COT 6936: Topics in Algorithms

Giri Narasimhan

Monte Carlo vs Las Vegas

Balls and Bins
ECS 254A / EC 2474; Phone x3748; Email: giri@cs.fiu.edu HOMEPAGE: http://www.cs.fiu.edu/~giri
https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

$$
\text { Jan } 30 \text { \& Feb 4, } 2014
$$

Presentation Outline

Topics in Algorithms

1 Randomized Algorithms

Randomized Algorithms

2 QuickSort
3 Min-Cuts
4 Monte Carlo vs Las Vegas
5 Balls and Bins
6 Birthday Paradox
7 Chain Hashing
8 Randomized MAX-3SAT
9 Contention Resolution
10 Two Choices

What is a Randomized Algorithm?

■ It is an algorithm that has random steps,

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

What is a Randomized Algorithm?

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

■ It is an algorithm that has random steps, i.e., actions that depend on the result of a coin toss

What is a Randomized Algorithm?

■ It is an algorithm that has random steps, i.e., actions that depend on the result of a coin toss or a random number generator

What is a Randomized Algorithm?

COT 6936:

Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention
Resolution

■ It is an algorithm that has random steps, i.e., actions that depend on the result of a coin toss or a random number generator

- Applications
- Protocol in Ethernet Cards to decide when it should (re)try access to shared medium

What is a Randomized Algorithm?

■ It is an algorithm that has random steps, i.e., actions that depend on the result of a coin toss or a random number generator

- Applications
- Protocol in Ethernet Cards to decide when it should (re)try access to shared medium
- Primality testing and crytpography

What is a Randomized Algorithm?

■ It is an algorithm that has random steps, i.e., actions that depend on the result of a coin toss or a random number generator

- Applications
- Protocol in Ethernet Cards to decide when it should (re)try access to shared medium
- Primality testing and crytpography
- Monte Carlo simulations
- ...

What is a Randomized Algorithm?

■ It is an algorithm that has random steps, i.e., actions that depend on the result of a coin toss or a random number generator

- Applications
- Protocol in Ethernet Cards to decide when it should (re)try access to shared medium
- Primality testing and crytpography
- Monte Carlo simulations
- Monte Calo simulations

■ Advantages: Often easier to implement and more efficient

Example: Monte Carlo Simulations

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo
vs Las Vegas
Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

Example: Monte Carlo Simulations

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

Determining π
0,1 1,1
Square $=1$
Circle $=\pi / 4$
The probability a random point in square is in circle:

$$
=\pi / 4
$$

0,0

$$
\pi=4 * \text { points in circle/points }
$$

Presentation Outline

COT 6936:
Topics in Algorithms

Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention Resolution

Two Choices

1 Randomized Algorithms

2 QuickSort

3 Min-Cuts
4 Monte Carlo vs Las Vegas
5 Balls and Bins
6 Birthday Paradox
7 Chain Hashing
8 Randomized MAX-3SAT
9 Contention Resolution
10 Two Choices

QuickSort vs Randomized QuickSort

■ QuickSort

- Pick a fixed pivot
- Partition input based on pivot into two sets
- Recursively sort the two partitions

QuickSort vs Randomized QuickSort

■ QuickSort

- Pick a fixed pivot

■ Partition input based on pivot into two sets

- Recursively sort the two partitions

■ Randomized QuickSort

QuickSort vs Randomized QuickSort

■ QuickSort

- Pick a fixed pivot

■ Partition input based on pivot into two sets
■ Recursively sort the two partitions
■ Randomized QuickSort
■ Pick a random pivot

QuickSort vs Randomized QuickSort

■ QuickSort

- Pick a fixed pivot

■ Partition input based on pivot into two sets
■ Recursively sort the two partitions
■ Randomized QuickSort
■ Pick a random pivot
■ Partition input based on pivot into two sets

- Recursively sort the two partitions

QuickSort: Probabilistic Analysis

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo
vs Las Vegas
Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

QuickSort: Probabilistic Analysis

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo
vs Las Vegas
Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

Worst-case $=O\left(n^{2}\right)$

QuickSort: Probabilistic Analysis

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

Worst-case $=O\left(n^{2}\right)$
To analyze average case, we need to know input distribution

QuickSort: Probabilistic Analysis

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

Worst-case $=O\left(n^{2}\right)$
To analyze average case, we need to know input distribution
■ Expected rank of pivot $=n / 2$.

QuickSort: Probabilistic Analysis

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

Worst-case $=O\left(n^{2}\right)$
To analyze average case, we need to know input distribution
■ Expected rank of pivot $=n / 2$. (Why?)

QuickSort: Probabilistic Analysis

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

Worst-case $=O\left(n^{2}\right)$
To analyze average case, we need to know input distribution

- Expected rank of pivot $=n / 2$. (Why?)

■ Expected size of sublists after partition $=n / 2$

QuickSort: Probabilistic Analysis

Randomized Algorithms

QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention
Resolution

Worst-case $=O\left(n^{2}\right)$
To analyze average case, we need to know input distribution
■ Expected rank of pivot $=n / 2$. (Why?)
■ Expected size of sublists after partition $=n / 2$

- Thus recurrence relation is

$$
T(n)=2 T(n / 2)+O(n)
$$

QuickSort: Probabilistic Analysis

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Worst-case $=O\left(n^{2}\right)$
To analyze average case, we need to know input distribution
■ Expected rank of pivot $=n / 2$. (Why?)
■ Expected size of sublists after partition $=n / 2$

- Thus recurrence relation is

$$
T(n)=2 T(n / 2)+O(n)
$$

- Average Time Complexity $=$

$$
T(n)=O(n \log n)
$$

Randomized QuickSort: Randomized Analysis

COT 6936:
Topics in Algorithms

Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
$■$ Let $y_{1}, y_{2}, \ldots, y_{n}$ be the input set in sorted order.

Randomized QuickSort: Randomized Analysis

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

■ Let $y_{1}, y_{2}, \ldots, y_{n}$ be the input set in sorted order.
■ For $i<j$, let $X_{i j}$ be a random variable that takes on value 1 if y_{i} is compared to y_{j} and 0 otherwise.

Randomized QuickSort: Randomized Analysis

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

■ Let $y_{1}, y_{2}, \ldots, y_{n}$ be the input set in sorted order.

- For $i<j$, let $X_{i j}$ be a random variable that takes on value 1 if y_{i} is compared to y_{j} and 0 otherwise.

Total number of comparisons, $\quad X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}$

Randomized QuickSort: Randomized Analysis

■ Let $y_{1}, y_{2}, \ldots, y_{n}$ be the input set in sorted order.
■ For $i<j$, let $X_{i j}$ be a random variable that takes on value 1 if y_{i} is compared to y_{j} and 0 otherwise.

Total number of comparisons, $\quad X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}$

- By linearity of expectation, we have

$$
E[X]=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]
$$

Randomized QuickSort: Randomized Analysis

■ Let $y_{1}, y_{2}, \ldots, y_{n}$ be the input set in sorted order.

- For $i<j$, let $X_{i j}$ be a random variable that takes on value 1 if y_{i} is compared to y_{j} and 0 otherwise.

Total number of comparisons, $\quad X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}$

- By linearity of expectation, we have

$$
E[X]=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]
$$

■ y_{i} and y_{j} are compared iff one of them is the first to be picked as a pivot among items $y_{i}, y_{i+1}, \ldots, y_{j}$.

Randomized QuickSort: Randomized Analysis

■ Let $y_{1}, y_{2}, \ldots, y_{n}$ be the input set in sorted order.
■ For $i<j$, let $X_{i j}$ be a random variable that takes on value 1 if y_{i} is compared to y_{j} and 0 otherwise.

Total number of comparisons, $\quad X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}$

- By linearity of expectation, we have

$$
E[X]=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]
$$

■ y_{i} and y_{j} are compared iff one of them is the first to be picked as a pivot among items $y_{i}, y_{i+1}, \ldots, y_{j}$. Thus,

$$
E\left[X_{i j}\right]=\frac{2}{j-i+1}
$$

Randomized QuickSort: Randomized Analysis

■ Let $y_{1}, y_{2}, \ldots, y_{n}$ be the input set in sorted order.
■ For $i<j$, let $X_{i j}$ be a random variable that takes on value 1 if y_{i} is compared to y_{j} and 0 otherwise.

Total number of comparisons, $\quad X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}$

- By linearity of expectation, we have

$$
E[X]=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]
$$

■ y_{i} and y_{j} are compared iff one of them is the first to be picked as a pivot among items $y_{i}, y_{i+1}, \ldots, y_{j}$. Thus,

$$
E\left[X_{i j}\right]=\frac{2}{j-i+1}
$$

Randomized QuickSort: Randomized Analysis

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

$$
E[X]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
$$

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo
vs Las Vegas
Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

Randomized QuickSort: Randomized Analysis

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}=\sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k}
\end{aligned}
$$

Randomized QuickSort: Randomized Analysis

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}=\sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k} \\
& =\sum_{k=2}^{n}(n+1-k) \frac{2}{k}
\end{aligned}
$$

Randomized QuickSort: Randomized Analysis

COT 6936:
Topics in
Algorithms

Giri

Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}=\sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k} \\
& =\sum_{k=2}^{n}(n+1-k) \frac{2}{k} \\
& =\left((n+1) \sum_{k=2}^{n} \frac{2}{k}\right)-2(n-1)
\end{aligned}
$$

Randomized QuickSort: Randomized Analysis

COT 6936: Topics in Algorithms

Giri

Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}=\sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k} \\
& =\sum_{k=2}^{n}(n+1-k) \frac{2}{k} \\
& =\left((n+1) \sum_{k=2}^{n} \frac{2}{k}\right)-2(n-1) \\
& =(2 n+2) \sum_{k=1}^{n} \frac{1}{k}-4 n
\end{aligned}
$$

Randomized QuickSort: Randomized Analysis

COT 6936: Topics in Algorithms

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}=\sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k} \\
& =\sum_{k=2}^{n}(n+1-k) \frac{2}{k} \\
& =\left((n+1) \sum_{k=2}^{n} \frac{2}{k}\right)-2(n-1) \\
& =(2 n+2) \sum_{k=1}^{n} \frac{1}{k}-4 n \\
& =2 n \ln n+\Theta(n)
\end{aligned}
$$

Presentation Outline

COT 6936:
Topics in Algorithms

Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention Resolution

1 Randomized Algorithms

2 QuickSort

3 Min-Cuts

4 Monte Carlo vs Las Vegas
5 Balls and Bins
6 Birthday Paradox

- Chain Hashing

8 Randomized MAX-3SAT
9 Contention Resolution
10 Two Choices

Cut-Sets and Min-Cuts

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms

QuickSort

Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

Cut-Sets and Min-Cuts

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms

QuickSort

Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

■ Cut-set 1: $(\{a, b, c, d\},\{e, f, g\}) \quad$ Weight $=19$

Cut-Sets and Min-Cuts

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

- Cut-set 1: $(\{a, b, c, d\},\{e, f, g\}) \quad$ Weight $=19$

■ Cut-set 2: $(\{a, b, g\},\{c, d, e, f\}) \quad$ Weight $=30$

Cut-Sets and Min-Cuts

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

- Cut-set 1: $(\{a, b, c, d\},\{e, f, g\}) \quad$ Weight $=19$

■ Cut-set 2: $(\{a, b, g\},\{c, d, e, f\}) \quad$ Weight $=30$

- Cut-set 3: $(\{a\},\{b, c, d, e, f, g\}) \quad$ Weight $=5$

Cut-Sets and Min-Cuts

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

- Cut-set 1: $(\{a, b, c, d\},\{e, f, g\}) \quad$ Weight $=19$

■ Cut-set 2: $(\{a, b, g\},\{c, d, e, f\}) \quad$ Weight $=30$

- Cut-set 3: $(\{a\},\{b, c, d, e, f, g\}) \quad$ Weight $=5$

Edge Contraction

COT 6936:
Topics in Algorithms

Giri
Narasimhan

Randomized Algorithms

QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention Resolution

Two Choices

http://en.wikipedia.org/wiki/Edge_contraction

Edge Contractions and Min-Cuts

■ Lemma: If you are not contracting an edge from the cut-set, edge contractions do not affect the size of min-cuts.

Edge Contractions and Min-Cuts

- Lemma: If you are not contracting an edge from the cut-set, edge contractions do not affect the size of min-cuts.

■ Observation: Most edges are not part of the min-cut.

Edge Contractions and Min-Cuts

- Lemma: If you are not contracting an edge from the cut-set, edge contractions do not affect the size of min-cuts.

■ Observation: Most edges are not part of the min-cut.
■ Idea: Use randomization

Edge Contractions and Min-Cuts

- Lemma: If you are not contracting an edge from the cut-set, edge contractions do not affect the size of min-cuts.

■ Observation: Most edges are not part of the min-cut.
■ Idea: Use randomization

Min-Cuts in the Internet Graph

COT 6936:
Topics in Algorithms

Giri
Narasimhan

Randomized Algorithms

QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention Resolution

Two Choices
June 1999 Internet graph, Bill Cheswick http://research.lumeta.com/ches/map/gallery/index.html

Randomized Algorithms: Unweighted Min-Cut

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

- Algorithm

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo
vs Las Vegas
Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

Randomized Algorithms: Unweighted Min-Cut

- Algorithm
- Pick a random edge and contract it until only 2 vertices are remaining

Randomized Algorithms: Unweighted Min-Cut

- Algorithm
- Pick a random edge and contract it until only 2 vertices are remaining
- Report edges connecting the 2 remaining vertices as the min-cut

Randomized Algorithms: Unweighted Min-Cut

- Algorithm
- Pick a random edge and contract it until only 2 vertices are remaining
- Report edges connecting the 2 remaining vertices as the min-cut
- Steps of the Analysis

Randomized Algorithms: Unweighted Min-Cut

- Algorithm
- Pick a random edge and contract it until only 2 vertices are remaining
- Report edges connecting the 2 remaining vertices as the min-cut
- Steps of the Analysis
- Assume that Unweighted Min-cut has k edges

Randomized Algorithms: Unweighted Min-Cut

- Algorithm
- Pick a random edge and contract it until only 2 vertices are remaining
- Report edges connecting the 2 remaining vertices as the min-cut
- Steps of the Analysis
- Assume that Unweighted Min-cut has k edges
- Prob $\{$ edge is not in Min-cut $\} \geq 1-2 / n$

Randomized Algorithms: Unweighted Min-Cut

- Algorithm
- Pick a random edge and contract it until only 2 vertices are remaining
- Report edges connecting the 2 remaining vertices as the min-cut
- Steps of the Analysis
- Assume that Unweighted Min-cut has k edges
- Prob $\{$ edge is not in Min-cut $\} \geq 1-2 / n$
- Prob $\{$ Min-cut is output $\} \geq 2 / n(n-1)$

Analysis: Unweighted Min-Cut Algorithm (Contd)

■ Observation:
Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo
vs Las Vegas
Bails and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

Analysis: Unweighted Min-Cut Algorithm (Contd)

- Observation:

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
■ If Min-Cut has k edges, then minimum degree of every vertex is k. (Why?)

Analysis: Unweighted Min-Cut Algorithm (Contd)

- Observation:

Randomized Algorithms

QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
■ If Min-Cut has k edges, then minimum degree of every vertex is k. (Why?)

- At start, number of edges in graph $\geq k n / 2$

Analysis: Unweighted Min-Cut Algorithm (Contd)

COT 6936:

Topics in
Algorithms

Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

- Observation:
- If Min-Cut has k edges, then minimum degree of every vertex is k. (Why?)
- At start, number of edges in graph $\geq k n / 2$
- Probability that an edge from Min-Cut is picked in iteration 1 is $\leq k /(k n / 2) \leq 2 / n$

Analysis: Unweighted Min-Cut Algorithm (Contd)

■ Observation:
■ If Min-Cut has k edges, then minimum degree of every vertex is k. (Why?)

- At start, number of edges in graph $\geq k n / 2$
- Probability that an edge from Min-Cut is picked in iteration 1 is $\leq k /(k n / 2) \leq 2 / n$
- Probability that no edge from Min-Cut is picked in iteration 1 is $\geq 1-2 / n$

Analysis: Unweighted Min-Cut Algorithm (Contd)

■ Iteration i?

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo
vs Las Vegas
Bails and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

Analysis: Unweighted Min-Cut Algorithm (Contd)

- Iteration i?

Randomized
Algorithms
■ $E_{i}=$ Event that no edge from Min-Cut is picked in iteration i

Analysis: Unweighted Min-Cut Algorithm (Contd)

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

- Iteration i ?

■ $E_{i}=$ Event that no edge from Min-Cut is picked in iteration i

- $F_{i}=$ Event that no edge from Min-Cut is picked in iteration 1 through i

Analysis: Unweighted Min-Cut Algorithm (Contd)

- Iteration i ?

■ $E_{i}=$ Event that no edge from Min-Cut is picked in iteration i

- $F_{i}=$ Event that no edge from Min-Cut is picked in iteration 1 through i

$$
\operatorname{Pr}\left(E_{i} \mid F_{i-1}\right) \geq 1-\frac{k}{k(n-i+1) / 2}=1-\frac{2}{n-i+1}
$$

Analysis: Unweighted Min-Cut Algorithm (Contd)

- Iteration i?

■ $E_{i}=$ Event that no edge from Min-Cut is picked in iteration i

- $F_{i}=$ Event that no edge from Min-Cut is picked in iteration 1 through i

$$
\operatorname{Pr}\left(E_{i} \mid F_{i-1}\right) \geq 1-\frac{k}{k(n-i+1) / 2}=1-\frac{2}{n-i+1}
$$

■ We need F_{n-2}.

Analysis: Unweighted Min-Cut Algorithm (Contd)

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

$$
\begin{aligned}
\operatorname{Pr}\left(F_{n-2}\right) & =\operatorname{Pr}\left(E_{n-2} \cap F_{n-3}\right)=\operatorname{Pr}\left(E_{n-2} \mid F_{n-3}\right) \operatorname{Pr}\left(F_{n-3}\right) \\
& =\operatorname{Pr}\left(E_{n-2} \mid F_{n-3}\right) \cdot \operatorname{Pr}\left(E_{n-3} \mid F_{n-4}\right) \ldots \operatorname{Pr}\left(E_{2} \mid F_{1}\right) \operatorname{Pr}\left(F_{1}\right) \\
& \geq \Pi_{i=1}^{n-2}\left(1-\frac{2}{n-i+1}\right)=\Pi_{i=1}^{n-2} \frac{n-i-1}{n-I+1} \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right) \ldots \frac{4}{6} \frac{2}{5} \frac{1}{4} \frac{1}{3} \\
& =\frac{2}{n(n-1)} .
\end{aligned}
$$

Analysis: Unweighted Min-Cut Algorithm (Contd)

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

- Probability of contracting only edges not from Min-Cut, i.e., ending up with exactly the Min-Cut

Analysis: Unweighted Min-Cut Algorithm (Contd)

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized Algorithms

QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

■ Probability of contracting only edges not from Min-Cut, i.e., ending up with exactly the Min-Cut $\geq 2 / n(n-1)$

- Rather low! Also, dependent on n.

Analysis: Unweighted Min-Cut Algorithm (Contd)

COT 6936:

Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Batls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

- Probability of contracting only edges not from Min-Cut, i.e., ending up with exactly the Min-Cut $\geq 2 / n(n-1)$
- Rather low! Also, dependent on n.

■ To boost success probability, repeat algorithm.

Analysis: Unweighted Min-Cut Algorithm (Contd)

■ Probability of contracting only edges not from Min-Cut, i.e., ending up with exactly the Min-Cut $\geq 2 / n(n-1)$

- Rather low! Also, dependent on n.
- To boost success probability, repeat algorithm.
- How many times?

Analysis: Unweighted Min-Cut Algorithm (Contd)

■ Probability of contracting only edges not from Min-Cut, i.e., ending up with exactly the Min-Cut $\geq 2 / n(n-1)$

- Rather low! Also, dependent on n.
- To boost success probability, repeat algorithm.
- How many times?
- Goal: repeat until prob of error is very small

Analysis: Unweighted Min-Cut Algorithm (Contd)

■ Probability of contracting only edges not from Min-Cut, i.e., ending up with exactly the Min-Cut $\geq 2 / n(n-1)$

■ Rather low! Also, dependent on n.

- To boost success probability, repeat algorithm.
- How many times?
- Goal: repeat until prob of error is very small
- Use the following fact: $(1-1 / h)^{h} \leq e$.

Analysis: Unweighted Min-Cut Algorithm (Contd)

■ Probability of contracting only edges not from Min-Cut, i.e., ending up with exactly the Min-Cut $\geq 2 / n(n-1)$

■ Rather low! Also, dependent on n.
■ To boost success probability, repeat algorithm.

- How many times?
- Goal: repeat until prob of error is very small
- Use the following fact: $(1-1 / h)^{h} \leq e$. Thus,

$$
\left(1-\frac{2}{n(n-1)}\right)^{n(n-1) \ln n} \leq e^{-2 \ln n}=\frac{1}{n^{2}}
$$

Presentation Outline

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized Algorithms

QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention Resolution

Two Choices

1 Randomized Algorithms

2 QuickSort

3 Min-Cuts
4 Monte Carlo vs Las Vegas
5 Balls and Bins
6 Birthday Paradox
7 Chain Hashing
8 Randomized MAX-3SAT
9 Contention Resolution
10 Two Choices

Monte Carlo vs Las Vegas

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo
vs Las Vegas
Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

Monte Carlo vs Las Vegas

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

■ Monte Carlo algorithms: Always fast. Often correct, but with bounded probability

Monte Carlo vs Las Vegas

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

■ Monte Carlo algorithms: Always fast. Often correct, but with bounded probability

■ One-sided vs Two-sided errors

Monte Carlo vs Las Vegas

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

■ Monte Carlo algorithms: Always fast. Often correct, but with bounded probability

- One-sided vs Two-sided errors

■ Las Vegas algorithms: Always correct, Often fast

Presentation Outline

COT 6936:
Topics in Algorithms

Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention Resolution

1 Randomized Algorithms

2 QuickSort

3 Min-Cuts
4 Monte Carlo vs Las Vegas
5 Balls and Bins
6 Birthday Paradox
7 Chain Hashing
8 Randomized MAX-3SAT
9 Contention Resolution
10 Two Choices

Balls and Bins Model

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo
vs Las Vegas
Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

Balls and Bins Model

COT 6936:
Topics in
Algorithms
Giri
Narasimhan
■ Throw m balls into n bins

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo
vs Las Vegas
Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

Balls and Bins Model

COT 6936:

- Throw m balls into n bins
- Location of each ball chosen independently and uniformly at random

■ Questions to ask?

Balls and Bins Model

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

- Throw m balls into n bins
- Location of each ball chosen independently and uniformly at random

■ Questions to ask?

- How many balls in a bin on the average? 2

Balls and Bins Model

COT 6936:

Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

- Throw m balls into n bins
- Location of each ball chosen independently and uniformly at random

■ Questions to ask?

- How many balls in a bin on the average? 2 Average size of a chain in a hash table

Balls and Bins Model

COT 6936:

Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

- Throw m balls into n bins
- Location of each ball chosen independently and uniformly at random

■ Questions to ask?

- How many balls in a bin on the average? 2 Average size of a chain in a hash table
- How many bins are empty?

Balls and Bins Model

COT 6936:

Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

- Throw m balls into n bins
- Location of each ball chosen independently and uniformly at random

■ Questions to ask?

- How many balls in a bin on the average? 2 Average size of a chain in a hash table
- How many bins are empty? $e^{m / n}$

Balls and Bins Model

COT 6936:

Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

- Throw m balls into n bins
- Location of each ball chosen independently and uniformly at random

■ Questions to ask?
■ How many balls in a bin on the average? 2 Average size of a chain in a hash table

- How many bins are empty? $e^{m / n}$
- How many balls in the fullest bin?

Balls and Bins Model

COT 6936:

Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention
Resolution
Two Choices

- Throw m balls into n bins
- Location of each ball chosen independently and uniformly at random

■ Questions to ask?

- How many balls in a bin on the average? 2 Average size of a chain in a hash table
- How many bins are empty? $e^{m / n}$
- How many balls in the fullest bin? $\Theta(\ln n / \ln \ln n)$

Balls and Bins Model

- Throw m balls into n bins
- Location of each ball chosen independently and uniformly at random

■ Questions to ask?
■ How many balls in a bin on the average? 2 Average size of a chain in a hash table

- How many bins are empty? $e^{m / n}$
- How many balls in the fullest bin? $\Theta(\ln n / \ln \ln n)$ Hashing worst-case time
■ If $m=n$, how many bins are expected to have >1 balls?

Balls and Bins Model

- Throw m balls into n bins
- Location of each ball chosen independently and uniformly at random

■ Questions to ask?

- How many balls in a bin on the average? 2 Average size of a chain in a hash table
- How many bins are empty? $e^{m / n}$
- How many balls in the fullest bin? $\Theta(\ln n / \ln \ln n)$ Hashing worst-case time
- If $m=n$, how many bins are expected to have >1 balls? Birthday Paradox

Balls and Bins: Applications

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
Chain Hashing
QuickSort
Min-Cuts
Monte Carlo
vs Las Vegas
Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

Balls and Bins: Applications

- Chain Hashing
- Bucket Sort

Min-Cuts
Monte Carlo
vs Las Vegas
Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

Balls and Bins: Applications

■ Chain Hashing

- Bucket Sort

■ Hash Tables for passwords

Balls and Bins: Applications

■ Chain Hashing

- Bucket Sort

■ Hash Tables for passwords

- If entry is not free then password rejected

Balls and Bins: Applications

■ Chain Hashing

- Bucket Sort

■ Hash Tables for passwords

- If entry is not free then password rejected

■ Bloom Filters (generalize hash tables)

Balls and Bins: Applications

■ Chain Hashing

- Bucket Sort

■ Hash Tables for passwords
■ If entry is not free then password rejected
■ Bloom Filters (generalize hash tables)
■ See later slides

Presentation Outline

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention
Resolution
Two Choices

1 Randomized Algorithms

2 QuickSort
3 Min-Cuts
4 Monte Carlo vs Las Vegas
5 Balls and Bins
6 Birthday Paradox
7 Chain Hashing
8 Randomized MAX-3SAT
9 Contention Resolution
10 Two Choices

Birthday Paradox

■ Probability that m balls are put into distinct bins is:

$$
\leq\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{m-1}{n}\right)=\prod_{j=1}^{m-1}\left(1-\frac{j}{n}\right)
$$

- To achieve probability at least $1 / 2$, we need:

Birthday Paradox

■ Probability that m balls are put into distinct bins is:

$$
\leq\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{m-1}{n}\right)=\prod_{j=1}^{m-1}\left(1-\frac{j}{n}\right)
$$

- To achieve probability at least $1 / 2$, we need:
- $m^{2} / 2 n \geq \ln 2$

Birthday Paradox

■ Probability that m balls are put into distinct bins is:

$$
\leq\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{m-1}{n}\right)=\prod_{j=1}^{m-1}\left(1-\frac{j}{n}\right)
$$

- To achieve probability at least $1 / 2$, we need:
- $m^{2} / 2 n \geq \ln 2$
- $m \geq \sqrt{2 n \ln 2}$

Birthday Paradox

■ Probability that m balls are put into distinct bins is:

$$
\leq\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{m-1}{n}\right)=\prod_{j=1}^{m-1}\left(1-\frac{j}{n}\right)
$$

- To achieve probability at least $1 / 2$, we need:
- $m^{2} / 2 n \geq \ln 2$
- $m \geq \sqrt{2 n \ln 2}$
- In a room with at least 23 people, the probability that at least two people have the same birthday is more than $1 / 2$.

Presentation Outline

COT 6936:
Topics in Algorithms

Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention Resolution

1 Randomized Algorithms

2 QuickSort

3 Min-Cuts
4 Monte Carlo vs Las Vegas
5 Balls and Bins
6 Birthday Paradox
7 Chain Hashing
8 Randomized MAX-3SAT
9 Contention Resolution
10 Two Choices

Average Search Time for Hashing

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

■ We want Average Length of Chain in Hash Table
■ Let N be number of possible hash values
■ Let k be number of items in hash table

Average Search Time for Hashing

■ We want Average Length of Chain in Hash Table

- Let N be number of possible hash values

■ Let k be number of items in hash table

- Prob that exactly i out of k items hash to same value:

Average Search Time for Hashing

■ We want Average Length of Chain in Hash Table

- Let N be number of possible hash values

■ Let k be number of items in hash table

- Prob that exactly i out of k items hash to same value:

$$
p_{i}=\binom{k}{i}(N-1)^{k-i} N^{-k}
$$

Average Search Time for Hashing

- Time for unsuccessful search =
- We want Average Length of Chain in Hash Table

■ Let N be number of possible hash values
■ Let k be number of items in hash table

Chain Hashing
Randomized MAX-3SAT

- Prob that exactly i out of k items hash to same value:

$$
p_{i}=\binom{k}{i}(N-1)^{k-i} N^{-k}
$$

Average Search Time for Hashing

- Time for unsuccessful search $=$ length of chain +1

■ We want Average Length of Chain in Hash Table
■ Let N be number of possible hash values
■ Let k be number of items in hash table

- Prob that exactly i out of k items hash to same value:

$$
p_{i}=\binom{k}{i}(N-1)^{k-i} N^{-k}
$$

Chain Hashing
Randomized MAX-3SAT

Average Search Time for Hashing

■ We want Average Length of Chain in Hash Table

- Let N be number of possible hash values

■ Let k be number of items in hash table

- Prob that exactly i out of k items hash to same value:

$$
p_{i}=\binom{k}{i}(N-1)^{k-i} N^{-k}
$$

■ Time for unsuccessful search $=$ length of chain +1

- Average time for unsuccessful search:

$$
A=\sum_{i}(i+1) p_{i}
$$

Average (Unsuccessful) Search Time

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas
Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

$$
\begin{aligned}
A & =\sum_{i}(i+1) p_{i}=\sum_{i}\binom{k}{i}(i+1)(N-1)^{k-i} N^{-k} \\
& =\sum_{i}\binom{k}{i} i(N-1)^{k-i} N^{-k}+\sum_{i}\binom{k}{i}(N-1)^{k-i} N^{-k} \\
& =\sum_{i} k\binom{k-1}{i-1}(N-1)^{k-i} N^{-k}+1 \\
& =k N^{-k} \sum_{i} k\binom{k-1}{i}(N-1)^{k-i-1}+1 \\
& =k N^{-k} N^{k-1}+1=1+k / N
\end{aligned}
$$

Average (Successful) Search Time

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution

$$
A^{\prime}=\sum_{i, j} j q_{i j}=1+\frac{k-1}{2 N}
$$

Maximum Load

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized Algorithms

QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

- Prob that a bin has at least j items is

$$
\binom{n}{j}\left(\frac{1}{n}\right)^{j} \leq \frac{1}{j!} \leq\left(\frac{e}{j}\right)^{j}
$$

- Prob that a bin has $\geq j=3 \ln n / \ln \ln n$ items is:

$$
\begin{aligned}
n\left(\frac{e}{j}\right)^{j} & \leq n\left(\frac{e \ln \ln n}{3 \ln n}\right)^{3 \ln n / \ln \ln n} \\
& \leq n\left(\frac{\ln \ln n}{3 \ln n}\right)^{3 \ln n / \ln \ln n} \\
& =e^{\ln n}\left(e^{\ln \ln \ln n-\ln \ln n}\right)^{3 \ln n / \ln \ln n} \\
& =e^{-2 \ln n+3(\ln n)(\ln \ln \ln n) / \ln \ln n} \\
& \leq 1 / n
\end{aligned}
$$

Presentation Outline

COT 6936:
Topics in Algorithms

Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention Resolution

Two Choices

1 Randomized Algorithms

2 QuickSort
3 Min-Cuts
4 Monte Carlo vs Las Vegas
5 Balls and Bins
6 Birthday Paradox
7 Chain Hashing
8 Randomized MAX-3SAT
9 Contention Resolution
10 Two Choices

Randomized Algorithm for MAX-3SAT

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo
vs Las Vegas
Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

Randomized Algorithm for MAX-3SAT

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention
Resolution
Two Choices

■ Randomly assign 0/1 to all variables

Randomized Algorithm for MAX-3SAT

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention
Resolution
Two Choices

- Randomly assign $0 / 1$ to all variables

■ Each clause is satisfied with prob $7 / 8$

Randomized Algorithm for MAX-3SAT

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention
Resolution

- Randomly assign 0/1 to all variables

■ Each clause is satisfied with prob $7 / 8$
■ Expected number of clauses satisfied $=7 / 8$

Randomized Algorithm for MAX-3SAT

- Randomly assign $0 / 1$ to all variables

■ Each clause is satisfied with prob 7/8

- Expected number of clauses satisfied $=7 / 8$

Lemma: There exists a truth assignment that satisfies at least $7 / 8$-th of the clauses.
How to find such a truth assignment? Derandomization

Presentation Outline

COT 6936:
Topics in
Algorithms
Giri
Narasimhan
Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

9 Contention Resolution
1 Randomized Algorithms
2 QuickSort
3 Min-Cuts
4 Monte Carlo vs Las Vegas
5 Balls and Bins
6 Birthday Paradox
I. Chain Hashing

8 Randomized MAX-3SAT

10 Two Choices

Contention Resolution

COT 6936:

- N processes P_{1}, \ldots, P_{N} each competing for access to a single resource (shared database, shared communication channel, etc.)

Contention Resolution

COT 6936:

Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

■ N processes P_{1}, \ldots, P_{N} each competing for access to a single resource (shared database, shared communication channel, etc.)
■ Time is divided into rounds

Contention Resolution

■ N processes P_{1}, \ldots, P_{N} each competing for access to a single resource (shared database, shared communication channel, etc.)

- Time is divided into rounds
- If more than one process attempts to access resource, then all processes are locked out

Contention Resolution

■ N processes P_{1}, \ldots, P_{N} each competing for access to a single resource (shared database, shared communication channel, etc.)

- Time is divided into rounds

■ If more than one process attempts to access resource, then all processes are locked out
■ No communication between processes

Contention Resolution

■ N processes P_{1}, \ldots, P_{N} each competing for access to a single resource (shared database, shared communication channel, etc.)

- Time is divided into rounds

■ If more than one process attempts to access resource, then all processes are locked out

- No communication between processes
- Need fair algorithm for large N

Contention Resolution

■ N processes P_{1}, \ldots, P_{N} each competing for access to a single resource (shared database, shared communication channel, etc.)

- Time is divided into rounds

■ If more than one process attempts to access resource, then all processes are locked out

- No communication between processes
- Need fair algorithm for large N

■ Use randomization to break symmetry

Breaking Symmetry

■ If N is small, then assign round $t \bmod N$ to process t.

Breaking Symmetry

■ If N is small, then assign round $t \bmod N$ to process t. Not Scalable!

Breaking Symmetry

■ If N is small, then assign round $t \bmod N$ to process t. Not Scalable!

- If N is large, then each process attempts to access the resource in round t with probability p.
- To maximize probability of success, set $p=$

Breaking Symmetry

■ If N is small, then assign round $t \bmod N$ to process t. Not Scalable!

- If N is large, then each process attempts to access the resource in round t with probability p.
- To maximize probability of success, set $p=1 / n$.

Breaking Symmetry

■ If N is small, then assign round $t \bmod N$ to process t. Not Scalable!

- If N is large, then each process attempts to access the resource in round t with probability p.
- To maximize probability of success, set $p=1 / n$. Not surprising!
- Prob of failure after e n rounds is bounded by a constant.

Breaking Symmetry

■ If N is small, then assign round $t \bmod N$ to process t. Not Scalable!

- If N is large, then each process attempts to access the resource in round t with probability p.
- To maximize probability of success, set $p=1 / n$. Not surprising!
- Prob of failure after e $\cdot n$ rounds is bounded by a constant. Fair!
- W.h.p. all N processes can access the resource in $t=2 e \cdot n \ln n$ rounds.

Breaking Symmetry

■ If N is small, then assign round $t \bmod N$ to process t. Not Scalable!

- If N is large, then each process attempts to access the resource in round t with probability p.
- To maximize probability of success, set $p=1 / n$. Not surprising!
- Prob of failure after e $\cdot n$ rounds is bounded by a constant. Fair!
- W.h.p. all N processes can access the resource in $t=2 e \cdot n \ln n$ rounds. Scalable!

Bloom Filters

■ Bloom Filters: Used to test set membership by using bit arrays to indicate which positions have been hashed to. For every element k hash function are used instead of 1 .

Bloom Filters

- Bloom Filters: Used to test set membership by using bit arrays to indicate which positions have been hashed to. For every element k hash function are used instead of 1 . How to pick k?

Bloom Filters

- Bloom Filters: Used to test set membership by using bit arrays to indicate which positions have been hashed to. For every element k hash function are used instead of 1 . How to pick k?

Presentation Outline

COT 6936:
Topics in Algorithms

Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention Resolution

Two Choices

1 Randomized Algorithms
2 QuickSort
3 Min-Cuts
4 Monte Carlo vs Las Vegas
5 Balls and Bins
6 Birthday Paradox
7 Chain Hashing
8 Randomized MAX-3SAT
9 Contention Resolution
10 Two Choices

Power of Two Choices

COT 6936: Topics in Algorithms

Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo
vs Las Vegas
Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

Power of Two Choices

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

■ Hashing with two hash functions

- Among two hash values, pick value with smaller "chain"

Power of Two Choices

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

■ Hashing with two hash functions

- Among two hash values, pick value with smaller "chain"
- Dramatically reduces the expected size of the largest bin

Power of Two Choices

■ Hashing with two hash functions

- Among two hash values, pick value with smaller "chain"
- Dramatically reduces the expected size of the largest bin while doubling the average search cost.

Power of Two Choices

■ Hashing with two hash functions

- Among two hash values, pick value with smaller "chain"
- Dramatically reduces the expected size of the largest bin while doubling the average search cost.
■ Dynamic Resource Allocation: When multiple identical resources to choose from:

Power of Two Choices

■ Hashing with two hash functions

- Among two hash values, pick value with smaller "chain"
- Dramatically reduces the expected size of the largest bin while doubling the average search cost.
■ Dynamic Resource Allocation: When multiple identical resources to choose from:
- Deterministic Choice: Find load of each one and pick least loaded

Power of Two Choices

■ Hashing with two hash functions

- Among two hash values, pick value with smaller "chain"
- Dramatically reduces the expected size of the largest bin while doubling the average search cost.
■ Dynamic Resource Allocation: When multiple identical resources to choose from:
- Deterministic Choice: Find load of each one and pick least loaded
- One Random Choice: Pick random resource

Power of Two Choices

■ Hashing with two hash functions

- Among two hash values, pick value with smaller "chain"
- Dramatically reduces the expected size of the largest bin while doubling the average search cost.
■ Dynamic Resource Allocation: When multiple identical resources to choose from:
- Deterministic Choice: Find load of each one and pick least loaded
- One Random Choice: Pick random resource
- Two Random Choices: Sample 2 random resources and pick less loaded one

Power of Choices

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized
MAX-3SAT
Contention
Resolution
Two Choices

- Each ball comes with $d=2$ labels, and can be placed in one of d possible bins.

Power of Choices

- Each ball comes with $d=2$ labels, and can be placed in one of d possible bins. Assume labels are chosen independently at random.

■ Ball is placed in the least full bin among the d choices.

Power of Choices

- Each ball comes with $d=2$ labels, and can be placed in one of d possible bins. Assume labels are chosen independently at random.

■ Ball is placed in the least full bin among the d choices. Ties broken arbitrarily.
■ (Amazingly) we have W.h.p.:

Power of Choices

■ Each ball comes with $d=2$ labels, and can be placed in one of d possible bins. Assume labels are chosen independently at random.

- Ball is placed in the least full bin among the d choices. Ties broken arbitrarily.
- (Amazingly) we have W.h.p.:
- MAX LOAD $=\ln \ln n / \ln 2+O(1)$

Power of Choices

■ Each ball comes with $d=2$ labels, and can be placed in one of d possible bins. Assume labels are chosen independently at random.

- Ball is placed in the least full bin among the d choices. Ties broken arbitrarily.
- (Amazingly) we have W.h.p.:
- MAX LOAD $=\ln \ln n / \ln 2+O(1)$
- Down from $\Theta(\ln n / \ln \ln n)$ for $d=1$

Power of Choices

- Each ball comes with $d=2$ labels, and can be placed in one of d possible bins. Assume labels are chosen independently at random.
- Ball is placed in the least full bin among the d choices. Ties broken arbitrarily.
- (Amazingly) we have W.h.p.:
- MAX LOAD $=\ln \ln n / \ln 2+O(1)$
- Down from $\Theta(\ln n / \ln \ln n)$ for $d=1$
- In general, when d 2,

Power of Choices

COT 6936:

Topics in
Algorithms
Giri
Narasimhan

Randomized
Algorithms
QuickSort
Min-Cuts
Monte Carlo vs Las Vegas

Balls and Bins
Birthday
Paradox
Chain Hashing
Randomized MAX-3SAT

Contention
Resolution

■ Each ball comes with $d=2$ labels, and can be placed in one of d possible bins. Assume labels are chosen independently at random.

- Ball is placed in the least full bin among the d choices. Ties broken arbitrarily.
- (Amazingly) we have W.h.p.:
- MAX LOAD $=\ln \ln n / \ln 2+O(1)$
- Down from $\Theta(\ln n / \ln \ln n)$ for $d=1$
- In general, when d $2, \mathrm{MAX}$ LOAD $=\ln \ln n / \ln d+\Theta(1)$

星

