
COT 6936: Topics in Algorithms!

Giri Narasimhan
ECS 254A / EC 2443; Phone: x3748

giri@cs.fiu.edu
https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

Online Problems!
•  Should I buy a car/skis/camping gear or rent

them when needed?
•  Should I buy Google stocks today or sell

them or hold on to them?
•  Should I work on my homework in Algorithms

or my homework in OS or on my research?
•  Decisions have to be made based on past and

current request/task

1/23/14 COT 6936 2

How to Analyze Online Algorithms?!
•  Competitive analysis

–  Compare with optimal offline algorithm (OPT)
•  Algorithm A is α-competitive if there exists

constants b such that for every sequence of
inputs σ:
–  costA(σ) ≤ αcostOPT(σ) + b

1/23/14 COT 6936 3

Ski Rental Problem!
•  Should I buy skis or rent them?

–  Rental is $A per trip
–  Purchase costs $B

•  Idea:
–  Rent for m trips, where

• m = B/A
–  Then purchase skis

•  Analysis:
–  Competitiveness ratio = 2. Why?

1/23/14 COT 6936 4

Paging Problem!
•  Given 2-level storage system

–  Limited Faster Memory (k pages) “CACHE”
–  Unlimited Slower Memory

•  Input: Sequence of page requests
•  Assumption: “Lazy” response (Demand Paging)

–  If page is in CACHE, no changes to contents
–  If page is not in CACHE, make place for it in

CACHE by replacing an existing page
•  Need: A “page replacement” algorithm

1/23/14 COT 6936 5

Infinite,
Online

Well-known Page Replacement Algorithms!
•  LRU: evict page whose most recent access

was earliest among all pages
•  FIFO: evict page brought in earliest
•  LIFO: evict page brought in most recently
•  LFU: evict page least frequently used

1/23/14 COT 6936 6

Comparing online algorithms?!
•  Analyze: time? performance?

–  Input length?
–  Performance depends on request sequence

•  Probabilistic models? Markov Decision process

•  Competitive analysis [Sleator and Tarjan]
–  Compare with optimal offline algorithm (OPT)

• OPT is clairvoyant; no prob assumptions; “worst-case”

•  Algorithm A is α-competitive if there exists
constants b such that for every σ:
–  costA(σ) ≤ αcostOPT(σ) + b

1/23/14 COT 6936 7

Game between Cruel
Adversary and your

algorithm

Optimal Algorithm for Paging!
•  MIN (Longest Forward Distance): Evict the

page whose next access is latest.
•  Cost: # of page faults
•  Competitive Analysis: Compare

– # of page faults of algorithm A with
– # of page faults of algorithm MIN

•  We want to compute the competitiveness of
LRU, LIFO, FIFO, LFU, etc.

1/23/14 COT 6936 8

Lower Bound for any online algorithm!
•  Cannot achieve better than k-competitive!

– No deterministic algorithm is α-competitive, α < k
•  Fix online algorithm A,
•  Construct a request sequence σ, and
•  Show that: costA(σ) ≥ k costOPT(σ)

•  Sequence σ will only have k+1 possible pages
– make 1..k+1 the first k+1 requests
– make next request as the page evicted by A

•  A will fault on every request
• OPT? Will not fault more than once every k requests

1/23/14 COT 6936 9

Adversary Model

Upper Bound: LRU is k-Competitive!
•  Lemma 1: If any subseq has k+1 distinct

pages, MIN (any alg) faults at least once
•  Lemma 2: Between 2 LRU faults on same

page, there must be k other distinct faults
–  Let Τ be any subsequence of σ with exactly k

faults for LRU & with p accessed just before Τ.
–  LRU cannot fault on same page twice within Τ
–  LRU cannot fault on p within Τ
–  Thus, p followed by Τ requests k+1 distinct pages

and MIN must fault at least once on Τ

1/23/14 COT 6936 10

LRU is k-competitive!
•  Partition σ into subsequences as follows:

–  Let s0 include the first request, p, and the first
k faults for LRU

–  Let si include subsequence after si-1 with the
next k faults for LRU

–  Argument applies for Τ = si, for every i > 0
–  If both algorithms start with empty CACHE or

identical CACHE, then it applies to i = 0 also
– Otherwise, LRU incurs k extra faults

•  Thus, costA(σ) ≤ k costOPT(σ) + k
1/23/14 COT 6936 11

Other Page Replacement Algorithms!
•  FIFO is k-competitive (Homework!)
•  MFU and LIFO?

1/23/14 COT 6936 12

How to Analyze Online Algorithms?!
•  Competitive analysis

–  Compare with optimal offline algorithm (OPT)
•  Algorithm A is α-competitive if there exists

constants b such that for every sequence of
inputs σ:
–  costA(σ) ≤ αcostOPT(σ) + b

1/23/14 COT 6936 13

Alternative Analysis Technique!
•  Cannot consider requests separately since

–  If costA = 1 and costOPT = 0, ratio = infinity
•  So amortize on a sequence of requests
•  We achieve this using a Potential Function

–  Let’s first do this for LRU

1/23/14 COT 6936 14

LRU Analysis using potential functions!
•  Define the potential function as follows:

–  Φ(t) = Σxε (LRU – OPT) Rank(x)
– Here Rank(x) is its position in LRU counted from

the least recently used item
•  Consider an arbitrary request
•  Assume that OPT serves request first
•  Then LRU serves request
•  We will show that for each step t, we have

–  costLRU(t) + Φ(t) - Φ(t-1) ≤ k costOPT(t)

1/23/14 COT 6936 15

LRU Analysis (Cont’d): OPT serves!
•  We will show that for each step t, we have

–  costLRU(t) + Φ(t) - Φ(t-1) ≤ k costOPT(t)
•  If OPT has a hit, then

–  costLRU(t) = costOPT(t) = ΔΦ = 0
•  If OPT has a miss, then

–  costLRU(t) = 0
–  costOPT(t) = 1
– ΔΦ ≤ k

•  Because OPT may evict something in LRU

1/23/14 COT 6936 16

LRU Analysis (Cont’d): LRU serves!
•  We will show that for each step t, we have

–  costLRU(t) + Φ(t) - Φ(t-1) ≤ k costOPT(t)
•  If LRU has a hit, then

–  costLRU(t) = costOPT(t) = ΔΦ = 0
•  If LRU has a miss, then

–  costLRU(t) = 1; costOPT(t) = 0
–  There exists at least one item x in ARC – OPT
–  If x is evicted, then ΔΦ ≤ -w(x) ≤ -1
–  If x is not evicted, then its rank is reduced by at

least 1. Thus ΔΦ ≤ -1
1/23/14 COT 6936 17

LRU Analysis!
•  Thus for each step t, we have

–  costLRU(t) + Φ(t) - Φ(t-1) ≤ k costOPT(t)
•  Adding over all steps t, we get

– ΣcostLRU(t) + Σ(Φ(t) - Φ(t-1)) ≤ k ΣcostOPT(t)
– ΣcostLRU(t) + Φ(m) – Φ(0) ≤ k ΣcostOPT(t)
–  But Φ(0) = 0, and
–  Φ(m) ≥ 0
–  Thus, costA(σ) ≤ k costOPT(σ)

1/23/14 COT 6936 18

DBL(2c)!
•  DBL(2c) has 2 lists

–  L1 is list of pages accessed once
–  L2 is list of pages accessed once
–  Any hit moves item to MRU(L2)
–  Any miss has 2 cases

•  If L1 has c items, then move new item to MRU(L1) and
delete LRU(L1)

•  If L1 has at most c items, then move new item to
MRU(L1) and delete LRU(L2)

1/23/14 COT 6936 19

Adaptive Replacement Cache (ARC)!

1/23/14 COT 6936 20

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 123

ARC

INPUT: The request stream .
INITIALIZATION: Set and set the LRU lists , , , and to empty.

For every and any , one and only one of the following four cases must occur.
Case I: is in or . A cache hit has occurred in ARC and DBL .

Move to MRU position in .

Case II: is in . A cache miss (resp. hit) has occurred in ARC (resp. DBL).

ADAPTATION: Update where
if
otherwise

REPLACE . Move from to the MRU position in (also fetch to the cache).

Case III: is in . A cache miss (resp. hit) has occurred in ARC (resp. DBL).

ADAPTATION: Update where
if
otherwise

REPLACE . Move from to the MRU position in (also fetch to the cache).

Case IV: is not in . A cache miss has occurred in ARC and DBL .

Case A: has exactly pages.
If)

Delete LRU page in . REPLACE .
else

Here is empty. Delete LRU page in (also remove it from the cache).
endif

Case B: has less than pages.
If)

Delete LRU page in , if .
REPLACE .

endif
Finally, fetch to the cache and move it to MRU position in .

Subroutine REPLACE
If ((is not empty) and ((exceeds the target) or (is in and)))

Delete the LRU page in (also remove it from the cache), and move it to MRU position in .
else

Delete the LRU page in (also remove it from the cache), and move it to MRU position in .
endif

Fig. 4. Algorithm for Adaptive Replacement Cache. This algorithm is completely self-contained, and can directly be used as a
basis for an implementation. No tunable parameters are needed as input to the algorithm. We start from an empty cache and an
empty cache directory. ARC corresponds to and DBL corresponds to .

Pages that are discarded from the list are not put
on the list. The list will have a variable time-
dependent size. At any time, is the longest list such
that (a) and (b) the least recent page in is
more recent than the least recent page in the list .
The list is related to the LIRS stack in [21].

The list can be constructed and used as follows.
Whenever the LRU page of is discarded in Case
IV(A) of the Figure 4, make the discarded page the
MRU page in the list . Discard the LRU page in ,
if . Now, whenever the LRU page of is

discarded in Case IV(B) of the Figure 4, ensure that the
least recent page in is more recent than the new least
recent page in the list ; otherwise, discard pages in
the list until this condition is satisfied. This latter step
may have to discard arbitrarily large number of pages
from , and, hence the resulting algorithm is constant-
time in an expected sense only. Finally, on a hit in the
list , move the hit page to the top of the list . No
adaptation takes place on a hit in . We refer to the
resulting algorithm as ARC . In our experiments,
we will focus on ARC = ARC .

Megiddo &
Modha,
FAST 2003

How to Analyze Rand Online Algorithms?!
•  Algorithm A is α-competitive if there exists

constants b such that for every sequence of
inputs σ:
–  costA(σ) ≤ αcostOPT(σ) + b

•  Randomized Algorithm R is α-competitive if
there exists constants b such that for every
sequence of inputs σ:
–  E[costR(σ)] ≤ αcostOPT(σ) + b

1/23/14 COT 6936 21

Adversary provides
request sequence at

start

