COT 6936: Topics in Algorithms

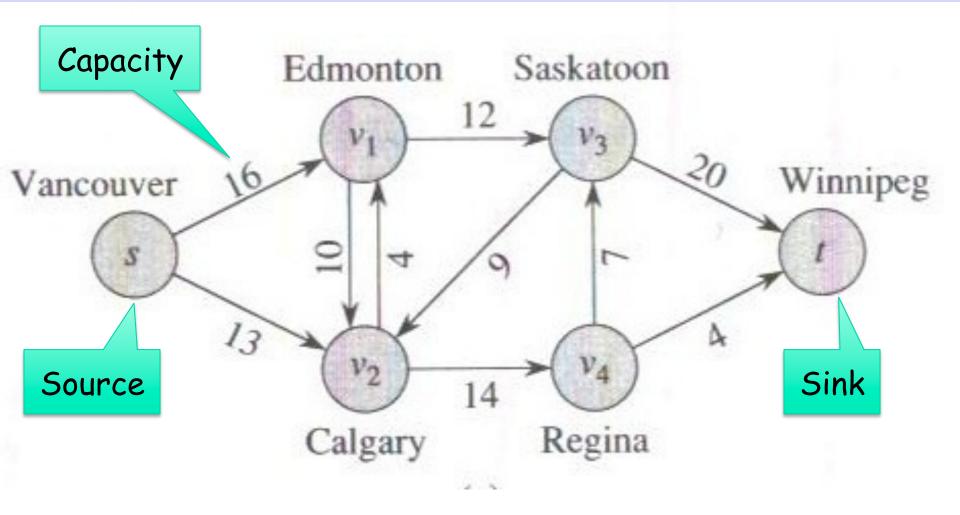
Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

Types of networks & Types of queries

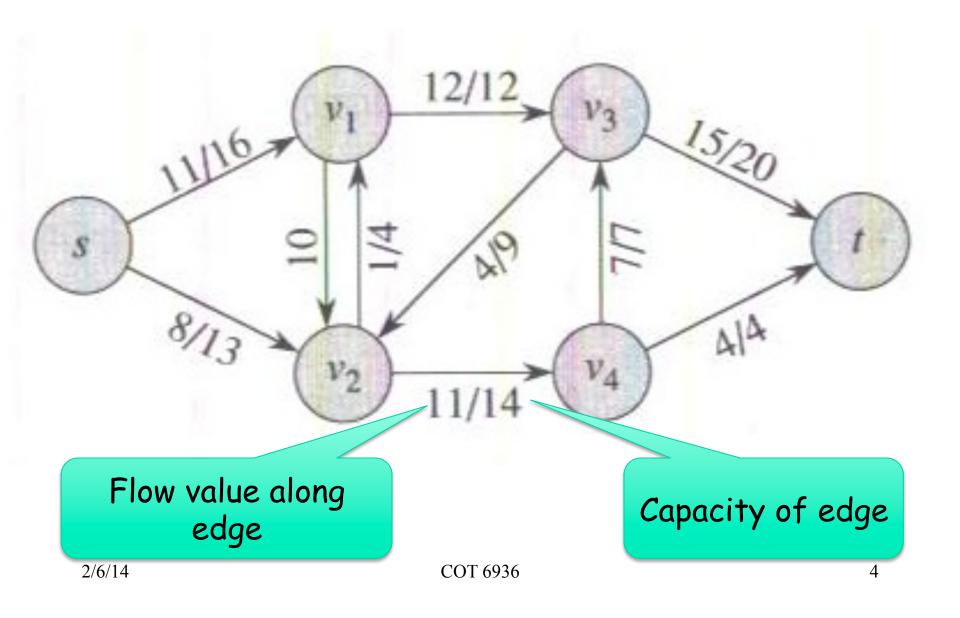
- Road, highway, rail
- Electrical power, water, oil, gas, sewer
- Internet, phone, wireless, sensor

- (1950s) How quickly can Soviet Union get supplies through its rail network to Europe?
- Which links to destroy to reduce flow to under a threshold?

Network Flow: Example



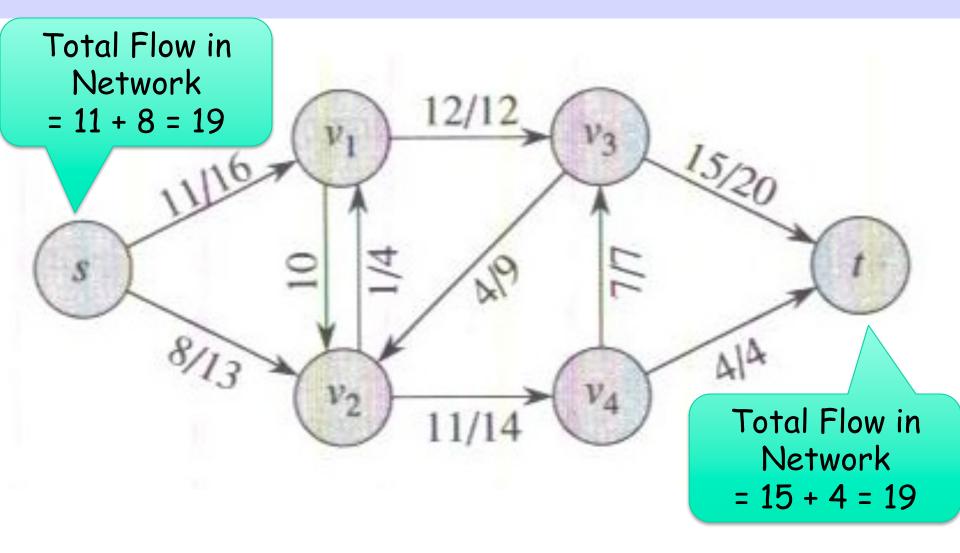
Network Flow: Example of a flow



Network Flow

- <u>Directed graph</u> G(V,E) with <u>capacity function</u> on edges given by non-negative function c: E(G) → *R*⁺.
 - Capacity of each edge, e, is given by c(e)
 - Source vertex s
 - Sink vertex t
- <u>Flow function</u> f is a non-negative function of the edges
 - f: E(G) → *R*⁺
 - <u>Capacity constraints</u>: $f(e) \le c(e)$
 - Flow conservation constraints: For all vertices except source and sink, sum of flow values along edges <u>entering</u> a vertex equals sum of flow values along edges <u>leaving</u> that vertex
- Flow value: sum of flow values from source vertex (or sum of flow into sink vertex)

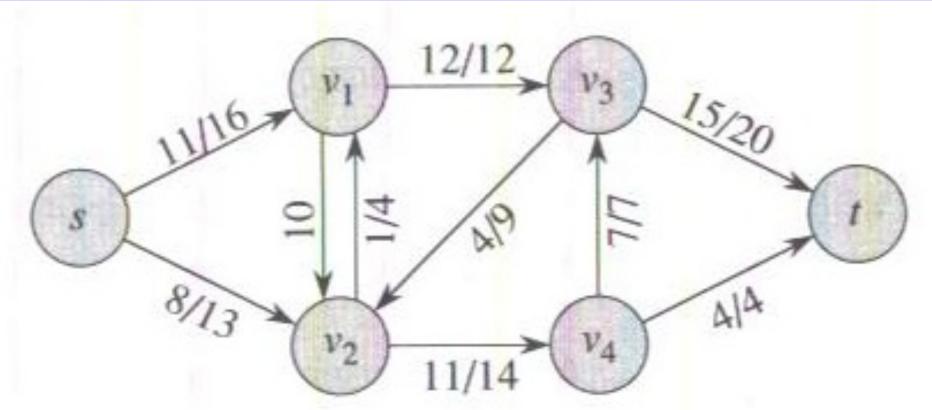
Network Flow: Example of a flow



Flow Conservation

- For any legal flow function:
 - Flow out of source = Flow into sink (Why?)

Network Flow: How to increase flow



Find path with <u>residual capacity</u> and increase flow along path.

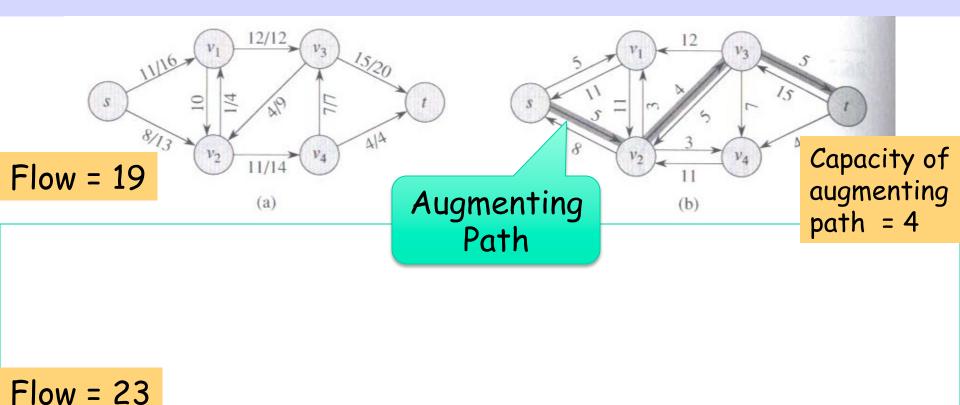
- Path s to v_1 to v_3 to t has no residual capacity
- Path s to v_2 to v_4 to t has no residual capacity
- Path s to v_2 to v_1 to v_3 to t has no residual capacity 2/6/14

Max Network Flow Algorithm

- Initialize flow f to 0.
- While (there exists augmenting path p from s to t) do
 - Augment flow along augmenting path p
- Return flow f as maximum flow from s to t

Incorrect Algorithm

Residual Flows and Augmenting Paths



Find path with <u>residual capacity</u> and increase flow along path. • Path s to v_2 to v_3 to t had residual capacity

Residual Flow Network: Definition

- Directed Graph G(V,E) with capacity function c and flow function f
- <u>Residual flow network</u> G_f(V,E')
 - For every edge e = (u,v) in E with f(e) < c(e), there are two edges in E': (u,v) and (v,u) with capacities c(e) = f(e) and f(e), respectively
 - For every edge e = (u,v) in E with f(e) = c(e),
 there is one edge in E': (v,u) with capacity f(e)
 - For every edge e = (u,v) in E with f(e) = 0, there is one edge in E': (u,v) with capacity f(e)

Max Network Flow Algorithm

- Initialize flow f to 0.
- While (there exists augmenting path p from s to t) do
 - Augment flow along augmenting path p
- Return flow f as maximum flow from s to t

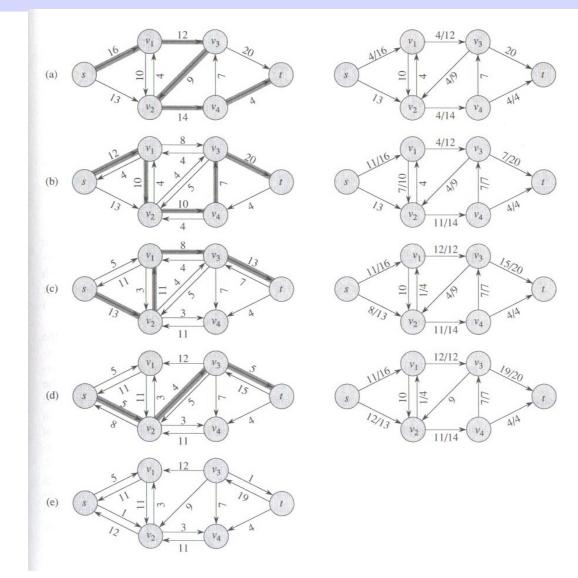
Incorrect Algorithm

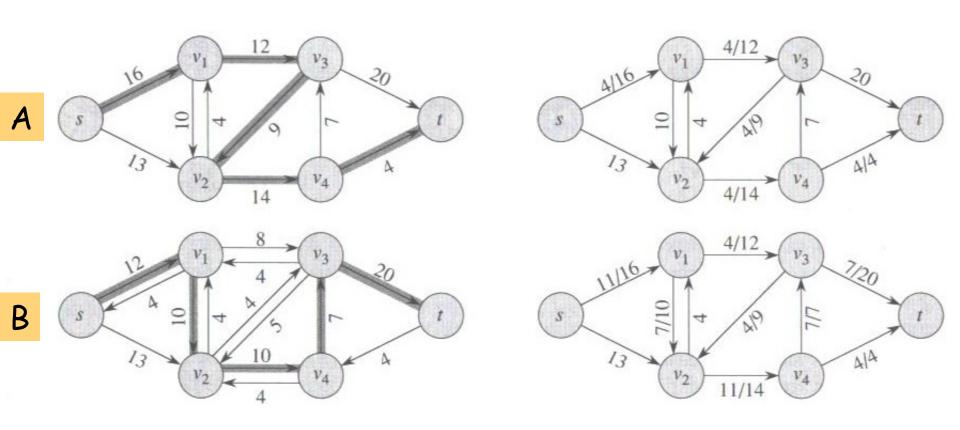
Ford Fulkerson Algorithm

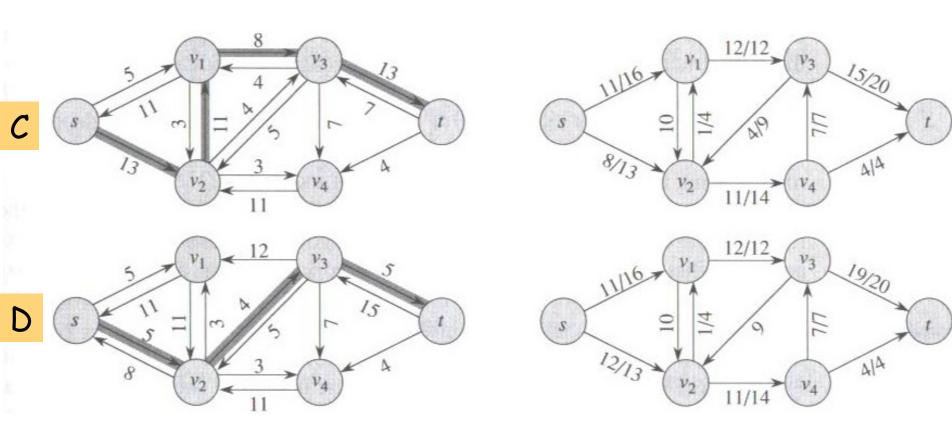
- Initialize flow f to 0.
- While (there exists directed path p from s to t in residual flow network G_f) do

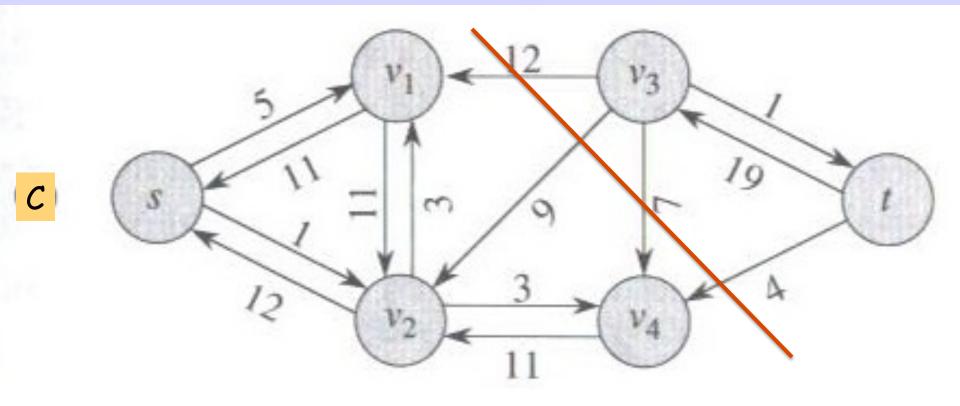
- Augment flow along augmenting path p

Return flow f as maximum flow from s to t





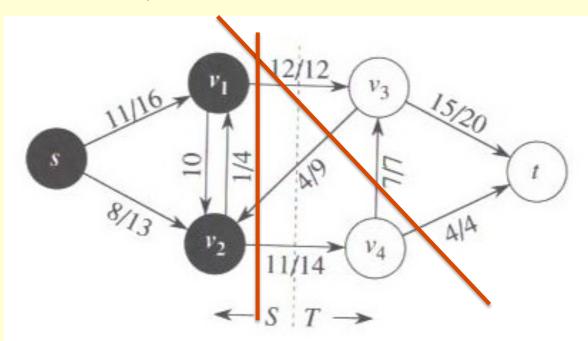




- Max-Flow has been reached. Why?
- Cut with zero capacity has been found. Which Cut?
 - ({ s,v_1,v_2,v_4 },{ v_3,t })

Correctness of Ford-Fulkerson Method

- Augmentation is possible if
 - Every cut-set is NOT saturated



Cut (S,T):

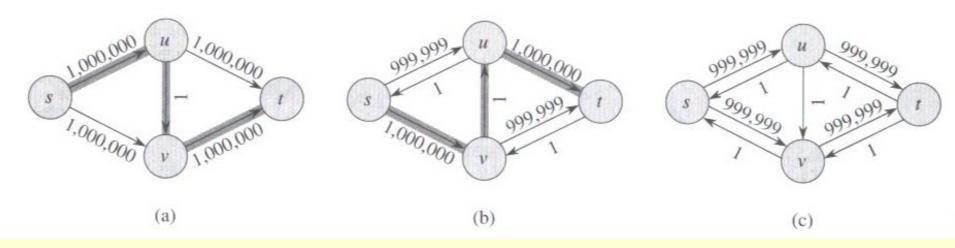
Cut (S',T'):

• Flow across cut = 19

<u>Theorem</u>: Min-Cut = Max-Flow

Time Complexity

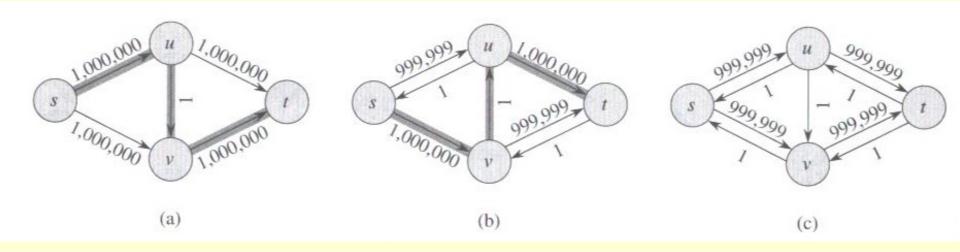
• It can be arbitrarily large.



- Solution: When finding augmenting path, find the shortest path
- In that case, # of augmentations = O(mn)2/6/14

Time Complexity Analysis

• It can be arbitrarily large.



- Solution: When finding augmenting path, find the shortest path
- In that case, # of augmentations = O(mn)

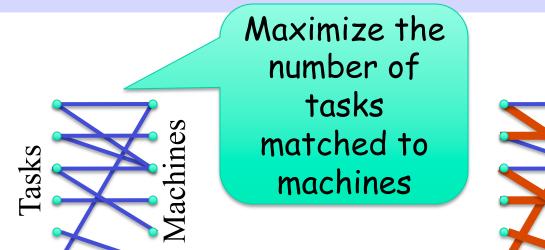
More efficient Network Flow algorithms

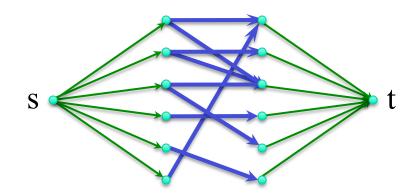
- Push-relabel algorithms [Goldberg, '87]
 - Local algorithm, works on one vertex at a time
 - Avoids maintaining flow conservation rule
 - Excess flow in each node
 - Height function
 - O(mn²) time complexity
 - Can be improved to $O(n^3)$

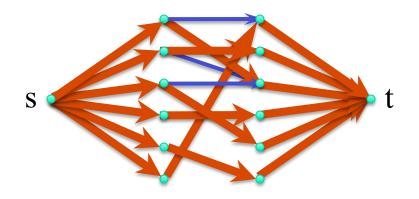
Generalizations

- Multiple sources and sinks.
 - Can be reduced to single source and sink

Bipartite Matching







Network Flow

- Input: <u>Directed graph</u> G(V,E) with <u>capacity function</u> on edges given by non-negative function c: E(G) → *R*⁺.
 - Capacity of each edge, e, is given by c(e)
 - Source vertex s
 - Sink vertex t
- Question: Find a <u>flow function</u> f with the maximum flow value

Min-Cost Network Flow

- Input: <u>Directed graph</u> G(V,E) with <u>capacity function</u> on edges given by non-negative function c: E(G) → *R*⁺.
 - Capacity of each edge, e, is given by c(e)
 - Flow cost of each edge, e, is given by a(e)
 - Implies that cost of flow in e is a(e)•f(e)
 - Total cost of flow = Σ a(e)•f(e)
 - Source vertex s
 - Sink vertex t
 - Flow required = F
- Question: Find <u>min-cost</u> flow function f with flow value = F

Minimum Path Cover in DAGs

- Path Cover: set of vertex disjoint paths that cover all vertices
- Minimum Path cover in directed acyclic graphs can be reduced to Network Flow