le acost_{OPT}(\sigma) + b$

Ski Rental Problem

- Should I buy skis or rent them?
 - Rental is \$A per trip
 - Purchase costs \$B
- Idea:
 - Rent for m trips, where
 - \cdot m = B/A
 - Then purchase skis
- Analysis:

- Competitiveness ratio = 2. Why?

Paging Problem

- Given 2-level storage system
 - Limited Faster Memory (k pages) "CACHE"
 - Unlimited Slower Memory
- Input: Sequence of page requests
- Assumption: "Lazy" response (Demand Paging)
 - If page is in CACHE, no changes to contents
 - If page is not in CACHE, make place for it in CACHE by replacing an existing page
- Need: A "page replacement" algorithm

Infinite,

Online

Well-known Page Replacement Algorithms

- LRU: evict page whose most recent access was earliest among all pages
- FIFO: evict page brought in earliest
- LIFO: evict page brought in most recently
- LFU: evict page least frequently used

Comparing online algorithms?

- Game between Cruel Adversary and your Analyze: time? performance?
 - Input length?
 - Performance depends on request s ence ocess
 - Probabilistic models? Markov Decisio
- Competitive analysis [Sleator an /Tarjan]
 - Compare with optimal offline algor, thm (OPT)
 - OPT is clairvoyant; no prob assumptions; "worst-case"
- Algorithm A is a-competitive if there exists constants b such that for every σ :
 - $cost_A(\sigma) \leq acost_{OPT}(\sigma) + b$

algorithm

Optimal Algorithm for Paging

- MIN (Longest Forward Distance): Evict the page whose next access is latest.
- Cost: # of page faults
- Competitive Analysis: Compare
 - # of page faults of algorithm A with
 - # of page faults of algorithm MIN
- We want to compute the competitiveness of LRU, LIFO, FIFO, LFU, etc.

Lower Bound for any online algorithm

- Cannot achieve better than k-competitive!
 - No deterministic algorithm is a-competitive, a < k
 - Fix online algorithm A,
 - Construct a request sequence σ , and
 - Show that: $cost_A(\sigma) \ge k cost_{OPT}(\sigma)$ Adversary Model
- Sequence σ will only have k+1 possie e pages
 - make 1..k+1 the first k+1 requests
 - make next request as the page evicted by A
 - A will fault on every request
 - OPT? Will not fault more than once every k requests

Upper Bound: LRU is k-Competitive

- Lemma 1: If any subseq has k+1 distinct pages, MIN (any alg) faults at least once
- Lemma 2: Between 2 LRU faults on same page, there must be k other distinct faults
 - Let T be any subsequence of σ with exactly k faults for LRU & with p accessed just before T.
 - LRU cannot fault on same page twice within T
 - LRU cannot fault on p within T
 - Thus, p followed by T requests k+1 distinct pages and MIN must fault at least once on T

LRU is k-competitive

- Partition σ into subsequences as follows:
 - Let s₀ include the first request, p, and the first k faults for LRU
 - Let s_i include subsequence after s_{i-1} with the next k faults for LRU
 - Argument applies for $T = s_i$, for every i > 0
 - If both algorithms start with empty CACHE or identical CACHE, then it applies to i = 0 also
 - Otherwise, LRU incurs k extra faults
- Thus, $cost_A(\sigma) \le k cost_{OPT}(\sigma) + k$

Other Page Replacement Algorithms

- FIFO is k-competitive (Homework!)
- MFU and LIFO?

How to Analyze Online Algorithms?

- Competitive analysis
 - Compare with optimal offline algorithm (OPT)
- Algorithm A is a-competitive if there exists constants b such that for every sequence of inputs σ:
 - $cost_A(\sigma) \le acost_{OPT}(\sigma) + b$

Alternative Analysis Technique

- Cannot consider requests separately since
 If cost_A = 1 and cost_{OPT} = 0, ratio = infinity
- So amortize on a sequence of requests
- We achieve this using a Potential Function
 - Let's first do this for LRU

LRU Analysis using potential functions

- Define the potential function as follows:
 - $\Phi(t) = \Sigma_{x \epsilon (LRU OPT)} Rank(x)$
 - Here Rank(x) is its position in LRU counted from the least recently used item
- Consider an arbitrary request
- Assume that OPT serves request first
- Then LRU serves request
- We will show that for each step t, we have
 - $cost_{LRU}(t) + \Phi(t) \Phi(t-1) \le k cost_{OPT}(t)$

LRU Analysis (Cont'd): OPT serves

- We will show that for each step t, we have $\cot_{LRU}(t) + \Phi(t) \Phi(t-1) \le k \cot_{OPT}(t)$
- If OPT has a hit, then
 - $cost_{LRU}(t) = cost_{OPT}(t) = \Delta \Phi = 0$
- If OPT has a miss, then
 - $-\cos t_{LRU}(t) = 0$
 - $cost_{OPT}(t) = 1$
 - ∆**⊉ ≤** k
 - Because OPT may evict something in LRU

LRU Analysis (Cont'd): LRU serves

- We will show that for each step t, we have - $cost_{LRU}(t) + \Phi(t) - \Phi(t-1) \le k cost_{OPT}(t)$
- If LRU has a hit, then
 - $cost_{LRU}(t) = cost_{OPT}(t) = \Delta \Phi = 0$
- If LRU has a miss, then
 - $cost_{LRU}(t) = 1; cost_{OPT}(t) = 0$
 - There exists at least one item x in ARC OPT
 - If x is evicted, then $\Delta \Phi \leq -w(x) \leq -1$
 - If x is not evicted, then its rank is reduced by at least 1. Thus $\Delta \Phi \le -1$

LRU Analysis

Thus for each step t, we have

- $cost_{LRU}(\dagger) + \Phi(\dagger) - \Phi(\dagger-1) \le k cost_{OPT}(\dagger)$

- Adding over all steps t, we get
 - $\Sigma cost_{LRU}(\dagger) + \Sigma(\Phi(\dagger) \Phi(\dagger-1)) \le k \Sigma cost_{OPT}(\dagger)$
 - $\Sigma cost_{LRU}(t) + \Phi(m) \Phi(0) \le k \Sigma cost_{OPT}(t)$
 - But $\Phi(0) = 0$, and
 - **Φ(m)** ≥ 0
 - Thus, $cost_A(\sigma) \leq k cost_{OPT}(\sigma)$

DBL(2c)

- DBL(2c) has 2 lists
 - L_1 is list of pages accessed once
 - L_2 is list of pages accessed once
 - Any hit moves item to $MRU(L_2)$
 - Any miss has 2 cases
 - If L_1 has c items, then move new item to $MRU(L_1)$ and delete $LRU(L_1)$
 - If L_1 has at most c items, then move new item to $MRU(L_1)$ and delete $LRU(L_2)$

Adaptive Replacement Cache (ARC)

 $\overline{\mathsf{ARC}}(c)$

INPUT: The request stream $x_1, x_2, \ldots, x_t, \ldots$ INITIALIZATION: Set p = 0 and set the LRU lists T_1, B_1, T_2 , and B_2 to empty.

For every $t \ge 1$ and any x_t , one and only one of the following four cases must occur. Case I: x_t is in T_1 or T_2 . A cache hit has occurred in ARC(c) and DBL(2c). Move x_t to MRU position in T_2 .

Case II: x_t is in B_1 . A cache miss (resp. hit) has occurred in ARC(c) (resp. DBL(2c)).

ADAPTATION: Update $p = \min \{p + \delta_1, c\}$ where $\delta_1 = \begin{cases} 1 & \text{if } |B_1| \ge |B_2| \\ |B_2|/|B_1| & \text{otherwise.} \end{cases}$

 $\mathsf{REPLACE}(x_t, p)$. Move x_t from B_1 to the MRU position in T_2 (also fetch x_t to the cache).

Case III: x_t is in B_2 . A cache miss (resp. hit) has occurred in ARC(c) (resp. DBL(2c)).

ADAPTATION: Update
$$p = \max\{p - \delta_2, 0\}$$
 where $\delta_2 = \begin{cases} 1 & \text{if } |B_2| \ge |B_1| \\ |B_1|/|B_2| & \text{otherwise.} \end{cases}$

 $\mathsf{REPLACE}(x_t, p)$. Move x_t from B_2 to the MRU position in T_2 (also fetch x_t to the cache).

Case IV: x_t is not in $T_1 \cup B_1 \cup T_2 \cup B_2$. A cache miss has occurred in ARC(c) and DBL(2c).

```
Case A: L_1 = T_1 \cup B_1 has exactly c pages.
                  If (|T_1| < c)
                          Delete LRU page in B_1. REPLACE(x_t, p).
                  else
                          Here B_1 is empty. Delete LRU page in T_1 (also remove it from the cache).
                   endif
            Case B: L_1 = T_1 \cup B_1 has less than c pages.
                   If (|T_1| + |T_2| + |B_1| + |B_2| > c)
                          Delete LRU page in B_2, if (|T_1| + |T_2| + |B_1| + |B_2| = 2c).
                          REPLACE(x_t, p).
                   endif
          Finally, fetch x_t to the cache and move it to MRU position in T_1.
Subroutine REPLACE(x_t, p)
  If (||T_1| is not empty) and (||T_1| exceeds the target p) or (x_t \text{ is in } B_2 \text{ and } ||T_1| = p)))
          Delete the LRU page in T_1 (also remove it from the cache), and move it to MRU position in B_1.
  else
          Delete the LRU page in T_2 (also remove it from the cache), and move it to MRU position in B_2.
  endif
```

Megiddo & Modha, FAST 2003

How to Analyze Rand Online Algorithms?

- Algorithm A is a-competitive if there exists constants b such that for every sequence of inputs σ:
 - $cost_A(\sigma) \leq acost_{OPT}(\sigma) + b$
- Randomized Algorithm R is a-competitive if there exists constants b such that for every sequence of inputs σ :
 - $E[cost_R(\sigma)] \le acost_{OPT}(\sigma) + b$

Adversary provides request sequence at start