COT 6936: Topics in Algorithms

Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

Gaussian Elimination

Solving a system of simultaneous equations

\mathbf{x}_1	-2x ₃	= 2
	x ₂ + x ₃	= 3
x ₁ +	×2	- x ₄ = 4
	$x_2 + 3x_3$	+ x ₄ = 5

 $O(n^3)$ algorithm

\mathbf{x}_1	-2x ₃	= 2	
	x ₂ + x ₃	= 3	
	$x_2 + 2x_3 -$	x ₄ = 2	
	x ₂ + 3x ₃ +	x ₄ = 5	

Linear Programming

- Want more than solving simultaneous equations
- We have an objective function to optimize

Chocolate Shop [DPV book]

- 2 kinds of chocolate
 - milk [Profit: \$1 per box] [Demand: 200]
 - Deluxe [Profit: \$6 per box] [Demand: 300]
- Production capacity: 400 boxes
- Goal: maximize profit
 - Maximize $x_1 + 6x_2$ subject to constraints:
 - x₁ ≤ 200
 - $x_2 \le 300$
 - $x_1 + x_2 \le 400$
 - $x_1, x_2 \ge 0$

Diet Problem

- Food type: F_1, \dots, F_m
- Nutrients: N_1, \dots, N_n
- Min daily requirement of nutrients: c₁,...,c_n

 $b_{1},...,b_{m}$

aii

- Price per unit of food:
- Nutrient N_j in food F_i:
- Problem: Supply daily nutrients at minimum cost
 - Min $\Sigma_i b_i x_i$
 - $\Sigma_i a_{ij} x_i \ge c_j$ for $1 \le j \le n$
 - $x_i \ge 0$

Transportation Problem

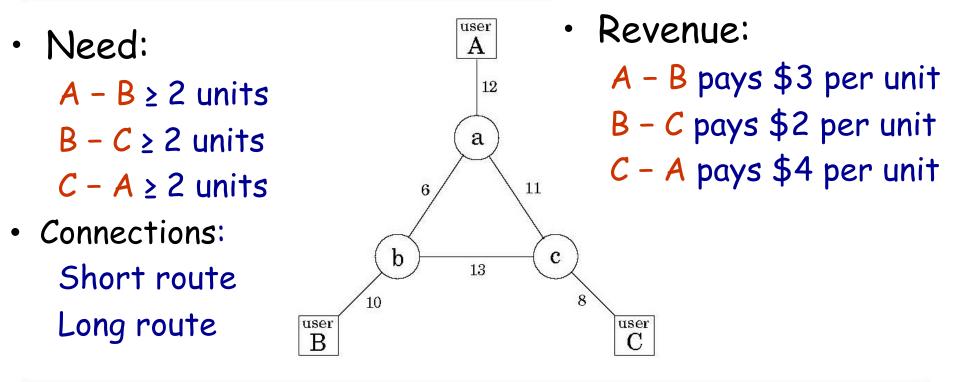
- Ports or Production Units: P₁,...,P_m
- Markets to be shipped to: M_1, \dots, M_n
- Min daily market need: r_1, \dots, r_n
- Port/production capacity: s₁,...,s_m
- Cost of transporting to M_j from port P_i : a_{ij}
- Problem: Meet market need at minimum transportation cost

Assignment Problem

- Workers: b₁,...,b_n
- **Jobs**: *g*₁,...,*g*_m
- Value of assigning person b_i to job g_j: a_{ij}
- Problem: Choose job assignment to maximize value

Bandwidth Allocation Problem

Figure 7.3 A communications network between three users A, B, and C. Bandwidths are shown.



Bandwidth Allocation Pr

A

a

13

user

10

- Maximize revenue by allocating connections along two routes wi exceeding bandwidth capacities
- Max $3(x_{AB}+x_{AB}') + 2(x_{BC}+x_{BC}') + 4(x_{AC}+x_{AC}')$ s.t. $x_{AB} + x_{AB}' + x_{BC} + x_{BC}' \le 10$ $x_{AB} + x_{AB}' + x_{AC} + x_{AC}' \le 12$ $x_{BC} + x_{BC}' + x_{AC} + x_{AC}' \le 8$ $x_{AB} + x_{BC}' + x_{AC}' \le 6; \quad x_{AB} + x_{AB}' \ge 2;$ $x_{BC} + x_{BC}' \ge 2$ $\mathbf{x}_{AC} + \mathbf{x}_{AC}' \ge 2$ $x_{AB}' + x_{BC} + x_{AC}' \le 13;$ $x_{AB}' + x_{BC}' + x_{AC} \le 11$; & all nonneg constraints

Standard LP

- Maximize $\sum c_j x_j$ [Objective Function] Subject to $\sum a_{ij} x_j \le b_j$ [Constraints] and $x_j \ge 0$ [Nonnegativity Constraints]
- Matrix formulation of LP Maximize $c^{T}x$ Subject to $Ax \le b$ and $x \ge 0$

Converting to standard form

- Min -2x₁ + 3x₂ Subject to x₁ + x₂ = 7 x₁ - 2x₂ ≤ 4 x₁ ≥ 0
 Max 2x₁ - 3x₂ Subject to
- Max $2x_1 3x_2$ Subject $x_1 + x_2 \le 7$ $-x_1 - x_2 \le -7$ $x_1 - 2x_2 \le 4$ $x_1 \ge 0$

Converting to standard form

• Max $2x_1 - 3x_2$ Subject to $x_1 + x_2 \le 7$ $-x_1 - x_2 \le -7$ $x_1 - 2x_2 \le 4$ $x_1 \ge 0$

x₂ is not constrained to be non-negative

• Max $2x_1 - 3(x_3 - x_4)$ Subject to $x_1 + x_3 - x_4 \le 7$ $-x_1 - (x_3 - x_4) \le -7$ $x_1 - 2(x_3 - x_4) \le 4$ $x_1, x_3, x_4 \ge 0$

Converting to Standard form

• Max $2x_1 - 3x_2 + 3x_3$ Subject to $x_1 + x_2 - x_3 \le 7$ $-x_1 - x_2 + x_3 \le -7$ $x_1 - 2x_2 - 2x_3 \le 4$ $x_1, x_2, x_3 \ge 0$

Slack Form

• Max $2x_1 - 3x_2 + 3x_3$ Subject to $x_1 + x_2 - x_3 \le 7$ $-X_1 - X_2 + X_3 \le -7$ $x_1 - 2x_2 - 2x_3 \le 4$ $x_1 x_2, x_3 \ge 0$ • Max $2x_1 - 3x_2 + 3x_3$ Subject to $x_1 + x_2 - x_3 + x_4 = 7$ $-X_1 - X_2 + X_3 + X_5 = -7$ $x_1 - 2x_2 - 2x_3 + x_6 = 4$ $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Duality

- Max $c^T x$ Subject to $Ax \le b$ and $x \ge 0$
- Min y^Tb Subject to $y^TA \ge c$ and $y \ge 0$

[Primal]

Understanding Duality

Maximize x₁ + 6x₂ subject to constraints:

(1)

- ×₁ ≤ 200
- x₂ ≤ 300 (2)
- $x_1 + x_2 \le 400$ (3)
- $x_1, x_2 \ge 0$

How were mutipliers determined?

- Adding 1 times (1) + 6 times (2) gives us

• $x_1 + 6x_2 \le 2000$

- Adding 1 times (3) + 5 times (2) gives us
 - $x_1 + 6x_2 \le 1900$
 - "Certificate of Optimality" for solution (100,300)

Understanding Duality

- Maximize $x_1 + 6x_2$ subject to:
 - $x_1 \le 200$ (y₁) • $x_2 \le 300$ (y₂) [(100,300)] • $x_1 + x_2 \le 400$ (y₃)
 - $x_1, x_2 \ge 0$
- Different choice of multipliers gives us different bounds. We want smallest bound.
- Minimize $200y_1 + 300y_2 + 400y_3$ subject to:

[(0,5,1)]

- $y_1 + y_3 \ge 1$ (x₁) $y_2 + y_3 \ge 6$ (x₂)
 - $y_1, y_2 \ge 0$

Duality Principle

- Primal feasible values < dual feasible values
- Max primal value = min dual value
- Duality Theorem: If a linear program has a bounded optimal value then so does its dual and the two optimal values are equal.

Shortest Path Problem as a LP

- Graph G = (V,E);
 - Vertices: v₁,...,v_n; Edges: e₁,...,e_m;
 - Weight function on edges w(e_i); Source s; Dest t;
- LP: min $\mathbf{w}^{\mathsf{T}}\mathbf{x}$

- s.t. A = b and $x \ge 0$

- Here A and b are defined as follows:
 - A_{ij} = +1 if e_j leaves v_i ; b_s = +1
 - = -1 if e_j enters v_i;
 - = 0 otherwise;

- b_t = -1 b_i = 0 else;
- We want integral solutions for x

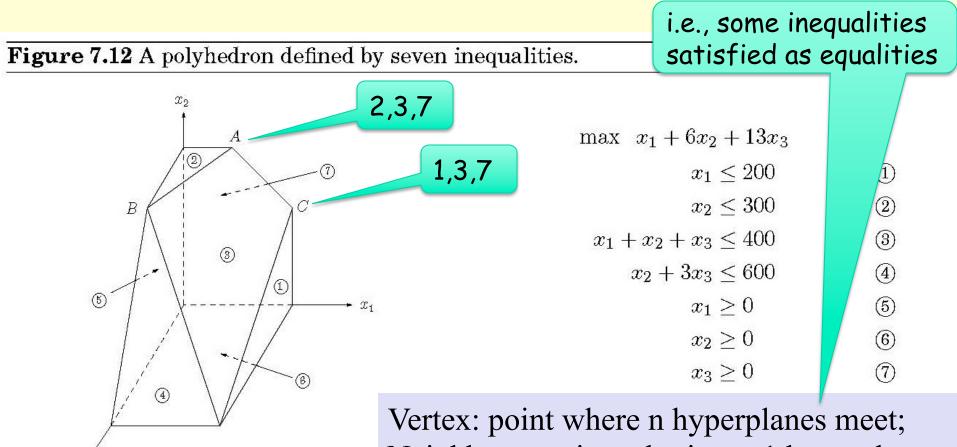
Dual LP

- LP: min $\mathbf{w}^{\mathsf{T}}\mathbf{x}$
 - s.t. $A = b and x \ge 0$
- Dual LP: max $y_s y_t$ - s.t. $|y_u - y_v| \le w(e)$ for every edge e = (u,v)

Visualizing Duality

- Shortest Path Problem
 - Build a physical model and between each pair of vertices attach a string of appropriate length
 - To find shortest path from s to t, hold the two vertices and pull them apart as much as possible without breaking the strings
 - This is exactly what a dual LP solves!
 - Max x_s-x_t
 - subject to $|x_u x_v| \le w_{uv}$ for every edge (u.v)
 - The taut strings correspond to the shortest path, i.e., they have no slack

Linear Constraints: Geometric View



X3

Neighbor: vertices sharing n-1 hyperplanes

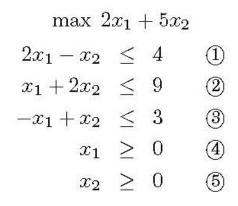
Simplex Algorithm

- Start at v, any vertex of feasible region
- while (there is neighbor v' of v with better objective value) do
 set v = v'
- Report v as optimal point and its value as optimal value
- What is a
 - Vertex?, neighbor?
- Start vertex? How to pick next neighbor?

Steps of Simplex Algorithm

 In order to find next neighbor from arbitrary vertex, we do a change of origin (pivot)

Initial LP:



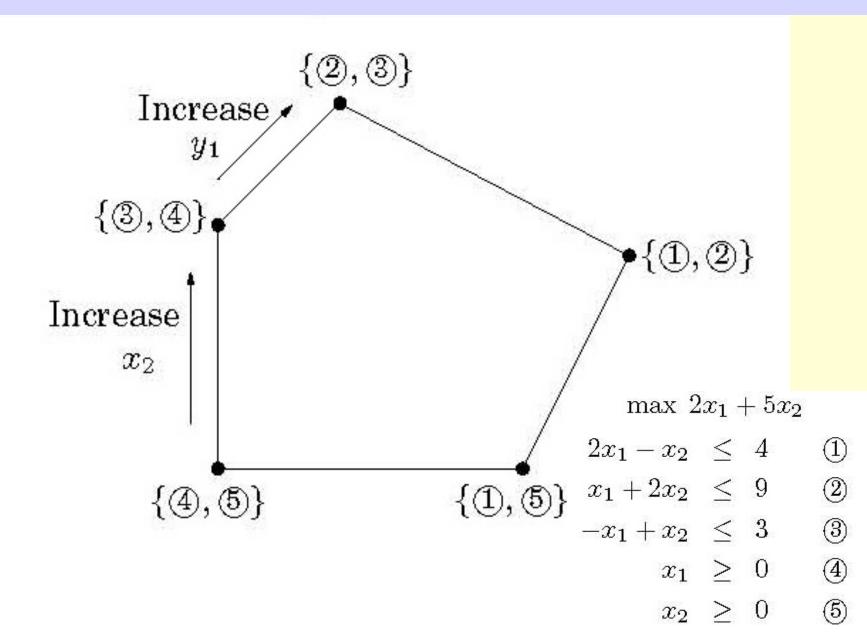
Current vertex: $\{4, 5\}$ (origin). Objective value: 0.

Move: increase x_2 . (5) is released, (3) becomes tight. Stop at $x_2 = 3$.

New vertex $\{(4), (3)\}$ has local coordinates (y_1, y_2) :

$$y_1 = x_1, \quad y_2 = 3 + x_1 - x_2$$

Simplex Algorithm Example



Simplex Algorithm Example

Initial LP: $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Current vertex: $\{4, 5\}$ (origin). Objective value: 0. Move: increase x_2 . 5 is released, 3 becomes tight. Stop at $x_2 = 3$. New vertex $\{4, 3\}$ has local coordinates (y_1, y_2) : $y_1 = x_1, y_2 = 3 + x_1 - x_2$
Rewritten LP: $max \ 15 + 7y_1 - 5y_2$ $y_1 + y_2 \le 7$ ① $3y_1 - 2y_2 \le 3$ ② $y_2 \ge 0$ ③ $y_1 \ge 0$ ④ $-y_1 + y_2 \le 3$ ⑤	Current vertex: $\{(4), (3)\}$. Objective value: 15. Move: increase y_1 . (4) is released, (2) becomes tight. Stop at $y_1 = 1$. New vertex $\{(2), (3)\}$ has local coordinates (z_1, z_2) : $z_1 = 3 - 3y_1 + 2y_2, z_2 = y_2$

Simplex Algorithm Example

Rewritten LP:

$\max 15$	+7y	/1 -	$5y_{2}$	
$y_1 + y_2$	\leq	7	(1)	
$3y_1 - 2y_2$	\leq	3	2	
y_2	\geq	0	3	
y_1	\geq	0	4	
$-y_1 + y_2$	\leq	3	(5)	
Rewritten LP: max 22	$-\frac{7}{3}$	z ₁ –	$\frac{1}{3}z_2$	
$-\frac{1}{3}z_1+\frac{5}{3}z_1$	$2 \leq$	6	(1)	
2	1 ≥	0	2	
2	$_2 \geq$	0	3	
$\frac{1}{3}z_1 - \frac{2}{3}z_2$	$2 \leq$	[1	4	
$\frac{1}{3}z_1 + \frac{1}{3}z_1$	$2 \leq$	≤ 4	(5)	

Current vertex: $\{(4, 3)\}$. Objective value: 15.

Move: increase y_1 . (4) is released, (2) becomes tight. Stop at $y_1 = 1$. New vertex $\{(2, 3)\}$ has local coordinates (z_1, z_2) :

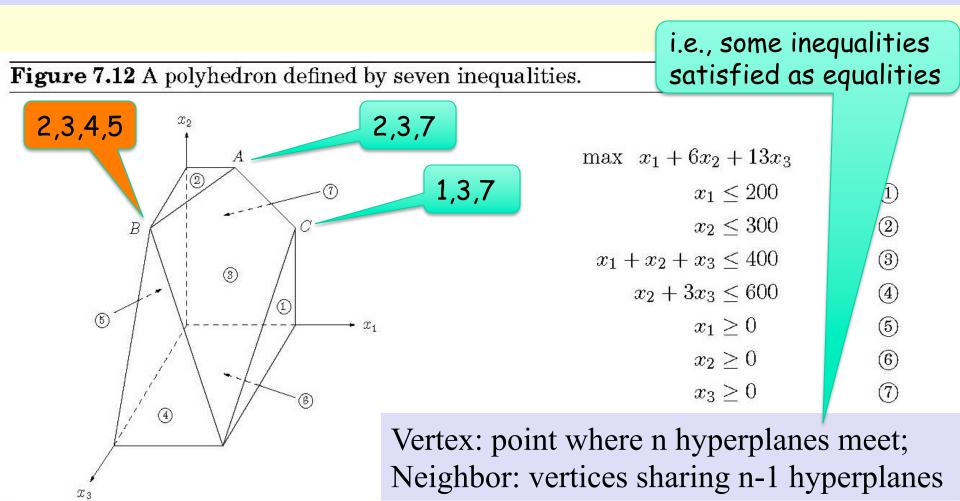
 $z_1 = 3 - 3y_1 + 2y_2, \quad z_2 = y_2$

Current vertex: {(2), (3)}. Objective value: 22.

Optimal: all $c_i < 0$.

Solve 2, 3 (in original LP) to get optimal solution $(x_1, x_2) = (1, 4)$.

Simplex Algorithm: Degenerate vertices



Polynomial-time algorithms for LP

- Simplex is not poly-time in the worst-case
- Khachiyan's ellipsoid algorithm: LP is in *P*
- Karmarkar's interior-point algorithm
- Good implementations for LP exist
 - Works very well in practice
 - More competitive than the poly-time methods for LP

Integer Linear Programming

- LP with integral solutions
- NP-hard
- If A is a totally unimodular matrix, then the LP solution is always integral.
 - A TUM is a matrix for which every nonsingular submatrix has determinant 0, +1 or -1.
 - A TUM is a matrix for which every nonsingular submatrix has integral inverse.

Vertex Cover as an LP?

- For vertex v, create variable x_v
- For edge (u,v), create constraint $x_u + x_v \ge 1$
- Objective function: Σx_v
- Additional constraints: $x_v \le 1$
- Doesn't work because x_v needs to be from $\{0,1\}$

Integer Linear Programming

- LP with integral solutions
- NP-hard
- If A is a totally unimodular matrix, then the LP solution is always integral.
 - A TUM is a matrix for which every nonsingular submatrix has determinant 0, +1 or -1.
 - A TUM is a matrix for which every nonsingular submatrix has integral inverse.

Vertex Cover as an LP?

- For vertex v, create variable x_v
- For edge (u,v), create constraint $x_u + x_v \ge 1$
- Objective function: Σx_v
- Additional constraints: $x_v \le 1$
- Doesn't work because x_v needs to be from $\{0,1\}$

Set Cover

- Given a universe of items U = {e₁, ..., e_n} and a collection of subsets S = {S₁, ..., S_m} such that each S_i is contained in U
- Find the minimum set of subsets from S that will cover all items in U (i.e., the union of these subsets must equal U)
- Weighted Set Cover: Given universe U and collection S, and a cost c(S_i) for each subset S_i in S, find the minimum cost set cover

The Greedy Set Cover Algorithm

The Integer Linear Program (ILP)

$$\begin{array}{ll} \min & \sum_{S \in \mathcal{S}} c(S) x_S \\ \text{subject to} & \sum_{S: e \in S} x_S \geq 1, \ e \in U \\ & x_S \in \{0, 1\}, \ S \in \mathcal{S} \end{array}$$

The LP Relaxation

The Dual LP

$$\begin{array}{ll} \max & \sum\limits_{e \in U} y_e \\ \text{subject to} & \sum\limits_{e:e \in S} y_e \leq c(S), \ S \in \mathcal{S} \\ & y_e \geq 0, \qquad e \in U \end{array}$$

Fractional LP may have higher objective function value than integer LP

- U = {e, f, g}
- S₁ = {e, f}
- S₂ = {f, g}
- $S_3 = \{e, g\}$
- Optimal set cover = $\{S_1, S_2\}$
- Fractional optimal set cover assigns $\frac{1}{2}$ to each of three sets giving a total optimal value of 3/2.

The LP Relaxation

$$\begin{array}{ll} \min & \sum_{S \in \mathcal{S}} c(S) x_S \\ \text{subject to} & \sum_{S: e \in S} x_S \geq 1, \ e \in U \\ & x_S \geq 0, \qquad S \in \mathcal{S} \end{array}$$

The Dual LP Relaxation

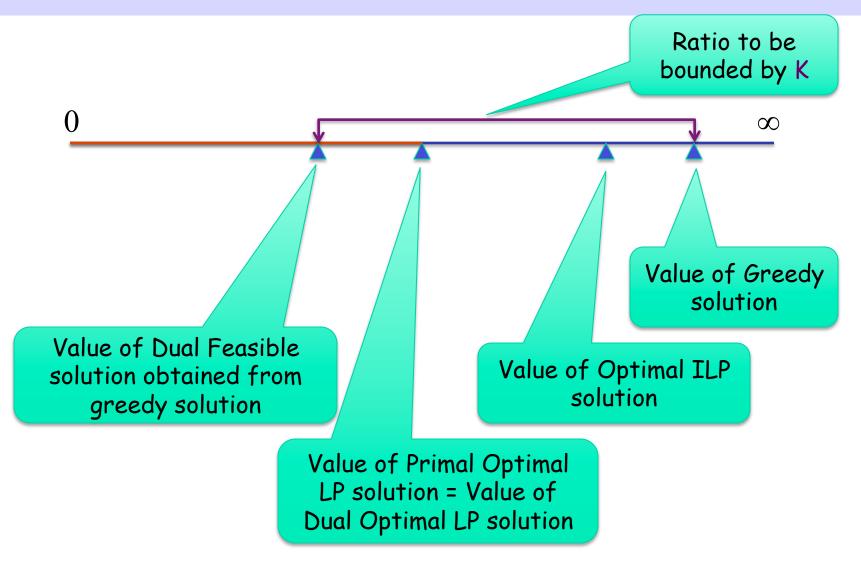
$$\begin{array}{ll} \max & \sum\limits_{e \in U} y_e \\ \text{subject to} & \sum\limits_{e:e \in S} y_e \leq c(S), \ S \in \mathcal{S} \\ & y_e \geq 0, \qquad e \in U \end{array}$$

Weak Duality Principle

If \bar{x} is primal feasible and \bar{y} is dual feasible then

$$\min\sum_{S\in\mathcal{S}} c(S) x_S \geq \max\sum_{e\in U} y_e$$

K-Approximation Alg using Dual Fitting



Analysis of Greedy Set Cover

- In each iteration, greedy algorithm picks the set with the most uncovered items.
- In iteration j, let S_j be the set picked covering m previously uncovered items. Let

$$\operatorname{price}(e) = c(S_j)/m$$

be the price of each item e covered in this iteration.

• If S_1, \ldots, S_k are sets chosen by greedy algorithm,

Total Cost of Greedy Solution =
$$\sum_{j=1}^{k} c(S_j)$$

= $\sum_{e \in U} price(e)$

Analysis of Greedy Set Cover

Let $price(e) = \frac{c(S_j)}{m}$ Consider the following dual variables:

$$y_e = rac{\operatorname{price}(e)}{H_n}$$

Claim: All dual constraints are satisfied.

$$\sum_{i=1}^{k} y_{e_i} \le \frac{c(S)}{H_n} \cdot \left(\frac{1}{k} + \frac{1}{k-1} + \dots + \frac{1}{1}\right) = \frac{H_k}{H_n} c(S) \le c(S)$$

Thus $(y_{e_1}, \ldots, y_{e_n})$ gives us a dual feasible point.

$$\sum_{e \in U} price(e) = H_n\left(\sum_{e \in U} y_e\right) \le H_n \cdot \operatorname{OPT}_f \le H_n \cdot \operatorname{OPT}$$

Rounding Algorithm for Set Cover

- Algorithm
 - Find an optimal solution to the LP Relaxation
 - Pick all sets S for which $x_s \ge 1/f$ in this solution
 - f = frequency of most frequent item
- Analysis
 - Is the resulting solution a valid set cover?
 - How good is the solution? How close is to the optimal set cover?

Analysis of Rounding Algorithm

Let C = sets picked by **Rounding Algorithm**.

Claim 1: C is a valid set cover. Arbitrary item e appears in at most f sets. At least one of these sets is assigned value 1/f. Thus, e will get picked.

Claim 2: The rounding algorithm is f-approximate. Rounding increases the value of each set by a factor of at most f.