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Example: Monte Carlo Simulations

Determining n

0,1 1,1
Square = 1
Circle = /4
The probability
a random point
in square is in
circle:
= n/4
0,0 1,0
t = 4 * points in circle/points
UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms 20

Slide by David Evans
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T(n)=2T(n/2)+ O(n)

m Average Time Complexity =

T(n) = O(nlog n)
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m Algorithm
m Pick a random edge and contract it until only 2 vertices
are remaining
V@i m Report edges connecting the 2 remaining vertices as the
min-cut
m Steps of the Analysis
m Assume that Unweighted Min-cut has k edges
m Prob {edge is not in Min-cut} >1—2/n
m Prob {Min-cut is output} > 2/n(n—1)
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m Probability that an edge from Min-Cut is picked in
iteration 1 is < k/(kn/2) < 2/n
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Chain Hashing

Bucket Sort
Hash Tables for passwords
m If entry is not free then password rejected

Balls and Bins m Bloom Filters (generalize hash tables)
m See later slides
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Narasimhan m Probability that m balls are put into distinct bins is:

(02 (o)1

Jj=1

m To achieve probability at least 1/2, we need:
m m?/2n>1In2

Birthday Em> \/m

Paradox

m In a room with at least 23 people, the probability that at
least two people have the same birthday is more than 1/2.
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We want Average Length of Chain in Hash Table

Sl Let N be number of possible hash values

Narasimhan

Let k be number of items in hash table

Prob that exactly / out of k items hash to same value:

pi = (f) (N —1) N*

Time for unsuccessful search = length of chain + 1

Chain Hashing

Average time for unsuccessful search:

A= Z(i +1)pi
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m Randomly assign 0/1 to all variables
m Each clause is satisfied with prob 7/8

m Expected number of clauses satisfied = 7/8

Lemma: There exists a truth assignment that satisfies at least

7/8-th of the clauses.
How to find such a truth assignment? Derandomization

Randomized
MAX-3SAT
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Narasimhan N processes P1, ..., Py each competing for access to a
single resource (shared database, shared communication
channel, etc.)

m Time is divided into rounds

m If more than one process attempts to access resource, then
all processes are locked out

m No communication between processes
m Need fair algorithm for large N

m Use randomization to break symmetry

Contention
Resolution
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m If NV is small, then assign round t mod N to process t.
Not Scalable!

m If V is large, then each process attempts to access the
resource in round t with probability p.

m To maximize probability of success, set p = 1/n. Not
surprising!

m Prob of failure after e - n rounds is bounded by a constant.
Fair!

m W.h.p. all N processes can access the resource in
t = 2e - nlnn rounds. Scalable!
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m Hashing with two hash functions
m Among two hash values, pick value with smaller “chain”
m Dramatically reduces the expected size of the largest bin
while doubling the average search cost.
m Dynamic Resource Allocation: When multiple identical
resources to choose from:
m Deterministic Choice: Find load of each one and pick least

loaded
m One Random Choice: Pick random resource
m Two Random Choices: Sample 2 random resources and

pick less loaded one

Two Choices
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