COT 6936: Topics in Algorithms

Giri Narasimhar

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Application

Sampling

Synopses, Histograms

Systems

COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2474; Phone x3748; Email: giri@cs.fiu.edu HOMEPAGE: http://www.cs.fiu.edu/~giri https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

Mar 18, 2014

Presentation Outline

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgmen

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

1 Acknowledgments

Querying and Mining Data Streams

3 Warm-up Problems

4 Network Applications

5 Sampling

6 Synopses, Histograms, ...

7 Systems

◆□ → < 個 → < 目 → < 目 → ○ < ○</p>

Credits and Acknowledgments

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgmen

- Querying and Mining Data Streams
- Warm-up Problems
- Network Applications
- Sampling
- Synopses, Histograms
- Systems

Lecture slides are based on

- A Tutorial by Minos Garofalakis, Johannes Gehreke, and Rajeev Rastogi, VLDB 2002. You can see the original slides at: http://www.cse.ust.hk/vldb2002/ program-info/tutorial-slides/T5garofalalis.pdf
- Lecture slides by Rajeev Motwani, Stanford University, See lecture15 or Handout 17 on "Streaming Data" from: http://theory.stanford.edu/~rajeev/cs361.html
- **3** Notes by M. Muthukrishnan from:

http://www.cs.mcgill.ca/~denis/notes09.pdf

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Presentation Outline

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Application

Sampling

Synopses, Histograms

Systems

Acknowledgments

2 Querying and Mining Data Streams

B Warm-up Problems

Network Applications

5 Sampling

6 Synopses, Histograms, ...

7 Systems

	Applications
COT 6936: Topics in Algorithms Giri Narasimhan	
Acknowledgmen Querying and Mining Data Streams	 Network traffic monitoring
Varm-up Problems	
Vetwork Applications	
Sampling	
Synopses, Histograms, 	
Systems	

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Network traffic monitoring

Telecommunication call detail records

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

- Network traffic monitoring
- Telecommunication call detail records
- Retail transaction; ATM transactions

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

- Network traffic monitoring
- Telecommunication call detail records
- Retail transaction; ATM transactions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Log records for web servers

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

- Network traffic monitoring
- Telecommunication call detail records
- Retail transaction; ATM transactions

- Log records for web servers
- Sensor network data

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

- Network traffic monitoring
- Telecommunication call detail records
- Retail transaction; ATM transactions
- Log records for web servers
- Sensor network data
- Financial market transactions data

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Data appearing at a rapid rate

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Data appearing at a rapid rate

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Massive volume

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

- Data appearing at a rapid rate
- Massive volume
- Process queries, mine patterns, compute statistics

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

- Data appearing at a rapid rate
- Massive volume
- Process queries, mine patterns, compute statistics

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Real time computations needed

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

- Data appearing at a rapid rate
- Massive volume
- Process queries, mine patterns, compute statistics

- Real time computations needed
- Single pass: Allowed to see data only once

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

- Data appearing at a rapid rate
- Massive volume
- Process queries, mine patterns, compute statistics

- Real time computations needed
- Single pass: Allowed to see data only once
- Limited memory to store processed data

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

- Data appearing at a rapid rate
- Massive volume
- Process queries, mine patterns, compute statistics
- Real time computations needed
- Single pass: Allowed to see data only once
- Limited memory to store processed data
- Approximate answers and/or randomization may be acceptable

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

- Data appearing at a rapid rate
- Massive volume
- Process queries, mine patterns, compute statistics
- Real time computations needed
- Single pass: Allowed to see data only once
- Limited memory to store processed data
- Approximate answers and/or randomization may be acceptable

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Quick responses, i.e., short query time

Big	Data	Sets
-----	------	------

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Examples of large persistent data sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Big Data Sets

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Examples of large persistent data sets

Walmart Transaction data (PBs)

Sloan Digital Sky Survey (100 TBs)

WWW (¿ Trillion pages)

CERN (40TB/sec)

Large Data Sets with time-sensitive data

Big Data Sets

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

- Synopses, Histograms
- Systems

- Examples of large persistent data sets
 - Walmart Transaction data (PBs)
 - Sloan Digital Sky Survey (100 TBs)
 - WWW (¿ Trillion pages)
 - CERN (40TB/sec)
- Large Data Sets with time-sensitive data
 - Financial data (e.g. NASDAQ: 50K transactions/sec)
 - Credit Card usage traffic
 - Network Traffic: Telecommunications and ISP traffic

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Sensor data

Presentation Outline

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

1 Acknowledgments

Querying and Mining Data Streams

3 Warm-up Problems

4 Network Applications

5 Sampling

6 Synopses, Histograms, ...

7 Systems

(ロ)、(型)、(E)、(E)、(E)、(O)()

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Average

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

€ 990

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Average

Easy

Maintain sum and count of items

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Average

- Easy
- Maintain sum and count of items

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Standard Deviation

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Average

- Easy
- Maintain sum and count of items

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Standard Deviation
 - Not too hard ...

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

Average

- Easy
- Maintain sum and count of items
- Standard Deviation
 - Not too hard ...
- Count number of 1's in window of size N in a bit stream

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Average

- Easy
- Maintain sum and count of items
- Standard Deviation
 - Not too hard ...
- Count number of 1's in window of size N in a bit stream

- Store window itself: requires *N* bits
- Can you do better?

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Packets labeled from set $\{1,\ldots,n\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Packets labeled from set $\{1,\ldots,n\}$ and arrive in random order.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

Packets labeled from set $\{1, \ldots, n\}$ and arrive in random order. Assume one packet is missing.

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Packets labeled from set $\{1, ..., n\}$ and arrive in random order. Assume one packet is missing. Find label of missing packet.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Use bit vector of length *n*.

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Packets labeled from set $\{1, ..., n\}$ and arrive in random order. Assume one packet is missing. Find label of missing packet.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Use bit vector of length *n*. Space used = O(n).

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

Packets labeled from set $\{1, ..., n\}$ and arrive in random order. Assume one packet is missing. Find label of missing packet.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Use bit vector of length *n*. Space used = O(n).

Improved Algorithm:

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

Packets labeled from set $\{1, ..., n\}$ and arrive in random order. Assume one packet is missing. Find label of missing packet.

- Use bit vector of length *n*. Space used = O(n).
- Improved Algorithm: Maintain sum of labels
COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Packets labeled from set $\{1, ..., n\}$ and arrive in random order. Assume one packet is missing. Find label of missing packet.

• Use bit vector of length *n*. Space used = O(n).

■ Improved Algorithm: Maintain sum of labels and subtract from required sum of n(n + 1)/2.

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Packets labeled from set $\{1, ..., n\}$ and arrive in random order. Assume one packet is missing. Find label of missing packet.

• Use bit vector of length *n*. Space used = O(n).

■ Improved Algorithm: Maintain sum of labels and subtract from required sum of n(n + 1)/2. Space used = $2 \log n$

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Packets labeled from set $\{1, ..., n\}$ and arrive in random order. Assume one packet is missing. Find label of missing packet.

• Use bit vector of length *n*. Space used = O(n).

■ Improved Algorithm: Maintain sum of labels and subtract from required sum of n(n+1)/2. Space used = $2 \log n$

Optimal Algorithm:

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Packets labeled from set $\{1, ..., n\}$ and arrive in random order. Assume one packet is missing. Find label of missing packet.

• Use bit vector of length *n*. Space used = O(n).

■ Improved Algorithm: Maintain sum of labels and subtract from required sum of n(n+1)/2. Space used = $2 \log n$

- Optimal Algorithm:
 - Store parity sum of each bit of all numbers seen

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

Packets labeled from set $\{1, ..., n\}$ and arrive in random order. Assume one packet is missing. Find label of missing packet.

- Use bit vector of length *n*. Space used = O(n).
- Improved Algorithm: Maintain sum of labels and subtract from required sum of n(n+1)/2. Space used = $2 \log n$

- Optimal Algorithm:
 - Store parity sum of each bit of all numbers seen
 - Missing number = Final parity sum

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Packets labeled from set $\{1, \ldots, n\}$ and arrive in random order. Assume up to k packets missing.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Packets labeled from set $\{1, ..., n\}$ and arrive in random order. Assume up to k packets missing. Find labels of missing packets.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Maintain k different functions of numbers seen.

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

Packets labeled from set $\{1, \ldots, n\}$ and arrive in random order. Assume up to k packets missing. Find labels of missing packets.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Maintain k different functions of numbers seen.
- Decoding:

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

Packets labeled from set $\{1, \ldots, n\}$ and arrive in random order. Assume up to k packets missing. Find labels of missing packets.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Maintain k different functions of numbers seen.
- Decoding: Not easy

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

Packets labeled from set $\{1, ..., n\}$ and arrive in random order. Assume up to k packets missing. Find labels of missing packets.

- Maintain k different functions of numbers seen.
- Decoding: Not easy and needs factoring polynomials

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

Packets labeled from set $\{1, ..., n\}$ and arrive in random order. Assume up to k packets missing. Find labels of missing packets.

- Maintain k different functions of numbers seen.
- Decoding: Not easy and needs factoring polynomials

Presentation Outline

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

1 Acknowledgments

Querying and Mining Data Streams

B Warm-up Problems

4 Network Applications

5 Sampling

6 Synopses, Histograms, ...

7 Systems

(ロ)、(型)、(E)、(E)、 E) のQの

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Monitor link bandwidth usage, estimate traffic demands

- Quickly detect faults, congestion, and other causes
- Load balancing, improved resource allocation
- Detect anomalies in traffic, spikes, etc.

COT 6936: Topics in Algorithms

Giri Narasimhan

IP session data (collected using Cisco NetFlow)

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Source	Destination	Duration	Bytes	Protocol
10.1.0.2	16.2.3.7	12	20K	http
18.6.7.1	12.4.0.3	16	24K	http
13.9.4.3	11.6.8.2	15	20K	http
15.2.2.9	17.1.2.1	19	40K	http
12.4.3.8	14.8.7.4	26	58K	http
10.5.1.3	13.0.0.1	27	100K	ftp
11.1.0.6	10.3.4.5	32	300K	ftp
19.7.1.2	16.5.5.8	18	80K	ftp

■ AT&T collects 100 GBs of NetFlow data each day

イロト 不得 トイヨト イヨト

Traffic Questions

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

See http://www.cs.fiu.edu/~giri/teach/6936/S14/ LecX1_StreamQuestions.pdf

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Traffic Volume Estimates

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

Traffic Volume Estimates

- Volume between specific pairs of IP addresses?
- Active IP addresses; top 100 active IP addresses

- Avg durection and # of bytes per session
- Anomaly/Fraud Detection and Security issues

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

Traffic Volume Estimates

- Volume between specific pairs of IP addresses?
- Active IP addresses; top 100 active IP addresses

- Avg durection and # of bytes per session
- Anomaly/Fraud Detection and Security issues
 - Large volume or duration sessions
 - Sessions with spikes of traffic
 - IP addresses involved in long sessions
- Deterministic vs Randomized Approaches

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

Traffic Volume Estimates

- Volume between specific pairs of IP addresses?
- Active IP addresses; top 100 active IP addresses
- Avg durection and # of bytes per session
- Anomaly/Fraud Detection and Security issues
 - Large volume or duration sessions
 - Sessions with spikes of traffic
 - IP addresses involved in long sessions
- Deterministic vs Randomized Approaches
 - With limited memory, deterministic methods can only compute approximate answers
 - Randomized methods compute approx answers w.h.p.

Presentation Outline

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Acknowledgments

Querying and Mining Data Streams

イロト 不得 トイヨト イヨト

э

3 Warm-up Problems

Network Applications

5 Sampling

6 Synopses, Histograms, ...

7 Systems

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Sampling

COT 6936: Topics in Algorithms

Giri

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Sampling

Pick a random sample and apply query to it

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Sampling

Pick a random sample and apply query to it

• Example: select func from R where R.e is odd

COT 6936: Topics in Algorithms

Acknowledgments

Sampling

- Pick a random sample and apply query to it
- Example: select func from R where R.e is odd
 - Data Stream, R:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Application

Sampling

Synopses, Histograms

Systems

COT 6936: Topics in Algorithms

Acknowledgments

Sampling

Sampling

- Pick a random sample and apply query to it
- Example: select func from R where R.e is odd
 - Data Stream, R:

Randomly sample:

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Sampling

- Pick a random sample and apply query to it
- Example: select func from R where R.e is odd
 - Data Stream, R:

Randomly sample:

Sample, S:

9 5	1	8
-----	---	---

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Sampling

- Pick a random sample and apply query to it
- Example: select func from R where R.e is odd
 - Data Stream, R:

Randomly sample:

Sample, S:

If func is avg,

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Sampling

- Pick a random sample and apply query to it
- Example: select func from R where R.e is odd
 - Data Stream, R:

Randomly sample:

■ Sample, *S*:

• If func is avg, then return average of odd items in S, i.e., 5

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Sampling

- Pick a random sample and apply query to it
- Example: select func from R where R.e is odd
 - Data Stream, R:

Randomly sample:

Sample, S:

If func is avg, then return average of odd items in S, i.e., 5
If func is count,

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Sampling

- Pick a random sample and apply query to it
- Example: select func from R where R.e is odd
 - Data Stream, R:

Randomly sample:

Sample, S:

- If func is avg, then return average of odd items in *S*, i.e., 5
- If func is count, then return count of odd items in S, scaled for length of sequence, i.e., 3 * (12/4) = 9

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Tools for Tail Inequalities:

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Tools for Tail Inequalities:

Let X be a r.v., $\mu = E[X]$ Markov inequality $Pr(X \ge \epsilon) \le \frac{\mu}{\epsilon}$

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Tools for Tail Inequalities:

- Let X be a r.v., $\mu = E[X]$
 - Markov inequality $Pr(X \ge \epsilon) \le \frac{\mu}{\epsilon}$
 - Chebyshev Inequality $Pr(|X \mu| \ge \mu\epsilon) \le \frac{Var[X]}{\mu^2\epsilon^2}$

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms . . .

Systems

Tools for Tail Inequalities:

- Let X be a r.v., $\mu = E[X]$
 - Markov inequality $Pr(X \ge \epsilon) \le \frac{\mu}{\epsilon}$
 - Chebyshev Inequality $Pr(|X \mu| \ge \mu\epsilon) \le \frac{Var[X]}{\mu^2\epsilon^2}$
 - Hoeffding inequality: Good for avg. Given r.v. $X_i \in [0..r], i = 1, ..., m$ with mean \overline{X} , and any $\epsilon > 0$, $Pr(|\overline{X} - \mu|) \ge \epsilon) \ge 2e^{-2me^2/r^2}$.

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Tools for Tail Inequalities:

- Let X be a r.v., $\mu = E[X]$
 - Markov inequality $Pr(X \ge \epsilon) \le \frac{\mu}{\epsilon}$
 - Chebyshev Inequality $Pr(|X \mu| \ge \mu\epsilon) \le \frac{Var[X]}{\mu^2\epsilon^2}$
 - Hoeffding inequality: Good for avg. Given r.v. $X_i \in [0..r], i = 1, ..., m$ with mean \overline{X} , and any $\epsilon > 0$, $Pr(|\overline{X} - \mu|) \ge \epsilon) \ge 2e^{-2me^2/r^2}$.
 - Chernoff bound Good for counts. Given *m* independent Bernoulli trials with $Pr(X_i = 1) = p$, and $X = \sum X_i$, then $\mu = mp = E[X]$ and $Pr(|X - \mu| \ge \mu\epsilon) \le 2e^{-\mu\epsilon^2/2}$.

How to Sample

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

Reservoir Sampling [Waterman; See Vitter, ACM TOMS, 1985]
COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

- Reservoir Sampling [Waterman; See Vitter, ACM TOMS, 1985]
 - How to efficiently sample n items from a stream of N items with O(1) space and in single pass when N is unknown?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

COT 6936: Topics in Algorithms

Giri Narasimhan

- Acknowledgments
- Querying and Mining Data Streams
- Warm-up Problems
- Network Applications

Sampling

- Synopses, Histograms
- Systems

- Reservoir Sampling [Waterman; See Vitter, ACM TOMS, 1985]
 - How to efficiently sample n items from a stream of N items with O(1) space and in single pass when N is unknown?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

■ Reservoir algorithms select sample of size ≥ *n* and then generate sample of size *n* from it.

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

- Reservoir Sampling [Waterman; See Vitter, ACM TOMS, 1985]
 - How to efficiently sample n items from a stream of N items with O(1) space and in single pass when N is unknown?
 - Reservoir algorithms select sample of size ≥ *n* and then generate sample of size *n* from it.
 - Add each new element to S with prob n/N, where N = number of stream elements seen.

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

- Reservoir Sampling [Waterman; See Vitter, ACM TOMS, 1985]
 - How to efficiently sample n items from a stream of N items with O(1) space and in single pass when N is unknown?
 - Reservoir algorithms select sample of size ≥ *n* and then generate sample of size *n* from it.
 - Add each new element to S with prob n/N, where N = number of stream elements seen.
 - To *evict*, skip random number of items and replace item at that location.

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

- Reservoir Sampling [Waterman; See Vitter, ACM TOMS, 1985]
 - How to efficiently sample n items from a stream of N items with O(1) space and in single pass when N is unknown?
 - Reservoir algorithms select sample of size ≥ *n* and then generate sample of size *n* from it.
 - Add each new element to S with prob n/N, where N = number of stream elements seen.
 - To *evict*, skip random number of items and replace item at that location.

Presentation Outline

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms, . . .

Systems

Acknowledgments

Querying and Mining Data Streams

イロト 不得 トイヨト イヨト

3

3 Warm-up Problems

4 Network Applications

5 Sampling

6 Synopses, Histograms, ...

7 Systems

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute *k* most frequent values:

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute k **most frequent values**: Also called Top-k, Hotlist, Most popular list, etc.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Adversary model can always force wrong answers

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute k **most frequent values**: Also called Top-k, Hotlist, Most popular list, etc.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Adversary model can always force wrong answers
- Footprint refers to amount of memory used;

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute k **most frequent values**: Also called Top-k, Hotlist, Most popular list, etc.

- Adversary model can always force wrong answers
- Footprint refers to amount of memory used; Larger footprint, greater accuracy;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute k **most frequent values**: Also called Top-k, Hotlist, Most popular list, etc.

- Adversary model can always force wrong answers
- Footprint refers to amount of memory used; Larger footprint, greater accuracy; Footprint assumed to be bounded

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute k **most frequent values**: Also called Top-k, Hotlist, Most popular list, etc.

- Adversary model can always force wrong answers
- Footprint refers to amount of memory used; Larger footprint, greater accuracy; Footprint assumed to be bounded
- Let T be estimated frequency of least frequent item in Hotlist

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute k **most frequent values**: Also called Top-k, Hotlist, Most popular list, etc.

- Adversary model can always force wrong answers
- Footprint refers to amount of memory used; Larger footprint, greater accuracy; Footprint assumed to be bounded
- Let T be estimated frequency of least frequent item in Hotlist

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Add new item to S with probability 1/T.

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms, . . .

Systems

To compute k **most frequent values**: Also called Top-k, Hotlist, Most popular list, etc.

- Adversary model can always force wrong answers
- Footprint refers to amount of memory used; Larger footprint, greater accuracy; Footprint assumed to be bounded
- Let T be estimated frequency of least frequent item in Hotlist
- Add new item to S with probability 1/T.
- Of T occurrences of an item, at least one will get on sample

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For $x \in S$, EstimatedFreq $(x) = Count(x) + 0.418 \cdot T$

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute *k* most frequent values:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute *k* most frequent values:

■ Store sample *S* as a set of ⟨value, count⟩ pairs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute *k* most frequent values:

■ Store sample *S* as a set of ⟨value, count⟩ pairs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• For item s_i , if $s_i \in S$, increment its count;

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute *k* most frequent values:

- Store sample *S* as a set of ⟨value, count⟩ pairs
- For item s_i , if $s_i \in S$, increment its count; Otherwise, add to S with probability 1/T.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute *k* most frequent values:

- Store sample S as a set of $\langle value, count \rangle$ pairs
- For item s_i , if $s_i \in S$, increment its count; Otherwise, add to S with probability 1/T.
- If size of sample exceeds M, select new threshold T' > T;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute *k* most frequent values:

- Store sample S as a set of $\langle value, count \rangle$ pairs
- For item s_i , if $s_i \in S$, increment its count; Otherwise, add to S with probability 1/T.
- If size of sample exceeds M, select new threshold T' > T;

■ Goal: Evict each of *M* items with prob *T*/*T*′, with preference to lower count items

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute *k* most frequent values:

- Store sample S as a set of $\langle value, count \rangle$ pairs
- For item s_i , if $s_i \in S$, increment its count; Otherwise, add to S with probability 1/T.
- If size of sample exceeds M, select new threshold T' > T;
 - Goal: Evict each of *M* items with prob *T*/*T*′, with preference to lower count items
 - For each value (with count C) in S, decrement count in repeated tries until C tries or a try in which count is not decremented;

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute *k* most frequent values:

- Store sample S as a set of $\langle value, count \rangle$ pairs
- For item s_i , if $s_i \in S$, increment its count; Otherwise, add to S with probability 1/T.
- If size of sample exceeds M, select new threshold T' > T;
 - Goal: Evict each of *M* items with prob *T*/*T*′, with preference to lower count items
 - For each value (with count C) in S, decrement count in repeated tries until C tries or a try in which count is not decremented;

First try, decrement count with probability 1 - T/T;

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute *k* most frequent values:

- Store sample S as a set of $\langle value, count \rangle$ pairs
- For item s_i , if $s_i \in S$, increment its count; Otherwise, add to S with probability 1/T.
- If size of sample exceeds M, select new threshold T' > T;
 - Goal: Evict each of *M* items with prob *T*/*T*′, with preference to lower count items
 - For each value (with count C) in S, decrement count in repeated tries until C tries or a try in which count is not decremented;
 - First try, decrement count with probability 1 T/T; Subsequent tries, decrement count with probability 1 - 1/T;

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute *k* most frequent values:

- Store sample S as a set of $\langle value, count \rangle$ pairs
- For item s_i , if $s_i \in S$, increment its count; Otherwise, add to S with probability 1/T.
- If size of sample exceeds M, select new threshold T' > T;
 - Goal: Evict each of *M* items with prob *T*/*T*′, with preference to lower count items
 - For each value (with count C) in S, decrement count in repeated tries until C tries or a try in which count is not decremented;
 - First try, decrement count with probability 1 T/T; Subsequent tries, decrement count with probability 1 - 1/T;

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute *k* most frequent values:

- Store sample S as a set of $\langle value, count \rangle$ pairs
- For item s_i , if $s_i \in S$, increment its count; Otherwise, add to S with probability 1/T.
- If size of sample exceeds M, select new threshold T' > T;
 - Goal: Evict each of *M* items with prob *T*/*T*′, with preference to lower count items
 - For each value (with count C) in S, decrement count in repeated tries until C tries or a try in which count is not decremented;
 - First try, decrement count with probability 1 − T/T; Subsequent tries, decrement count with probability 1 − 1/T;

• Subject subsequent items to higher threshold T'

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

To compute *k* most frequent values:

- Store sample S as a set of $\langle value, count \rangle$ pairs
- For item s_i , if $s_i \in S$, increment its count; Otherwise, add to S with probability 1/T.
- If size of sample exceeds M, select new threshold T' > T;
 - Goal: Evict each of *M* items with prob *T*/*T*′, with preference to lower count items
 - For each value (with count C) in S, decrement count in repeated tries until C tries or a try in which count is not decremented;
 - First try, decrement count with probability 1 − T/T; Subsequent tries, decrement count with probability 1 − 1/T;
- Subject subsequent items to higher threshold T'For $x \in S$, EstimatedFreq $(x) = Count(x) + 0.418 \cdot T$

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

How do we compute the frequency distribution of element values in a stream?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

How do we compute the frequency distribution of element values in a stream?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Histograms are basically approximate frequency distributions

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

- How do we compute the frequency distribution of element values in a stream?
- Histograms are basically approximate frequency distributions
- Histograms involve partitioning the range of values into buckets and keeping track of counts in each bucket

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

- How do we compute the frequency distribution of element values in a stream?
- Histograms are basically approximate frequency distributions
- Histograms involve partitioning the range of values into buckets and keeping track of counts in each bucket

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

How do we compute histograms?

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

- How do we compute the frequency distribution of element values in a stream?
- Histograms are basically approximate frequency distributions
- Histograms involve partitioning the range of values into buckets and keeping track of counts in each bucket
- How do we compute histograms? approximate quantiles?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

- How do we compute the frequency distribution of element values in a stream?
- Histograms are basically approximate frequency distributions
- Histograms involve partitioning the range of values into buckets and keeping track of counts in each bucket
- How do we compute histograms? approximate quantiles?
 - Algorithms exist to compute items with rank $(\phi \pm \epsilon)n$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Computing Quantiles in Single Pass

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

Clustering from streaming data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Miscellaneous Problems

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

Clustering from streaming data

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Decision Trees

Miscellaneous Problems

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

Clustering from streaming data

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- Decision Trees
- Second Moments
COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

- Clustering from streaming data
- Decision Trees
- Second Moments
- Multi-dimensional Histograms

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

- Clustering from streaming data
- Decision Trees
- Second Moments
- Multi-dimensional Histograms
- Number of Distinct Values; Rarity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

- Clustering from streaming data
- Decision Trees
- Second Moments
- Multi-dimensional Histograms
- Number of Distinct Values; Rarity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Joins

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

- Clustering from streaming data
- Decision Trees
- Second Moments
- Multi-dimensional Histograms
- Number of Distinct Values; Rarity
- Joins
- Self-similarity, anomalies, long-range dependence

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms,

Systems

- Clustering from streaming data
- Decision Trees
- Second Moments
- Multi-dimensional Histograms
- Number of Distinct Values; Rarity
- Joins
- Self-similarity, anomalies, long-range dependence

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

...

Presentation Outline

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying an Mining Data Streams

Warm-up Problems

Network Application

Sampling

Synopses, Histograms

Systems

Acknowledgments

Querying and Mining Data Streams

イロト 不得 トイヨト イヨト

э

3 Warm-up Problems

4 Network Applications

5 Sampling

6 Synopses, Histograms, ...

7 Systems

Stream Processing Systems

COT 6936: Topics in Algorithms

Giri Narasimhan

Acknowledgments

Querying and Mining Data Streams

Warm-up Problems

Network Applications

Sampling

Synopses, Histograms

Systems

 Systems: Aurora (Brandies, Brown, MIT); Nlagara (Wisconsin); STREAM (Stanford); Telegraph (Berkeley); Gigascope, Hancock, Tangram, Tapestry, Telegraph, Tribeca, ...

System Architectures, Query Languages, Algorithms, ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <