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How to Analyze (Randomized) Online Algorithms?

Online Algorithm A is α-competitive if there exists
constant b such that for every sequence of inputs σ:

COSTA(σ) ≤ α · COSTOPT (σ) + b

Randomized Online Algorithm A is α-competitive if there
exists constant b such that for every sequence of inputs σ:

E [COSTA(σ)] ≤ αCOSTOPT (σ) + b

Use Expected cost instead



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

Presentation Outline

1 Analyzing Randomized Online Algorithms

2 Randomized Cache Replacement Strategies

3 More Applications of Online Algorithms

4 k-Server Problem

5 Algorithms for k-Server Problem

6 Offline Algorithms



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

Randomized Algorithm

RANDOM Algorithm

On a miss: evict a random item from cache.

RANDOM is k-competitive

Randomized MARKER Algorithm

Each of k pages in cache has a MARKer bit

In each phase

If start of phase: UNMARK all pages
If request is a hit: MARK the page
If request is a miss:

1 Replace random UNMARKed page; MARK new page;
2 If all pages MARKed, start new round; UNMARK all pgs;

MARKER algorithm is 2Hk -competitive.

Lower Bound for Randomized Algorithm = Hk
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Adversary Models

In analyzing randomized online algs, we have 3 choices:

Oblivious adversary: adversary generates request
sequence at start. I.e., cannot see action of algorithm or
random choices. Adversary serves offline.
Adaptive online adversary: adversary generates request
sequence adaptively (online). I.e., can see action, but not
random choices. Adversary serves online
Adaptive oine adversary: adversary generates request
sequence adaptively, and knows the result of the coin
tosses. Adversary serves offline
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Load Balancing

We have a stream of m jobs to be assigned to one of n
processors as they arrive.

Centralized Algorithm, e.g., Round-Robin, can ensure that
each processor gets m/n jobs.

What if centralization is not possible? Randomization

Assign jobs uniformly at random to processors
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Randomized Load Balancing: Analysis

Yij = indicator random variable for the event: [job j is
assigned to processor i ].

E [Yij ] = 1/n.

Xi = random variable for: [number of jobs assigned to
processor i ]

E [Xi ] =
∑

j E [Yij ] = m/n

Prob[Xi > c] < ec−1/ec using Chernoff Bounds
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Randomized Load Balancing: Analysis (2)

Case m = n: With high probability (at least 1− 1/n), no
processor is assigned more than Θ(log n/ log log n) jobs

Case m = Ω(n log n): With high probability (at least
1− (1/n2)), every processor gets assigned between
m/(2n) and 2n/m jobs

As m increases, imbalance diminishes
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k-Server Problem

Given a matric space M = (V , d) on |V | = n points,
where the distance between any two vertices is given by
the distance function d(·, ·).

This is equivalent to a
weighted complete graph where weights satisfy triangle
inequality.
Given k servers that reside on k vertices from V .
Given a request sequence σ(t), t = 1, . . . where each
request specifies the vertex where the request is being
made.
In order to serve a request at vertex v ∈ V , if there is
server on v , then that server serves. A HIT
Otherwise, one of the k servers is moved to that vertex
and the request is served. A MISS
Need an online algorithm to decide which of k servers will
serve request, while minimizing total distance traveled by
servers.
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k-Server Problem: Applications

Paging / Caching

Weighted caching (e.g., fonts on a printer)

Two-headed disk drives
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k-Server Problem: Results

Lower Bound on competitiveness of k applies from before

Conjecture: Upper bound for competitiveness is k [MMS,
1990]
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k-Server Problem: Greedy Algorithm

Let the nearest server serve the request

It minimizes the cost of each individual request

How competitive is this algorithm?
What is the worst case scenario?

Conjecture: Upper bound for competitiveness is k [MMS,
1990]



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

k-Server Problem: Greedy Algorithm

Let the nearest server serve the request

It minimizes the cost of each individual request

How competitive is this algorithm?
What is the worst case scenario?

Conjecture: Upper bound for competitiveness is k [MMS,
1990]



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

k-Server Problem: Greedy Algorithm

Let the nearest server serve the request

It minimizes the cost of each individual request

How competitive is this algorithm?

What is the worst case scenario?

Conjecture: Upper bound for competitiveness is k [MMS,
1990]



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

k-Server Problem: Greedy Algorithm

Let the nearest server serve the request

It minimizes the cost of each individual request

How competitive is this algorithm?
What is the worst case scenario?

Conjecture: Upper bound for competitiveness is k [MMS,
1990]



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

k-Server Problem: Greedy Algorithm

Let the nearest server serve the request

It minimizes the cost of each individual request

How competitive is this algorithm?
What is the worst case scenario?

Conjecture: Upper bound for competitiveness is k [MMS,
1990]



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

Balance Algorithm

Choose a server that would have moved the minimum
total distance of any server

Takes care of previous bad example since eventually the
second server would be employed
Tends to use all servers equally
Can be shown to be k-competitive if k = n − 1
Can do poorly in other situations Meaning what?
Not 2-competitive for k = 2



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

Balance Algorithm

Choose a server that would have moved the minimum
total distance of any server

Takes care of previous bad example since eventually the
second server would be employed
Tends to use all servers equally
Can be shown to be k-competitive if k = n − 1
Can do poorly in other situations Meaning what?
Not 2-competitive for k = 2



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

Balance Algorithm

Choose a server that would have moved the minimum
total distance of any server

Takes care of previous bad example since eventually the
second server would be employed

Tends to use all servers equally
Can be shown to be k-competitive if k = n − 1
Can do poorly in other situations Meaning what?
Not 2-competitive for k = 2



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

Balance Algorithm

Choose a server that would have moved the minimum
total distance of any server

Takes care of previous bad example since eventually the
second server would be employed
Tends to use all servers equally

Can be shown to be k-competitive if k = n − 1
Can do poorly in other situations Meaning what?
Not 2-competitive for k = 2



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

Balance Algorithm

Choose a server that would have moved the minimum
total distance of any server

Takes care of previous bad example since eventually the
second server would be employed
Tends to use all servers equally
Can be shown to be k-competitive if k = n − 1

Can do poorly in other situations Meaning what?
Not 2-competitive for k = 2



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

Balance Algorithm

Choose a server that would have moved the minimum
total distance of any server

Takes care of previous bad example since eventually the
second server would be employed
Tends to use all servers equally
Can be shown to be k-competitive if k = n − 1
Can do poorly in other situations

Meaning what?
Not 2-competitive for k = 2



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

Balance Algorithm

Choose a server that would have moved the minimum
total distance of any server

Takes care of previous bad example since eventually the
second server would be employed
Tends to use all servers equally
Can be shown to be k-competitive if k = n − 1
Can do poorly in other situations Meaning what?

Not 2-competitive for k = 2



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

Balance Algorithm

Choose a server that would have moved the minimum
total distance of any server

Takes care of previous bad example since eventually the
second server would be employed
Tends to use all servers equally
Can be shown to be k-competitive if k = n − 1
Can do poorly in other situations Meaning what?
Not 2-competitive for k = 2



COT 6936:
Topics in

Algorithms

Giri
Narasimhan

Analyzing
Randomized
Online
Algorithms

Randomized
Cache
Replacement
Strategies

More
Applications
of Online
Algorithms

k-Server
Problem

Algorithms for
k-Server
Problem

Offline
Algorithms

Residues Algorithm

Define Residues as

Rc(σ, S) = c · COPT (sigma,S)− CA(σ)

Choose a server that has the least residues of any server.

RESIDUES is 2-competitive for k = 2.
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HARMONIC Algorithm

Natural, memoryless, randomized algorithm

Choose a server with probability inversely proportional to
its distance from request location

Expected to be α-competitive

k = 3: α = 317000

General k: α = O(k2k)
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WORK FUNCTION Algorithm

Assume that a new request r = σ(t) arrives

Let S be the current configuration of the servers.

Let xi be the location of server si

Serve the request by moving the server si that minimizes

w(Xi ) + d(xi , r),

where w(Xi ) is the minimal cost to serve a request and
end in confirguration Xi , and Xi = X − xi + r

WORK FUNCTION is (2k − 1)-competitive
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Points on a line,

circle, , tree

(2n − 1)-competitive algorithms exist
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1 Analyzing Randomized Online Algorithms

2 Randomized Cache Replacement Strategies

3 More Applications of Online Algorithms

4 k-Server Problem

5 Algorithms for k-Server Problem

6 Offline Algorithms
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Notation

Metric space M = (V , d) with n-point vertex set V and
distance function d(·, ·).

Configuration S ⊆ V with k vertices indicating location of
servers

Request Sequence: σ = {r1, . . . , } where ri ∈ V

Solutions: Sequence of configurations S0, S1, . . . ,

Cost of Algorithm A: DA(S0, σ) =
∑

t=1 D(St−1,St),
where the distance between configurations is given by the
cost of a minimum weight matching between the
configurations.

Analysis: Performance ratio is ρ if

DA(S0, σ) ≤ ρ · DOPT (S0, σ) + f (S0)
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OPT: Offline Algorithm

We only consider lazy moves, i.e., no unprovoked moves
are made.

Use dynamic programming

COPT (ε,S) =

{
0 if S = S0

undefined otherwise

COPT (σv ,S) =


minT COPT (σ,T )
+D(T ,S), if v is covered in S

undefined otherwise
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Open Problems

k-Server Conjecture: For every metric space, there exists
an algorithm for the k-server problem with competitive
ratio of k.

Randomized k-Server Conjecture: For every metric
space, there exists a randomized algorithm for the k-server
problem with competitive ratio of log k .
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