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What is a Randomized Online Algorithm?

It is an online algorithm with randomization

Example: If you are going on a ski trip, toss a coin and
decide whether to rent/buy skis.

Example: When a new item is brought into cache,
randomly pick an existing item to evict.

Lower bounds for deterministic online algorithms do not
apply.

Lower bound of k = size of cache does not apply for
randomized cache replacement strategies.
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How to Analyze Online Algorithms?

Competitive analysis

Compare with optimal offline algorithm (OPT)

Online Algorithm A is α-competitive if there exists
constant b such that for every sequence of inputs σ:

COSTA(σ) ≤ α · COSTOPT (σ) + b
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How to Analyze Randomized Online Algorithms?

Online Algorithm A is α-competitive if there exists
constant b such that for every sequence of inputs σ:

COSTA(σ) ≤ α · COSTOPT (σ) + b

Randomized Online Algorithm A is α-competitive if there
exists constant b such that for every sequence of inputs σ:

E [COSTA(σ)] ≤ αCOSTOPT (σ) + b

Use Expected cost instead
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RANDOM Algorithm

On a miss: evict an item chosen uniformly at random from
all k items in cache.

RANDOM is k-competitive

Can we do better than the deterministic lower bound of k
for the competitiveness?
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MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it
2 If all pages are MARKed, start next round and UNMARK

all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm. Why?
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Randomized MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page chosen uniformly at
random and MARK it

2 If all pages are MARKed, start next round and UNMARK
all pages

Has explicit randomization in this algorithm.

Analysis: This algorithm is 2Hk -competitive.
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Analyzing Randomized MARKER

Divide the request sequence into phases σ(i), . . . , σ(j),

where j
is the smallest integer such that

{σ(i), . . . , σ(j + 1)}

contains k + 1 distinct pages.
At the end of a phase, all pages are MARKed.
A page is stale if it is unMARKed but was MAKRKed in
previous phase. A page is clean if it is neither stale nor
MARKed. Let c = # of clean pages requested in phase.
Claim 1: Amortized # of faults by OPT in phase is ≥ c/2
Claim 2: Expected number of faults by MARKER is ≤ cHk .
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Analyzing Randomized MARKER

OPT: Let the # of pages in SOPT\SM be dI at start of phase

and dF at end of phase. OPT has at least c − dI faults.Also
OPT has at least dF faults. Why?
A clean page is a miss for MARKER. Thus c clean pages are
not in SM . At best, they are from SOPT\SM . But
|SOPT\SM | = dI . Hence OPT has ≥ c − dI misses.
The dF pages from SM\SOPT were accessed, but not present
at end of phase in SOPT . Hence they were evicted by OPT on
some miss. Thus OPT had at least dF misses.

max{c − dI , dF} ≥ (c − dI + dF )/2 = c/2− dI/2 + dF/2

Amortized over all requests, the second and last terms start to
cancel off, giving us ≥ c/2 faults.
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The dF pages from SM\SOPT were accessed, but not present
at end of phase in SOPT . Hence they were evicted by OPT on
some miss. Thus OPT had at least dF misses.

max{c − dI , dF} ≥ (c − dI + dF )/2 = c/2− dI/2 + dF/2

Amortized over all requests, the second and last terms start to
cancel off, giving us ≥ c/2 faults.
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Analyzing Randomized MARKER

OPT: ≥ c/2 faults.

MARKER: k − c stale pages in cache. Let c(i) (and s(i)) be
the number of clean (and stale, resp.) pages requested before
the i-th stale page.
Thus, expected cost of request is

s(i)− c(i)

s(i)
· 0 +

c(i)

s(i)
· 1 ≤ c

s(i)
=

c

k − i + 1

When summed over all iterations, we have

s∑
i=1

c

k − i + 1
≤

k∑
i=2

c

i
= c(Hk − 1)
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Analyzing Randomized MARKER

Claim 1: Amortized # of faults by OPT in phase is ≥ c/2
Claim 2: Expected number of faults by MARKER is ≤ cHk .

Claim 3: Randomized MARKER is 2Hk -competitive.
Claim 4: If R is a randomized online paging algorithm that is
c-competitive against any oblivious adversary, then c ≥ Hk .
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Claim 3: Randomized MARKER is 2Hk -competitive.
Claim 4: If R is a randomized online paging algorithm that is
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Adversary Models

When doing worst-case analysis of online, we assume that

there is an adversary who is generating a request sequence
in order to make algorithm perform as poorly as possible.
Adversary is powerful – knows your algorithm!

In analyzing randomized online algs, we have 3 choices:

Oblivious adversary: adversary generates request
sequence at start. I.e., cannot see action of algorithm or
random choices. Adversary serves offline.
Adaptive online adversary: adversary generates request
sequence adaptively (online). I.e., can see action, but not
random choices. Adversary serves online
Adaptive oine adversary: adversary generates request
sequence adaptively, and knows the result of the coin
tosses. Adversary serves offline
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Relationship between Adversary Models

∃ randomized c-competitive algorithm against adaptive
offline adversary =⇒

∃ deterministic c-competitive
algorithm.

∃ randomized c-competitive algorithm against adaptive
online adversary and ∃ d-competitive algorithm against
oblivious adversary =⇒ ∃ c · d-competitive algorithm
against any adaptive offline adversary.

∃ randomized c-competitive algorithm against adaptive
online adversary =⇒ ∃ deterministic c2-competitive
algorithm.

[Ben-David, Borodin, Karp, Tardos, Wigderson, Algorithmica,
1994]
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