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Credits and Acknowledgments

Lecture slides are based on

1 A Tutorial by Minos Garofalakis, Johannes Gehreke, and
Rajeev Rastogi, VLDB 2002. You can see the original
slides at: http://www.cse.ust.hk/vldb2002/

program-info/tutorial-slides/T5garofalalis.pdf

2 Lecture slides by Rajeev Motwani, Stanford University, See
lecture15 or Handout 17 on “Streaming Data” from:
http://theory.stanford.edu/~rajeev/cs361.html

3 Notes by M. Muthukrishnan from:
http://www.cs.mcgill.ca/~denis/notes09.pdf

http://www.cse.ust.hk/vldb2002/program-info/tutorial-slides/T5garofalalis.pdf
http://www.cse.ust.hk/vldb2002/program-info/tutorial-slides/T5garofalalis.pdf
http://theory.stanford.edu/~rajeev/cs361.html
http://www.cs.mcgill.ca/~denis/notes09.pdf
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Applications

Network traffic monitoring

Telecommunication call detail records

Retail transaction; ATM transactions

Log records for web servers

Sensor network data

Financial market transactions data
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Constraints and Goals

Data appearing at a rapid rate

Massive volume

Process queries, mine patterns, compute statistics

Real time computations needed

Single pass: Allowed to see data only once

Limited memory to store processed data

Approximate answers and/or randomization may be
acceptable

Quick responses, i.e., short query time
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Big Data Sets

Examples of large persistent data sets

Walmart Transaction data (PBs)
Sloan Digital Sky Survey (100 TBs)
WWW (¿ Trillion pages)
CERN ( 40TB/sec)

Large Data Sets with time-sensitive data

Financial data (e.g. NASDAQ: 50K transactions/sec)
Credit Card usage traffic
Network Traffic: Telecommunications and ISP traffic
Sensor data
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Warm-up Problems

Average

Easy
Maintain sum and count of items

Standard Deviation

Not too hard ...

Count number of 1’s in window of size N in a bit stream

Store window itself: requires N bits
Can you do better?
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Find Missing Label

Packets labeled from set {1, . . . , n}

and arrive in random order.
Assume one packet is missing. Find label of missing packet.

Use bit vector of length n. Space used = O(n).

Improved Algorithm: Maintain sum of labels and subtract
from required sum of n(n + 1)/2. Space used = 2 log n

Optimal Algorithm:

Store parity sum of each bit of all numbers seen
Missing number = Final parity sum
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Find Missing Labels

Packets labeled from set {1, . . . , n} and arrive in random order.
Assume up to k packets missing.

Find labels of missing
packets.

Maintain k different functions of numbers seen.

Decoding: Not easy and needs factoring polynomials
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Network Traffic Monitoring

Monitor link bandwidth usage, estimate traffic demands

Quickly detect faults, congestion, and other causes

Load balancing, improved resource allocation

Detect anomalies in traffic, spikes, etc.
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Network Traffic Monitoring

IP session data (collected using Cisco NetFlow)

AT&T collects 100 GBs of NetFlow data each day
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Traffic Questions

See http://www.cs.fiu.edu/~giri/teach/6936/S14/

LecX1_StreamQuestions.pdf

http://www.cs.fiu.edu/~giri/teach/6936/S14/LecX1_StreamQuestions.pdf
http://www.cs.fiu.edu/~giri/teach/6936/S14/LecX1_StreamQuestions.pdf
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Network Traffic Monitoring

Traffic Volume Estimates

Volume between specific pairs of IP addresses?
Active IP addresses; top 100 active IP addresses
Avg durection and # of bytes per session

Anomaly/Fraud Detection and Security issues

Large volume or duration sessions
Sessions with spikes of traffic
IP addresses involved in long sessions

Deterministic vs Randomized Approaches

With limited memory, deterministic methods can only
compute approximate answers
Randomized methods compute approx answers w.h.p.
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Randomized Algorithms for Streaming Data

Sampling

Pick a random sample and apply query to it

Example: select func from R where R.e is odd

Data Stream, R:

9 3 5 2 7 1 6 5 8 4 9 1

Randomly sample:

9 3 5 2 7 1 6 5 8 4 9 1

Sample, S :

9 5 1 8

If func is avg, then return average of odd items in S , i.e., 5

If func is count, then return count of odd items in S ,
scaled for length of sequence, i.e., 3 ∗ (12/4) = 9
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How to guarantee error estimates of answers?

Tools for Tail Inequalities:

Let X be a r.v., µ = E [X ]

Markov inequality Pr(X ≥ ε) ≤ µ
ε

Chebyshev Inequality Pr(|X − µ| ≥ µε) ≤ Var [X ]
µ2ε2

Hoeffding inequality: Good for avg. Given r.v.
Xi ∈ [0..r ], i = 1, . . . ,m with mean X , and any ε > 0,

Pr(|X − µ|) ≥ ε) ≥ 2e−2me2/r2 .
Chernoff bound Good for counts. Given m independent
Bernoulli trials with Pr(Xi = 1) = p, and X =

∑
Xi , then

µ = mp = E [X ] and Pr(|X − µ| ≥ µε) ≤ 2e−µε
2/2.
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How to Sample

Reservoir Sampling [Waterman; See Vitter, ACM TOMS,
1985]

How to efficiently sample n items from a stream of N items
with O(1) space and in single pass when N is unknown?
Reservoir algorithms select sample of size ≥ n and then
generate sample of size n from it.
Add each new element to S with prob n/N, where N =
number of stream elements seen.
To evict, skip random number of items and replace item at
that location.



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Acknowledgments

Querying and
Mining Data
Streams

Warm-up
Problems

Network
Applications

Sampling

Synopses,
Histograms,
. . .

Systems

How to Sample

Reservoir Sampling [Waterman; See Vitter, ACM TOMS,
1985]

How to efficiently sample n items from a stream of N items
with O(1) space and in single pass when N is unknown?

Reservoir algorithms select sample of size ≥ n and then
generate sample of size n from it.
Add each new element to S with prob n/N, where N =
number of stream elements seen.
To evict, skip random number of items and replace item at
that location.



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Acknowledgments

Querying and
Mining Data
Streams

Warm-up
Problems

Network
Applications

Sampling

Synopses,
Histograms,
. . .

Systems

How to Sample

Reservoir Sampling [Waterman; See Vitter, ACM TOMS,
1985]

How to efficiently sample n items from a stream of N items
with O(1) space and in single pass when N is unknown?
Reservoir algorithms select sample of size ≥ n and then
generate sample of size n from it.

Add each new element to S with prob n/N, where N =
number of stream elements seen.
To evict, skip random number of items and replace item at
that location.



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Acknowledgments

Querying and
Mining Data
Streams

Warm-up
Problems

Network
Applications

Sampling

Synopses,
Histograms,
. . .

Systems

How to Sample

Reservoir Sampling [Waterman; See Vitter, ACM TOMS,
1985]

How to efficiently sample n items from a stream of N items
with O(1) space and in single pass when N is unknown?
Reservoir algorithms select sample of size ≥ n and then
generate sample of size n from it.
Add each new element to S with prob n/N, where N =
number of stream elements seen.

To evict, skip random number of items and replace item at
that location.



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Acknowledgments

Querying and
Mining Data
Streams

Warm-up
Problems

Network
Applications

Sampling

Synopses,
Histograms,
. . .

Systems

How to Sample

Reservoir Sampling [Waterman; See Vitter, ACM TOMS,
1985]

How to efficiently sample n items from a stream of N items
with O(1) space and in single pass when N is unknown?
Reservoir algorithms select sample of size ≥ n and then
generate sample of size n from it.
Add each new element to S with prob n/N, where N =
number of stream elements seen.
To evict, skip random number of items and replace item at
that location.



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Acknowledgments

Querying and
Mining Data
Streams

Warm-up
Problems

Network
Applications

Sampling

Synopses,
Histograms,
. . .

Systems

How to Sample

Reservoir Sampling [Waterman; See Vitter, ACM TOMS,
1985]

How to efficiently sample n items from a stream of N items
with O(1) space and in single pass when N is unknown?
Reservoir algorithms select sample of size ≥ n and then
generate sample of size n from it.
Add each new element to S with prob n/N, where N =
number of stream elements seen.
To evict, skip random number of items and replace item at
that location.



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Acknowledgments

Querying and
Mining Data
Streams

Warm-up
Problems

Network
Applications

Sampling

Synopses,
Histograms,
. . .

Systems

Presentation Outline

1 Acknowledgments

2 Querying and Mining Data Streams

3 Warm-up Problems

4 Network Applications

5 Sampling

6 Synopses, Histograms, . . .

7 Systems



COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Acknowledgments

Querying and
Mining Data
Streams

Warm-up
Problems

Network
Applications

Sampling

Synopses,
Histograms,
. . .

Systems

Synopses using Probabilistic Counting

To compute k most frequent values:

Also called Top-k ,
Hotlist, Most popular list, etc.

Adversary model can always force wrong answers

Footprint refers to amount of memory used; Larger
footprint, greater accuracy; Footprint assumed to be
bounded

Let T be estimated frequency of least frequent item in
Hotlist

Add new item to S with probability 1/T .

Of T occurrences of an item, at least one will get on
sample

For x ∈ S , EstimatedFreq(x) = Count(x) + 0.418 · T
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Synopses using Concise Sampling

To compute k most frequent values:

Store sample S as a set of 〈value, count〉 pairs

For item si , if si ∈ S , increment its count; Otherwise, add
to S with probability 1/T .

If size of sample exceeds M, select new threshold T ′ > T ;

Goal: Evict each of M items with prob T/T ′, with
preference to lower count items
For each value (with count C ) in S , decrement count in
repeated tries until C tries or a try in which count is not
decremented;
First try, decrement count with probability 1− T/T ;
Subsequent tries, decrement count with probability
1− 1/T ;

Subject subsequent items to higher threshold T ′

For x ∈ S , EstimatedFreq(x) = Count(x) + 0.418 · T
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to S with probability 1/T .

If size of sample exceeds M, select new threshold T ′ > T ;
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to S with probability 1/T .
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decremented;
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For item si , if si ∈ S , increment its count; Otherwise, add
to S with probability 1/T .

If size of sample exceeds M, select new threshold T ′ > T ;

Goal: Evict each of M items with prob T/T ′, with
preference to lower count items

For each value (with count C ) in S , decrement count in
repeated tries until C tries or a try in which count is not
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First try, decrement count with probability 1− T/T ;
Subsequent tries, decrement count with probability
1− 1/T ;
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For x ∈ S , EstimatedFreq(x) = Count(x) + 0.418 · T
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to S with probability 1/T .
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Goal: Evict each of M items with prob T/T ′, with
preference to lower count items
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Store sample S as a set of 〈value, count〉 pairs

For item si , if si ∈ S , increment its count; Otherwise, add
to S with probability 1/T .

If size of sample exceeds M, select new threshold T ′ > T ;

Goal: Evict each of M items with prob T/T ′, with
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COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Acknowledgments

Querying and
Mining Data
Streams

Warm-up
Problems

Network
Applications

Sampling

Synopses,
Histograms,
. . .

Systems

Synopses using Concise Sampling

To compute k most frequent values:

Store sample S as a set of 〈value, count〉 pairs

For item si , if si ∈ S , increment its count; Otherwise, add
to S with probability 1/T .
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For item si , if si ∈ S , increment its count; Otherwise, add
to S with probability 1/T .
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How do we compute the frequency distribution of element
values in a stream?

Histograms are basically approximate frequency
distributions

Histograms involve partitioning the range of values into
buckets and keeping track of counts in each bucket

How do we compute histograms? approximate quantiles?

Algorithms exist to compute items with rank (φ± ε)n
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Stream Processing Systems

Systems: Aurora (Brandies, Brown, MIT); NIagara
(Wisconsin); STREAM (Stanford); Telegraph (Berkeley);
Gigascope, Hancock, Tangram, Tapestry, Telegraph,
Tribeca, . . .

System Architectures, Query Languages, Algorithms, . . .
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