COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomizec MARKER Algorithm

Adversaries

COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2474; Phone x3748; Email: giri@cs.fiu.edu HOMEPAGE: http://www.cs.fiu.edu/~giri https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

Feb 18, 2014

Presentation Outline

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

1 Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

4 Adversaries

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへで

COT 6936:
Topics in
Algorithma
Aigorithms
Giri
Randomized
Online
Algorithms
Cache
MARKER

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

It is an online algorithm with randomization

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- It is an online algorithm with randomization
- Example: If you are going on a ski trip, toss a coin and decide whether to rent/buy skis.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- It is an online algorithm with randomization
- Example: If you are going on a ski trip, toss a coin and decide whether to rent/buy skis.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example: When a new item is brought into cache, randomly pick an existing item to evict.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- It is an online algorithm with randomization
- Example: If you are going on a ski trip, toss a coin and decide whether to rent/buy skis.
- Example: When a new item is brought into cache, randomly pick an existing item to evict.
- Lower bounds for deterministic online algorithms do not apply.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- It is an online algorithm with randomization
- Example: If you are going on a ski trip, toss a coin and decide whether to rent/buy skis.
- Example: When a new item is brought into cache, randomly pick an existing item to evict.
- Lower bounds for deterministic online algorithms do not apply.

Lower bound of k = size of cache does not apply for randomized cache replacement strategies.

How to Analyze Online Algorithms?

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Competitive analysis

How to Analyze Online Algorithms?

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Competitive analysis

Compare with optimal offline algorithm (OPT)

How to Analyze Online Algorithms?

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Competitive analysis

- Compare with optimal offline algorithm (OPT)
- Online Algorithm A is α-competitive if there exists constant b such that for every sequence of inputs σ:

 $COST_A(\sigma) \le \alpha \cdot COST_{OPT}(\sigma) + b$

How to Analyze Randomized Online Algorithms?

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Online Algorithm A is α-competitive if there exists constant b such that for every sequence of inputs σ:

 $COST_A(\sigma) \le \alpha \cdot COST_{OPT}(\sigma) + b$

How to Analyze Randomized Online Algorithms?

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

 Online Algorithm A is α-competitive if there exists constant b such that for every sequence of inputs σ:

 $COST_A(\sigma) \le \alpha \cdot COST_{OPT}(\sigma) + b$

Randomized Online Algorithm A is α-competitive if there exists constant b such that for every sequence of inputs σ:

 $\boldsymbol{\mathsf{E}}[\operatorname{COST}_{\mathsf{A}}(\sigma)] \leq \alpha \operatorname{COST}_{\operatorname{OPT}}(\sigma) + \boldsymbol{\mathsf{b}}$

How to Analyze Randomized Online Algorithms?

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

 Online Algorithm A is α-competitive if there exists constant b such that for every sequence of inputs σ:

 $COST_A(\sigma) \le \alpha \cdot COST_{OPT}(\sigma) + b$

Randomized Online Algorithm A is α-competitive if there exists constant b such that for every sequence of inputs σ:

 $\boldsymbol{\mathsf{E}}[\operatorname{COST}_{A}(\sigma)] \leq \alpha \operatorname{COST}_{\operatorname{OPT}}(\sigma) + b$

Use Expected cost instead

Presentation Outline

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Randomized Online Algorithms

2 Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

4 Adversaries

RANDOM Algorithm

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomizec Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

 On a miss: evict an item chosen uniformly at random from all k items in cache.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

RANDOM Algorithm

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

 On a miss: evict an item chosen uniformly at random from all k items in cache.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

RANDOM is k-competitive

RANDOM Algorithm

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- On a miss: evict an item chosen uniformly at random from all k items in cache.
- RANDOM is k-competitive
- Can we do better than the deterministic lower bound of k for the competitiveness?

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

MARKER Algorithm

Each of k pages in cache has a MARKer bit

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

MARKER Algorithm

Each of k pages in cache has a MARKer bit

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Algorithm proceeds in rounds

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

MARKER Algorithm

Each of k pages in cache has a MARKer bit

- Algorithm proceeds in rounds
- Start of round:

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

MARKER Algorithm

Each of k pages in cache has a MARKer bit

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Algorithm proceeds in rounds
- Start of round: UNMARK all pages

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

MARKER Algorithm

Each of k pages in cache has a MARKer bit

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Algorithm proceeds in rounds
- Start of round: UNMARK all pages
- In each round:

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

MARKER Algorithm

Each of k pages in cache has a MARKer bit

- Algorithm proceeds in rounds
- Start of round: UNMARK all pages
- In each round:
 - If request is a hit:

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

MARKER Algorithm

- Each of k pages in cache has a MARKer bit
- Algorithm proceeds in rounds
- Start of round: UNMARK all pages
- In each round:
 - If request is a hit: MARK the page

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

MARKER Algorithm

- Each of k pages in cache has a MARKer bit
- Algorithm proceeds in rounds
- Start of round: UNMARK all pages
- In each round:
 - If request is a hit: MARK the page

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

If request is a miss:

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

MARKER Algorithm

- Each of k pages in cache has a MARKer bit
- Algorithm proceeds in rounds
- Start of round: UNMARK all pages
- In each round:
 - If request is a hit: MARK the page
 - If request is a miss:
 - 1 Replace (arbitrary) UNMARKed page and MARK it

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

MARKER Algorithm

- Each of k pages in cache has a MARKer bit
- Algorithm proceeds in rounds
- Start of round: UNMARK all pages
- In each round:
 - If request is a hit: MARK the page
 - If request is a miss:
 - 1 Replace (arbitrary) UNMARKed page and MARK it
 - 2 If all pages are MARKed, start next round and UNMARK all pages

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• No explicit randomization in this algorithm.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

MARKER Algorithm

- Each of k pages in cache has a MARKer bit
- Algorithm proceeds in rounds
- Start of round: UNMARK all pages
- In each round:
 - If request is a hit: MARK the page
 - If request is a miss:
 - 1 Replace (arbitrary) UNMARKed page and MARK it
 - 2 If all pages are MARKed, start next round and UNMARK all pages
- No explicit randomization in this algorithm.
 - Arbitrary replacement can be implemented as say a FIFO or LIFO of unmarked items

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

MARKER Algorithm

- Each of k pages in cache has a MARKer bit
- Algorithm proceeds in rounds
- Start of round: UNMARK all pages
- In each round:
 - If request is a hit: MARK the page
 - If request is a miss:
 - 1 Replace (arbitrary) UNMARKed page and MARK it
 - 2 If all pages are MARKed, start next round and UNMARK all pages
- No explicit randomization in this algorithm.
 - Arbitrary replacement can be implemented as say a FIFO or LIFO of unmarked items
- LRU is in fact a MARKing algorithm.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

MARKER Algorithm

- Each of k pages in cache has a MARKer bit
- Algorithm proceeds in rounds
- Start of round: UNMARK all pages
- In each round:
 - If request is a hit: MARK the page
 - If request is a miss:
 - 1 Replace (arbitrary) UNMARKed page and MARK it
 - 2 If all pages are MARKed, start next round and UNMARK all pages

- No explicit randomization in this algorithm.
 - Arbitrary replacement can be implemented as say a FIFO or LIFO of unmarked items
- LRU is in fact a MARKing algorithm. Why?

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Randomized MARKER Algorithm

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Randomized MARKER Algorithm

- Each of k pages in cache has a MARKer bit
- Algorithm proceeds in rounds
- Start of round: UNMARK all pages
- In each round:
 - If request is a hit: MARK the page
 - If request is a miss:
 - 1 Replace (arbitrary) UNMARKed page chosen uniformly at random and MARK it

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Randomized MARKER Algorithm

- Each of k pages in cache has a MARKer bit
- Algorithm proceeds in rounds
- Start of round: UNMARK all pages
- In each round:
 - If request is a hit: MARK the page
 - If request is a miss:
 - Replace (arbitrary) UNMARKed page chosen uniformly at random and MARK it
 - 2 If all pages are MARKed, start next round and UNMARK all pages

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Randomized MARKER Algorithm

- Each of k pages in cache has a MARKer bit
- Algorithm proceeds in rounds
- Start of round: UNMARK all pages
- In each round:
 - If request is a hit: MARK the page
 - If request is a miss:
 - Replace (arbitrary) UNMARKed page chosen uniformly at random and MARK it
 - 2 If all pages are MARKed, start next round and UNMARK all pages

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Has explicit randomization in this algorithm.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Randomized MARKER Algorithm

- Each of k pages in cache has a MARKer bit
- Algorithm proceeds in rounds
- Start of round: UNMARK all pages
- In each round:
 - If request is a hit: MARK the page
 - If request is a miss:
 - Replace (arbitrary) UNMARKed page chosen uniformly at random and MARK it
 - 2 If all pages are MARKed, start next round and UNMARK all pages

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Has explicit randomization in this algorithm.
- Analysis: This algorithm is $2H_k$ -competitive.
Presentation Outline

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Randomized Online Algorithms

2 Randomized Cache Replacement Strategies

3 Analyzing Randomized MARKER Algorithm

4 Adversaries

◆□> <圖> < E> < E> E のQQ

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Divide the request sequence into phases $\sigma(i), \ldots, \sigma(j)$,

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Divide the request sequence into phases $\sigma(i), \ldots, \sigma(j)$, where j is the smallest integer such that

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Divide the request sequence into phases $\sigma(i), \ldots, \sigma(j)$, where j is the smallest integer such that

 $\{\sigma(i),\ldots,\sigma(j+1)\}$

contains k + 1 distinct pages. At the end of a phase, all pages are MARKed.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Divide the request sequence into phases $\sigma(i), \ldots, \sigma(j)$, where j is the smallest integer such that

 $\{\sigma(i),\ldots,\sigma(j+1)\}$

contains k + 1 distinct pages. At the end of a phase, all pages are MARKed. A page is stale if it is unMARKed but was MAKRKed in previous phase. A page is clean if it is neither stale nor MARKed. Let c = # of clean pages requested in phase. Claim 1: Amortized # of faults by OPT in phase is $\ge c/2$ Claim 2: Expected number of faults by MARKER is $\le cH_k$.

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

OPT: Let the # of pages in $S_{OPT} \setminus S_M$ be d_I at start of phase

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

OPT: Let the # of pages in $S_{OPT} \setminus S_M$ be d_I at start of phase and d_F at end of phase.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

OPT: Let the # of pages in $S_{OPT} \setminus S_M$ be d_I at start of phase and d_F at end of phase. OPT has at least $c - d_I$ faults.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

OPT: Let the # of pages in $S_{OPT} \setminus S_M$ be d_I at start of phase and d_F at end of phase. OPT has at least $c - d_I$ faults. Also OPT has at least d_F faults.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

OPT: Let the # of pages in $S_{OPT} \setminus S_M$ be d_I at start of phase and d_F at end of phase. OPT has at least $c - d_I$ faults. Also OPT has at least d_F faults. Why?

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomizec Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

OPT: Let the # of pages in $S_{OPT} \setminus S_M$ be d_I at start of phase and d_F at end of phase. OPT has at least $c - d_I$ faults. Also OPT has at least d_F faults. Why? A clean page is a miss for MARKER. Thus c clean pages are not in S_M . At best, they are from $S_{OPT} \setminus S_M$. But $|S_{OPT} \setminus S_M| = d_I$. Hence OPT has $\geq c - d_I$ misses.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomizec Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

OPT: Let the # of pages in $S_{OPT} \setminus S_M$ be d_I at start of phase and d_F at end of phase. OPT has at least $c - d_I$ faults. Also OPT has at least d_F faults. Why? A clean page is a miss for MARKER. Thus c clean pages are not in S_M . At best, they are from $S_{OPT} \setminus S_M$. But $|S_{OPT} \setminus S_M| = d_I$. Hence OPT has $\geq c - d_I$ misses. The d_F pages from $S_M \setminus S_{OPT}$ were accessed, but not present at end of phase in S_{OPT} . Hence they were evicted by OPT on some miss. Thus OPT had at least d_F misses.

$$\max\{c - d_I, d_F\} \ge (c - d_I + d_F)/2 = c/2 - d_I/2 + d_F/2$$

Amortized over all requests, the second and last terms start to cancel off, giving us $\geq c/2$ faults.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomizec Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

OPT: Let the # of pages in $S_{OPT} \setminus S_M$ be d_I at start of phase and d_F at end of phase. OPT has at least $c - d_I$ faults. Also OPT has at least d_F faults. Why? A clean page is a miss for MARKER. Thus c clean pages are not in S_M . At best, they are from $S_{OPT} \setminus S_M$. But $|S_{OPT} \setminus S_M| = d_I$. Hence OPT has $\geq c - d_I$ misses. The d_F pages from $S_M \setminus S_{OPT}$ were accessed, but not present at end of phase in S_{OPT} . Hence they were evicted by OPT on some miss. Thus OPT had at least d_F misses.

$$\max\{c - d_I, d_F\} \ge (c - d_I + d_F)/2 = c/2 - d_I/2 + d_F/2$$

Amortized over all requests, the second and last terms start to cancel off, giving us $\geq c/2$ faults.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

OPT: $\geq c/2$ faults.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

OPT: $\geq c/2$ faults.

MARKER: k - c stale pages in cache. Let c(i) (and s(i)) be the number of clean (and stale, resp.) pages requested before the *i*-th stale page.

Thus, expected cost of request is

$$\frac{s(i)-c(i)}{s(i)}\cdot 0 + \frac{c(i)}{s(i)}\cdot 1 \leq \frac{c}{s(i)} = \frac{c}{k-i+1}$$

When summed over all iterations, we have

$$\sum_{i=1}^{s} \frac{c}{k-i+1} \le \sum_{i=2}^{k} \frac{c}{i} = c(H_k - 1)$$

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Claim 1: Amortized # of faults by OPT in phase is $\geq c/2$ Claim 2: Expected number of faults by MARKER is $\leq cH_k$.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Claim 1: Amortized # of faults by OPT in phase is $\geq c/2$ Claim 2: Expected number of faults by MARKER is $\leq cH_k$. Claim 3: Randomized MARKER is $2H_k$ -competitive. Claim 4: If R is a randomized online paging algorithm that is

c-competitive against any oblivious adversary, then $c \ge H_k$.

Presentation Outline

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

4 Adversaries

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

• When doing worst-case analysis of online, we assume that

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

When doing worst-case analysis of online, we assume that there is an adversary

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

When doing worst-case analysis of online, we assume that there is an adversary who is generating a request sequence in order to make algorithm perform as poorly as possible.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

When doing worst-case analysis of online, we assume that there is an adversary who is generating a request sequence in order to make algorithm perform as poorly as possible. Adversary is powerful – knows your algorithm!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

In analyzing randomized online algs, we have 3 choices:

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- When doing worst-case analysis of online, we assume that there is an adversary who is generating a request sequence in order to make algorithm perform as poorly as possible. Adversary is powerful – knows your algorithm!
- In analyzing randomized online algs, we have 3 choices:
 - Oblivious adversary: adversary generates request sequence at start. I.e.,

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- When doing worst-case analysis of online, we assume that there is an adversary who is generating a request sequence in order to make algorithm perform as poorly as possible. Adversary is powerful – knows your algorithm!
- In analyzing randomized online algs, we have 3 choices:
 - Oblivious adversary: adversary generates request sequence at start. I.e., cannot see action of algorithm or random choices.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- When doing worst-case analysis of online, we assume that there is an adversary who is generating a request sequence in order to make algorithm perform as poorly as possible. Adversary is powerful – knows your algorithm!
- In analyzing randomized online algs, we have 3 choices:
 - Oblivious adversary: adversary generates request sequence at start. I.e., cannot see action of algorithm or random choices. Adversary serves offline.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- When doing worst-case analysis of online, we assume that there is an adversary who is generating a request sequence in order to make algorithm perform as poorly as possible. Adversary is powerful – knows your algorithm!
- In analyzing randomized online algs, we have 3 choices:
 - Oblivious adversary: adversary generates request sequence at start. I.e., cannot see action of algorithm or random choices. Adversary serves offline.
 - Adaptive online adversary: adversary generates request sequence adaptively (online). I.e.,

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- When doing worst-case analysis of online, we assume that there is an adversary who is generating a request sequence in order to make algorithm perform as poorly as possible. Adversary is powerful – knows your algorithm!
- In analyzing randomized online algs, we have 3 choices:
 - Oblivious adversary: adversary generates request sequence at start. I.e., cannot see action of algorithm or random choices. Adversary serves offline.
 - Adaptive online adversary: adversary generates request sequence adaptively (online). I.e., can see action, but not random choices. Adversary serves online

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- When doing worst-case analysis of online, we assume that there is an adversary who is generating a request sequence in order to make algorithm perform as poorly as possible. Adversary is powerful – knows your algorithm!
- In analyzing randomized online algs, we have 3 choices:
 - Oblivious adversary: adversary generates request sequence at start. I.e., cannot see action of algorithm or random choices. Adversary serves offline.
 - Adaptive online adversary: adversary generates request sequence adaptively (online). I.e., can see action, but not random choices. Adversary serves online
 - Adaptive oine adversary: adversary generates request sequence adaptively, and knows the result of the coin tosses.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- When doing worst-case analysis of online, we assume that there is an adversary who is generating a request sequence in order to make algorithm perform as poorly as possible. Adversary is powerful – knows your algorithm!
- In analyzing randomized online algs, we have 3 choices:
 - Oblivious adversary: adversary generates request sequence at start. I.e., cannot see action of algorithm or random choices. Adversary serves offline.
 - Adaptive online adversary: adversary generates request sequence adaptively (online). I.e., can see action, but not random choices. Adversary serves online
 - Adaptive oine adversary: adversary generates request sequence adaptively, and knows the result of the coin tosses. Adversary serves offline

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomizec Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

■ ∃ randomized *c*-competitive algorithm against *adaptive offline adversary* ⇒

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

■ ∃ randomized *c*-competitive algorithm against *adaptive offline adversary* ⇒ ∃ deterministic *c*-competitive algorithm.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- ∃ randomized *c*-competitive algorithm against *adaptive* offline adversary ⇒ ∃ deterministic *c*-competitive algorithm.
- ∃ randomized *c*-competitive algorithm against *adaptive online adversary* and

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- ∃ randomized *c*-competitive algorithm against *adaptive offline adversary* ⇒ ∃ deterministic *c*-competitive algorithm.
- ∃ randomized c-competitive algorithm against adaptive online adversary and ∃ d-competitive algorithm against oblivious adversary ⇒

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- ∃ randomized *c*-competitive algorithm against *adaptive* offline adversary ⇒ ∃ deterministic *c*-competitive algorithm.
- ∃ randomized *c*-competitive algorithm against *adaptive* online adversary and ∃ *d*-competitive algorithm against oblivious adversary ⇒ ∃ *c* · *d*-competitive algorithm against any adaptive offline adversary.

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- ∃ randomized *c*-competitive algorithm against *adaptive* offline adversary ⇒ ∃ deterministic *c*-competitive algorithm.
- ∃ randomized c-competitive algorithm against adaptive online adversary and ∃ d-competitive algorithm against oblivious adversary ⇒ ∃ c · d-competitive algorithm against any adaptive offline adversary.
- ∃ randomized c-competitive algorithm against adaptive online adversary ⇒

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- ∃ randomized *c*-competitive algorithm against *adaptive* offline adversary ⇒ ∃ deterministic *c*-competitive algorithm.
- ∃ randomized c-competitive algorithm against adaptive online adversary and ∃ d-competitive algorithm against oblivious adversary ⇒ ∃ c · d-competitive algorithm against any adaptive offline adversary.
- ∃ randomized c-competitive algorithm against adaptive online adversary ⇒ ∃ deterministic c²-competitive algorithm.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Relationship between Adversary Models

COT 6936: Topics in Algorithms

Giri Narasimhan

Randomized Online Algorithms

Randomized Cache Replacement Strategies

Analyzing Randomized MARKER Algorithm

Adversaries

- ∃ randomized *c*-competitive algorithm against *adaptive* offline adversary ⇒ ∃ deterministic *c*-competitive algorithm.
- ∃ randomized c-competitive algorithm against adaptive online adversary and ∃ d-competitive algorithm against oblivious adversary ⇒ ∃ c · d-competitive algorithm against any adaptive offline adversary.
- ∃ randomized *c*-competitive algorithm against *adaptive* online adversary ⇒ ∃ deterministic c²-competitive algorithm.

[Ben-David, Borodin, Karp, Tardos, Wigderson, Algorithmica, 1994]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <