
COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2474; Phone x3748; Email: giri@cs.fiu.edu
HOMEPAGE: http://www.cs.fiu.edu/~giri

https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

Feb 18, 2014

giri@cs.fiu.edu
http://www.cs.fiu.edu/~giri
https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Presentation Outline

1 Randomized Online Algorithms

2 Randomized Cache Replacement Strategies

3 Analyzing Randomized MARKER Algorithm

4 Adversaries

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

What is a Randomized Online Algorithm?

It is an online algorithm with randomization

Example: If you are going on a ski trip, toss a coin and
decide whether to rent/buy skis.

Example: When a new item is brought into cache,
randomly pick an existing item to evict.

Lower bounds for deterministic online algorithms do not
apply.

Lower bound of k = size of cache does not apply for
randomized cache replacement strategies.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

What is a Randomized Online Algorithm?

It is an online algorithm with randomization

Example: If you are going on a ski trip, toss a coin and
decide whether to rent/buy skis.

Example: When a new item is brought into cache,
randomly pick an existing item to evict.

Lower bounds for deterministic online algorithms do not
apply.

Lower bound of k = size of cache does not apply for
randomized cache replacement strategies.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

What is a Randomized Online Algorithm?

It is an online algorithm with randomization

Example: If you are going on a ski trip, toss a coin and
decide whether to rent/buy skis.

Example: When a new item is brought into cache,
randomly pick an existing item to evict.

Lower bounds for deterministic online algorithms do not
apply.

Lower bound of k = size of cache does not apply for
randomized cache replacement strategies.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

What is a Randomized Online Algorithm?

It is an online algorithm with randomization

Example: If you are going on a ski trip, toss a coin and
decide whether to rent/buy skis.

Example: When a new item is brought into cache,
randomly pick an existing item to evict.

Lower bounds for deterministic online algorithms do not
apply.

Lower bound of k = size of cache does not apply for
randomized cache replacement strategies.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

What is a Randomized Online Algorithm?

It is an online algorithm with randomization

Example: If you are going on a ski trip, toss a coin and
decide whether to rent/buy skis.

Example: When a new item is brought into cache,
randomly pick an existing item to evict.

Lower bounds for deterministic online algorithms do not
apply.

Lower bound of k = size of cache does not apply for
randomized cache replacement strategies.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

What is a Randomized Online Algorithm?

It is an online algorithm with randomization

Example: If you are going on a ski trip, toss a coin and
decide whether to rent/buy skis.

Example: When a new item is brought into cache,
randomly pick an existing item to evict.

Lower bounds for deterministic online algorithms do not
apply.

Lower bound of k = size of cache does not apply for
randomized cache replacement strategies.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

How to Analyze Online Algorithms?

Competitive analysis

Compare with optimal offline algorithm (OPT)

Online Algorithm A is α-competitive if there exists
constant b such that for every sequence of inputs σ:

COSTA(σ) ≤ α · COSTOPT (σ) + b

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

How to Analyze Online Algorithms?

Competitive analysis

Compare with optimal offline algorithm (OPT)

Online Algorithm A is α-competitive if there exists
constant b such that for every sequence of inputs σ:

COSTA(σ) ≤ α · COSTOPT (σ) + b

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

How to Analyze Online Algorithms?

Competitive analysis

Compare with optimal offline algorithm (OPT)

Online Algorithm A is α-competitive if there exists
constant b such that for every sequence of inputs σ:

COSTA(σ) ≤ α · COSTOPT (σ) + b

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

How to Analyze Randomized Online Algorithms?

Online Algorithm A is α-competitive if there exists
constant b such that for every sequence of inputs σ:

COSTA(σ) ≤ α · COSTOPT (σ) + b

Randomized Online Algorithm A is α-competitive if there
exists constant b such that for every sequence of inputs σ:

E [COSTA(σ)] ≤ αCOSTOPT (σ) + b

Use Expected cost instead

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

How to Analyze Randomized Online Algorithms?

Online Algorithm A is α-competitive if there exists
constant b such that for every sequence of inputs σ:

COSTA(σ) ≤ α · COSTOPT (σ) + b

Randomized Online Algorithm A is α-competitive if there
exists constant b such that for every sequence of inputs σ:

E [COSTA(σ)] ≤ αCOSTOPT (σ) + b

Use Expected cost instead

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

How to Analyze Randomized Online Algorithms?

Online Algorithm A is α-competitive if there exists
constant b such that for every sequence of inputs σ:

COSTA(σ) ≤ α · COSTOPT (σ) + b

Randomized Online Algorithm A is α-competitive if there
exists constant b such that for every sequence of inputs σ:

E [COSTA(σ)] ≤ αCOSTOPT (σ) + b

Use Expected cost instead

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Presentation Outline

1 Randomized Online Algorithms

2 Randomized Cache Replacement Strategies

3 Analyzing Randomized MARKER Algorithm

4 Adversaries

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

RANDOM Algorithm

On a miss: evict an item chosen uniformly at random from
all k items in cache.

RANDOM is k-competitive

Can we do better than the deterministic lower bound of k
for the competitiveness?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

RANDOM Algorithm

On a miss: evict an item chosen uniformly at random from
all k items in cache.

RANDOM is k-competitive

Can we do better than the deterministic lower bound of k
for the competitiveness?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

RANDOM Algorithm

On a miss: evict an item chosen uniformly at random from
all k items in cache.

RANDOM is k-competitive

Can we do better than the deterministic lower bound of k
for the competitiveness?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it
2 If all pages are MARKed, start next round and UNMARK

all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm. Why?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it
2 If all pages are MARKed, start next round and UNMARK

all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm. Why?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round:

UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it
2 If all pages are MARKed, start next round and UNMARK

all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm. Why?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it
2 If all pages are MARKed, start next round and UNMARK

all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm. Why?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it
2 If all pages are MARKed, start next round and UNMARK

all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm. Why?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit:

MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it
2 If all pages are MARKed, start next round and UNMARK

all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm. Why?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page

If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it
2 If all pages are MARKed, start next round and UNMARK

all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm. Why?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it
2 If all pages are MARKed, start next round and UNMARK

all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm. Why?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it

2 If all pages are MARKed, start next round and UNMARK
all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm. Why?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it
2 If all pages are MARKed, start next round and UNMARK

all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm. Why?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it
2 If all pages are MARKed, start next round and UNMARK

all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm. Why?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it
2 If all pages are MARKed, start next round and UNMARK

all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm.

Why?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

MARKER Algorithm

MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page and MARK it
2 If all pages are MARKed, start next round and UNMARK

all pages

No explicit randomization in this algorithm.

Arbitrary replacement can be implemented as say a FIFO
or LIFO of unmarked items

LRU is in fact a MARKing algorithm. Why?

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Randomized MARKER Algorithm

Randomized MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page chosen uniformly at
random and MARK it

2 If all pages are MARKed, start next round and UNMARK
all pages

Has explicit randomization in this algorithm.

Analysis: This algorithm is 2Hk -competitive.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Randomized MARKER Algorithm

Randomized MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page chosen uniformly at
random and MARK it

2 If all pages are MARKed, start next round and UNMARK
all pages

Has explicit randomization in this algorithm.

Analysis: This algorithm is 2Hk -competitive.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Randomized MARKER Algorithm

Randomized MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page chosen uniformly at
random and MARK it

2 If all pages are MARKed, start next round and UNMARK
all pages

Has explicit randomization in this algorithm.

Analysis: This algorithm is 2Hk -competitive.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Randomized MARKER Algorithm

Randomized MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page chosen uniformly at
random and MARK it

2 If all pages are MARKed, start next round and UNMARK
all pages

Has explicit randomization in this algorithm.

Analysis: This algorithm is 2Hk -competitive.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Randomized MARKER Algorithm

Randomized MARKER Algorithm

Each of k pages in cache has a MARKer bit

Algorithm proceeds in rounds

Start of round: UNMARK all pages

In each round:

If request is a hit: MARK the page
If request is a miss:

1 Replace (arbitrary) UNMARKed page chosen uniformly at
random and MARK it

2 If all pages are MARKed, start next round and UNMARK
all pages

Has explicit randomization in this algorithm.

Analysis: This algorithm is 2Hk -competitive.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Presentation Outline

1 Randomized Online Algorithms

2 Randomized Cache Replacement Strategies

3 Analyzing Randomized MARKER Algorithm

4 Adversaries

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

Divide the request sequence into phases σ(i), . . . , σ(j),

where j
is the smallest integer such that

{σ(i), . . . , σ(j + 1)}

contains k + 1 distinct pages.
At the end of a phase, all pages are MARKed.
A page is stale if it is unMARKed but was MAKRKed in
previous phase. A page is clean if it is neither stale nor
MARKed. Let c = # of clean pages requested in phase.
Claim 1: Amortized # of faults by OPT in phase is ≥ c/2
Claim 2: Expected number of faults by MARKER is ≤ cHk .

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

Divide the request sequence into phases σ(i), . . . , σ(j), where j
is the smallest integer such that

{σ(i), . . . , σ(j + 1)}

contains k + 1 distinct pages.
At the end of a phase, all pages are MARKed.
A page is stale if it is unMARKed but was MAKRKed in
previous phase. A page is clean if it is neither stale nor
MARKed. Let c = # of clean pages requested in phase.
Claim 1: Amortized # of faults by OPT in phase is ≥ c/2
Claim 2: Expected number of faults by MARKER is ≤ cHk .

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

Divide the request sequence into phases σ(i), . . . , σ(j), where j
is the smallest integer such that

{σ(i), . . . , σ(j + 1)}

contains k + 1 distinct pages.
At the end of a phase, all pages are MARKed.

A page is stale if it is unMARKed but was MAKRKed in
previous phase. A page is clean if it is neither stale nor
MARKed. Let c = # of clean pages requested in phase.
Claim 1: Amortized # of faults by OPT in phase is ≥ c/2
Claim 2: Expected number of faults by MARKER is ≤ cHk .

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

Divide the request sequence into phases σ(i), . . . , σ(j), where j
is the smallest integer such that

{σ(i), . . . , σ(j + 1)}

contains k + 1 distinct pages.
At the end of a phase, all pages are MARKed.
A page is stale if it is unMARKed but was MAKRKed in
previous phase. A page is clean if it is neither stale nor
MARKed. Let c = # of clean pages requested in phase.
Claim 1: Amortized # of faults by OPT in phase is ≥ c/2
Claim 2: Expected number of faults by MARKER is ≤ cHk .

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

OPT: Let the # of pages in SOPT\SM be dI at start of phase

and dF at end of phase. OPT has at least c − dI faults.Also
OPT has at least dF faults. Why?
A clean page is a miss for MARKER. Thus c clean pages are
not in SM . At best, they are from SOPT\SM . But
|SOPT\SM | = dI . Hence OPT has ≥ c − dI misses.
The dF pages from SM\SOPT were accessed, but not present
at end of phase in SOPT . Hence they were evicted by OPT on
some miss. Thus OPT had at least dF misses.

max{c − dI , dF} ≥ (c − dI + dF)/2 = c/2− dI/2 + dF/2

Amortized over all requests, the second and last terms start to
cancel off, giving us ≥ c/2 faults.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

OPT: Let the # of pages in SOPT\SM be dI at start of phase
and dF at end of phase.

OPT has at least c − dI faults.Also
OPT has at least dF faults. Why?
A clean page is a miss for MARKER. Thus c clean pages are
not in SM . At best, they are from SOPT\SM . But
|SOPT\SM | = dI . Hence OPT has ≥ c − dI misses.
The dF pages from SM\SOPT were accessed, but not present
at end of phase in SOPT . Hence they were evicted by OPT on
some miss. Thus OPT had at least dF misses.

max{c − dI , dF} ≥ (c − dI + dF)/2 = c/2− dI/2 + dF/2

Amortized over all requests, the second and last terms start to
cancel off, giving us ≥ c/2 faults.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

OPT: Let the # of pages in SOPT\SM be dI at start of phase
and dF at end of phase. OPT has at least c − dI faults.

Also
OPT has at least dF faults. Why?
A clean page is a miss for MARKER. Thus c clean pages are
not in SM . At best, they are from SOPT\SM . But
|SOPT\SM | = dI . Hence OPT has ≥ c − dI misses.
The dF pages from SM\SOPT were accessed, but not present
at end of phase in SOPT . Hence they were evicted by OPT on
some miss. Thus OPT had at least dF misses.

max{c − dI , dF} ≥ (c − dI + dF)/2 = c/2− dI/2 + dF/2

Amortized over all requests, the second and last terms start to
cancel off, giving us ≥ c/2 faults.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

OPT: Let the # of pages in SOPT\SM be dI at start of phase
and dF at end of phase. OPT has at least c − dI faults.Also
OPT has at least dF faults.

Why?
A clean page is a miss for MARKER. Thus c clean pages are
not in SM . At best, they are from SOPT\SM . But
|SOPT\SM | = dI . Hence OPT has ≥ c − dI misses.
The dF pages from SM\SOPT were accessed, but not present
at end of phase in SOPT . Hence they were evicted by OPT on
some miss. Thus OPT had at least dF misses.

max{c − dI , dF} ≥ (c − dI + dF)/2 = c/2− dI/2 + dF/2

Amortized over all requests, the second and last terms start to
cancel off, giving us ≥ c/2 faults.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

OPT: Let the # of pages in SOPT\SM be dI at start of phase
and dF at end of phase. OPT has at least c − dI faults.Also
OPT has at least dF faults. Why?

A clean page is a miss for MARKER. Thus c clean pages are
not in SM . At best, they are from SOPT\SM . But
|SOPT\SM | = dI . Hence OPT has ≥ c − dI misses.
The dF pages from SM\SOPT were accessed, but not present
at end of phase in SOPT . Hence they were evicted by OPT on
some miss. Thus OPT had at least dF misses.

max{c − dI , dF} ≥ (c − dI + dF)/2 = c/2− dI/2 + dF/2

Amortized over all requests, the second and last terms start to
cancel off, giving us ≥ c/2 faults.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

OPT: Let the # of pages in SOPT\SM be dI at start of phase
and dF at end of phase. OPT has at least c − dI faults.Also
OPT has at least dF faults. Why?
A clean page is a miss for MARKER. Thus c clean pages are
not in SM . At best, they are from SOPT\SM . But
|SOPT\SM | = dI . Hence OPT has ≥ c − dI misses.

The dF pages from SM\SOPT were accessed, but not present
at end of phase in SOPT . Hence they were evicted by OPT on
some miss. Thus OPT had at least dF misses.

max{c − dI , dF} ≥ (c − dI + dF)/2 = c/2− dI/2 + dF/2

Amortized over all requests, the second and last terms start to
cancel off, giving us ≥ c/2 faults.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

OPT: Let the # of pages in SOPT\SM be dI at start of phase
and dF at end of phase. OPT has at least c − dI faults.Also
OPT has at least dF faults. Why?
A clean page is a miss for MARKER. Thus c clean pages are
not in SM . At best, they are from SOPT\SM . But
|SOPT\SM | = dI . Hence OPT has ≥ c − dI misses.
The dF pages from SM\SOPT were accessed, but not present
at end of phase in SOPT . Hence they were evicted by OPT on
some miss. Thus OPT had at least dF misses.

max{c − dI , dF} ≥ (c − dI + dF)/2 = c/2− dI/2 + dF/2

Amortized over all requests, the second and last terms start to
cancel off, giving us ≥ c/2 faults.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

OPT: Let the # of pages in SOPT\SM be dI at start of phase
and dF at end of phase. OPT has at least c − dI faults.Also
OPT has at least dF faults. Why?
A clean page is a miss for MARKER. Thus c clean pages are
not in SM . At best, they are from SOPT\SM . But
|SOPT\SM | = dI . Hence OPT has ≥ c − dI misses.
The dF pages from SM\SOPT were accessed, but not present
at end of phase in SOPT . Hence they were evicted by OPT on
some miss. Thus OPT had at least dF misses.

max{c − dI , dF} ≥ (c − dI + dF)/2 = c/2− dI/2 + dF/2

Amortized over all requests, the second and last terms start to
cancel off, giving us ≥ c/2 faults.

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

OPT: ≥ c/2 faults.

MARKER: k − c stale pages in cache. Let c(i) (and s(i)) be
the number of clean (and stale, resp.) pages requested before
the i-th stale page.
Thus, expected cost of request is

s(i)− c(i)

s(i)
· 0 +

c(i)

s(i)
· 1 ≤ c

s(i)
=

c

k − i + 1

When summed over all iterations, we have

s∑
i=1

c

k − i + 1
≤

k∑
i=2

c

i
= c(Hk − 1)

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

OPT: ≥ c/2 faults.
MARKER: k − c stale pages in cache. Let c(i) (and s(i)) be
the number of clean (and stale, resp.) pages requested before
the i-th stale page.
Thus, expected cost of request is

s(i)− c(i)

s(i)
· 0 +

c(i)

s(i)
· 1 ≤ c

s(i)
=

c

k − i + 1

When summed over all iterations, we have

s∑
i=1

c

k − i + 1
≤

k∑
i=2

c

i
= c(Hk − 1)

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

Claim 1: Amortized # of faults by OPT in phase is ≥ c/2
Claim 2: Expected number of faults by MARKER is ≤ cHk .

Claim 3: Randomized MARKER is 2Hk -competitive.
Claim 4: If R is a randomized online paging algorithm that is
c-competitive against any oblivious adversary, then c ≥ Hk .

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Analyzing Randomized MARKER

Claim 1: Amortized # of faults by OPT in phase is ≥ c/2
Claim 2: Expected number of faults by MARKER is ≤ cHk .
Claim 3: Randomized MARKER is 2Hk -competitive.
Claim 4: If R is a randomized online paging algorithm that is
c-competitive against any oblivious adversary, then c ≥ Hk .

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Presentation Outline

1 Randomized Online Algorithms

2 Randomized Cache Replacement Strategies

3 Analyzing Randomized MARKER Algorithm

4 Adversaries

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Adversary Models

When doing worst-case analysis of online, we assume that

there is an adversary who is generating a request sequence
in order to make algorithm perform as poorly as possible.
Adversary is powerful – knows your algorithm!

In analyzing randomized online algs, we have 3 choices:

Oblivious adversary: adversary generates request
sequence at start. I.e., cannot see action of algorithm or
random choices. Adversary serves offline.
Adaptive online adversary: adversary generates request
sequence adaptively (online). I.e., can see action, but not
random choices. Adversary serves online
Adaptive oine adversary: adversary generates request
sequence adaptively, and knows the result of the coin
tosses. Adversary serves offline

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Adversary Models

When doing worst-case analysis of online, we assume that
there is an adversary

who is generating a request sequence
in order to make algorithm perform as poorly as possible.
Adversary is powerful – knows your algorithm!

In analyzing randomized online algs, we have 3 choices:

Oblivious adversary: adversary generates request
sequence at start. I.e., cannot see action of algorithm or
random choices. Adversary serves offline.
Adaptive online adversary: adversary generates request
sequence adaptively (online). I.e., can see action, but not
random choices. Adversary serves online
Adaptive oine adversary: adversary generates request
sequence adaptively, and knows the result of the coin
tosses. Adversary serves offline

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Adversary Models

When doing worst-case analysis of online, we assume that
there is an adversary who is generating a request sequence
in order to make algorithm perform as poorly as possible.

Adversary is powerful – knows your algorithm!

In analyzing randomized online algs, we have 3 choices:

Oblivious adversary: adversary generates request
sequence at start. I.e., cannot see action of algorithm or
random choices. Adversary serves offline.
Adaptive online adversary: adversary generates request
sequence adaptively (online). I.e., can see action, but not
random choices. Adversary serves online
Adaptive oine adversary: adversary generates request
sequence adaptively, and knows the result of the coin
tosses. Adversary serves offline

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Adversary Models

When doing worst-case analysis of online, we assume that
there is an adversary who is generating a request sequence
in order to make algorithm perform as poorly as possible.
Adversary is powerful – knows your algorithm!

In analyzing randomized online algs, we have 3 choices:

Oblivious adversary: adversary generates request
sequence at start. I.e., cannot see action of algorithm or
random choices. Adversary serves offline.
Adaptive online adversary: adversary generates request
sequence adaptively (online). I.e., can see action, but not
random choices. Adversary serves online
Adaptive oine adversary: adversary generates request
sequence adaptively, and knows the result of the coin
tosses. Adversary serves offline

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Adversary Models

When doing worst-case analysis of online, we assume that
there is an adversary who is generating a request sequence
in order to make algorithm perform as poorly as possible.
Adversary is powerful – knows your algorithm!

In analyzing randomized online algs, we have 3 choices:

Oblivious adversary: adversary generates request
sequence at start. I.e.,

cannot see action of algorithm or
random choices. Adversary serves offline.
Adaptive online adversary: adversary generates request
sequence adaptively (online). I.e., can see action, but not
random choices. Adversary serves online
Adaptive oine adversary: adversary generates request
sequence adaptively, and knows the result of the coin
tosses. Adversary serves offline

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Adversary Models

When doing worst-case analysis of online, we assume that
there is an adversary who is generating a request sequence
in order to make algorithm perform as poorly as possible.
Adversary is powerful – knows your algorithm!

In analyzing randomized online algs, we have 3 choices:

Oblivious adversary: adversary generates request
sequence at start. I.e., cannot see action of algorithm or
random choices.

Adversary serves offline.
Adaptive online adversary: adversary generates request
sequence adaptively (online). I.e., can see action, but not
random choices. Adversary serves online
Adaptive oine adversary: adversary generates request
sequence adaptively, and knows the result of the coin
tosses. Adversary serves offline

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Adversary Models

When doing worst-case analysis of online, we assume that
there is an adversary who is generating a request sequence
in order to make algorithm perform as poorly as possible.
Adversary is powerful – knows your algorithm!

In analyzing randomized online algs, we have 3 choices:

Oblivious adversary: adversary generates request
sequence at start. I.e., cannot see action of algorithm or
random choices. Adversary serves offline.

Adaptive online adversary: adversary generates request
sequence adaptively (online). I.e., can see action, but not
random choices. Adversary serves online
Adaptive oine adversary: adversary generates request
sequence adaptively, and knows the result of the coin
tosses. Adversary serves offline

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Adversary Models

When doing worst-case analysis of online, we assume that
there is an adversary who is generating a request sequence
in order to make algorithm perform as poorly as possible.
Adversary is powerful – knows your algorithm!

In analyzing randomized online algs, we have 3 choices:

Oblivious adversary: adversary generates request
sequence at start. I.e., cannot see action of algorithm or
random choices. Adversary serves offline.
Adaptive online adversary: adversary generates request
sequence adaptively (online). I.e.,

can see action, but not
random choices. Adversary serves online
Adaptive oine adversary: adversary generates request
sequence adaptively, and knows the result of the coin
tosses. Adversary serves offline

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Adversary Models

When doing worst-case analysis of online, we assume that
there is an adversary who is generating a request sequence
in order to make algorithm perform as poorly as possible.
Adversary is powerful – knows your algorithm!

In analyzing randomized online algs, we have 3 choices:

Oblivious adversary: adversary generates request
sequence at start. I.e., cannot see action of algorithm or
random choices. Adversary serves offline.
Adaptive online adversary: adversary generates request
sequence adaptively (online). I.e., can see action, but not
random choices. Adversary serves online

Adaptive oine adversary: adversary generates request
sequence adaptively, and knows the result of the coin
tosses. Adversary serves offline

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Adversary Models

When doing worst-case analysis of online, we assume that
there is an adversary who is generating a request sequence
in order to make algorithm perform as poorly as possible.
Adversary is powerful – knows your algorithm!

In analyzing randomized online algs, we have 3 choices:

Oblivious adversary: adversary generates request
sequence at start. I.e., cannot see action of algorithm or
random choices. Adversary serves offline.
Adaptive online adversary: adversary generates request
sequence adaptively (online). I.e., can see action, but not
random choices. Adversary serves online
Adaptive oine adversary: adversary generates request
sequence adaptively, and knows the result of the coin
tosses.

Adversary serves offline

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Adversary Models

When doing worst-case analysis of online, we assume that
there is an adversary who is generating a request sequence
in order to make algorithm perform as poorly as possible.
Adversary is powerful – knows your algorithm!

In analyzing randomized online algs, we have 3 choices:

Oblivious adversary: adversary generates request
sequence at start. I.e., cannot see action of algorithm or
random choices. Adversary serves offline.
Adaptive online adversary: adversary generates request
sequence adaptively (online). I.e., can see action, but not
random choices. Adversary serves online
Adaptive oine adversary: adversary generates request
sequence adaptively, and knows the result of the coin
tosses. Adversary serves offline

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Relationship between Adversary Models

∃ randomized c-competitive algorithm against adaptive
offline adversary =⇒

∃ deterministic c-competitive
algorithm.

∃ randomized c-competitive algorithm against adaptive
online adversary and ∃ d-competitive algorithm against
oblivious adversary =⇒ ∃ c · d-competitive algorithm
against any adaptive offline adversary.

∃ randomized c-competitive algorithm against adaptive
online adversary =⇒ ∃ deterministic c2-competitive
algorithm.

[Ben-David, Borodin, Karp, Tardos, Wigderson, Algorithmica,
1994]

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Relationship between Adversary Models

∃ randomized c-competitive algorithm against adaptive
offline adversary =⇒ ∃ deterministic c-competitive
algorithm.

∃ randomized c-competitive algorithm against adaptive
online adversary and ∃ d-competitive algorithm against
oblivious adversary =⇒ ∃ c · d-competitive algorithm
against any adaptive offline adversary.

∃ randomized c-competitive algorithm against adaptive
online adversary =⇒ ∃ deterministic c2-competitive
algorithm.

[Ben-David, Borodin, Karp, Tardos, Wigderson, Algorithmica,
1994]

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Relationship between Adversary Models

∃ randomized c-competitive algorithm against adaptive
offline adversary =⇒ ∃ deterministic c-competitive
algorithm.

∃ randomized c-competitive algorithm against adaptive
online adversary and

∃ d-competitive algorithm against
oblivious adversary =⇒ ∃ c · d-competitive algorithm
against any adaptive offline adversary.

∃ randomized c-competitive algorithm against adaptive
online adversary =⇒ ∃ deterministic c2-competitive
algorithm.

[Ben-David, Borodin, Karp, Tardos, Wigderson, Algorithmica,
1994]

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Relationship between Adversary Models

∃ randomized c-competitive algorithm against adaptive
offline adversary =⇒ ∃ deterministic c-competitive
algorithm.

∃ randomized c-competitive algorithm against adaptive
online adversary and ∃ d-competitive algorithm against
oblivious adversary =⇒

∃ c · d-competitive algorithm
against any adaptive offline adversary.

∃ randomized c-competitive algorithm against adaptive
online adversary =⇒ ∃ deterministic c2-competitive
algorithm.

[Ben-David, Borodin, Karp, Tardos, Wigderson, Algorithmica,
1994]

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Relationship between Adversary Models

∃ randomized c-competitive algorithm against adaptive
offline adversary =⇒ ∃ deterministic c-competitive
algorithm.

∃ randomized c-competitive algorithm against adaptive
online adversary and ∃ d-competitive algorithm against
oblivious adversary =⇒ ∃ c · d-competitive algorithm
against any adaptive offline adversary.

∃ randomized c-competitive algorithm against adaptive
online adversary =⇒ ∃ deterministic c2-competitive
algorithm.

[Ben-David, Borodin, Karp, Tardos, Wigderson, Algorithmica,
1994]

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Relationship between Adversary Models

∃ randomized c-competitive algorithm against adaptive
offline adversary =⇒ ∃ deterministic c-competitive
algorithm.

∃ randomized c-competitive algorithm against adaptive
online adversary and ∃ d-competitive algorithm against
oblivious adversary =⇒ ∃ c · d-competitive algorithm
against any adaptive offline adversary.

∃ randomized c-competitive algorithm against adaptive
online adversary =⇒

∃ deterministic c2-competitive
algorithm.

[Ben-David, Borodin, Karp, Tardos, Wigderson, Algorithmica,
1994]

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Relationship between Adversary Models

∃ randomized c-competitive algorithm against adaptive
offline adversary =⇒ ∃ deterministic c-competitive
algorithm.

∃ randomized c-competitive algorithm against adaptive
online adversary and ∃ d-competitive algorithm against
oblivious adversary =⇒ ∃ c · d-competitive algorithm
against any adaptive offline adversary.

∃ randomized c-competitive algorithm against adaptive
online adversary =⇒ ∃ deterministic c2-competitive
algorithm.

[Ben-David, Borodin, Karp, Tardos, Wigderson, Algorithmica,
1994]

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

Analyzing
Randomized
MARKER
Algorithm

Adversaries

Relationship between Adversary Models

∃ randomized c-competitive algorithm against adaptive
offline adversary =⇒ ∃ deterministic c-competitive
algorithm.

∃ randomized c-competitive algorithm against adaptive
online adversary and ∃ d-competitive algorithm against
oblivious adversary =⇒ ∃ c · d-competitive algorithm
against any adaptive offline adversary.

∃ randomized c-competitive algorithm against adaptive
online adversary =⇒ ∃ deterministic c2-competitive
algorithm.

[Ben-David, Borodin, Karp, Tardos, Wigderson, Algorithmica,
1994]

	Randomized Online Algorithms
	Randomized Cache Replacement Strategies
	Analyzing Randomized MARKER Algorithm
	Adversaries

