## Introduction to Markov chains

Examples of Markov chains:

- Random walk on a line


HTTHTHTTT

## Introduction to Markov chains

Examples of Markov chains:

- Random walk on a graph



## Introduction to Markov chains

Examples of Markov chains:

- Random walk on a hypercube


Symmatric: prob. of moving from state $u$ to state $v$
$=$ prob. of moving from state $v$ to state $u$

## Introduction to Markov chains

Examples of Markov chains:

- Markov chain on graph colorings

\# colors is: 4



## Introduction to Markov chains

Examples of Markov chains:

- Markov chain on graph colorings



## Introduction to Markov chains

## Examples of Markov chains:

- Markov chain on graph colorings \#colors: 3
all yellow ares pububility $\frac{1}{9}$
if input graph has $n$ vertices, and we have $d$ colors,
how many possible colsings? up to $d^{n}$ colorings
exponential in $n$

\#vertices in
the original
graph $=n$
$\#$ colons $=d$


## Introduction to Markov chains

Examples of Markov chains:

- Markov chain on matchings of a graph

Definition of Markov chains

- State space $\Omega^{\lambda \text { the set }}$ of stares

- Transition matrix P, of size $|\Omega| x|\Omega|$
- $P(x, y)$ is the probability of getting from state $x$ to state $y$
$-\sum_{y 2 \Omega} P(x, y)=1 \quad$ a prob. disisituation

$$
\Omega=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}
$$

(Pis a stochastic morin)
if stuart in stale $u_{1}$, then pub. of being instal $u_{1}$ is $1_{1}$

$$
u_{j} \text { is } 0, j \in\{2,3,4\}
$$



$$
\begin{aligned}
& \text { initial disstibution in this case is }(1,0,0,0) \\
& \text { after } 1 \text { step of the MC } \quad(0,1,0,0) \\
& \text { end } \\
& \left(\frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}\right) \\
& 3 \text { rd } \\
& \left(0, \frac{1}{3}+\frac{1}{6}+\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right) \\
& =\left(0, \frac{2}{3}, \frac{1}{6}, \frac{1}{6}\right)
\end{aligned}
$$

This course: state space is finite

## Definition of Markov chains

- State space $\Omega$
- Transition matrix P, of size $|\Omega| x|\Omega|$

- $P(x, y)$ is the probability of getting from state $x$ to state $y$
$-\sum_{y 2 \Omega} P(x, y)=1 \quad$ appose, disisisution
(Piss stopostic matrix)

stacking in distribution

the next diswis, is G.P
This course: state space is finite

Definition of Markov chains
Example: frog on lily pads


$$
p=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

$\sigma=(1,0) \quad$ starting on the Lis lily pad
Ind $\sigma=\left(\frac{1}{2}, \frac{1}{2}\right)$

Definition of Markov chains
Stationary distribution $1 / 4$ (on states in $\Omega$ ):

$$
\begin{aligned}
& \pi \cdot P=\pi \\
& \sum_{x \in \Omega} \pi_{x}=1 \quad \text { (a distribution) }
\end{aligned}
$$

Example: frog with unfair coins

$$
p=\left(\begin{array}{cc}
t-p & p \\
q & 1-q
\end{array}\right)
$$


we ane looking for $\pi=\left(\pi_{1}, \pi_{2}\right)$ s.t. $\pi \cdot P=\pi$


$$
\left(\pi_{1}, \pi_{2}\right) \cdot P=(\underbrace{\left((1-p) \pi_{1}+q \pi_{2}\right.}_{\pi_{1}}, \underbrace{0 \cdot \pi_{1}+(1-q) \cdot \pi_{2}}_{\pi_{\pi_{2}}^{\prime}})
$$

Definition of Markov chains
Other examples:


$$
P=\left(\begin{array}{cccc}
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} & 0
\end{array}\right)
$$

is $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ stationary? YE3
if start in $(1,0,0,0)$, then

$$
\left.\begin{array}{l}
\left(0, \frac{1}{2}, 0, \frac{1}{2}\right) \\
\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right)
\end{array}\right)
$$


these stakes are redundant ; once we get to the right group of stake, then never come bade

## Definition of Markov chains

- aperiodic
$\forall x, y \in \Omega: \quad \operatorname{gcd}\left\{t \mid \quad p^{t}(x, y)>0\right\}=1$ quid $f_{x} x$ :


$$
\text { all original prob. scaled by } \frac{1}{2}
$$


$\rightarrow$ periodic
LAZY MC (LAZY variant

- irreducible there exists a sequence of transitions from every state $x$ to every state y

$$
\forall x, y \in \Omega: \quad \exists t \geqslant 0: \quad P^{t}(x, y)>0
$$

- ergodic: a MC that is both aperiodic and irreducible

Thm (3.6 in Jerrum): An ergodic MC has a unique stationary distribution. Moreover, it converges to it as time goes to 1.

## Gambler's Ruin

A gambler has $k$ dollars initially and bets on (fair) coin flips. If she guesses the coin flip: gets 1 dollar.
If not, loses 1 dollar.
Stops either when 0 or $n$ dollars.
Is it a Markov chain ?


How many bets until she stops playing?
What are the probabilities of 0 vs $n$ dollars?

Gambler's Ruin
Stationary distribution?

| stat. distr: | $\frac{1}{2}$ | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 |
|  | 0 | 1 | 2 | 3 |

not unique!
$(p, 0,0,0, \ldots, 0,1-p)$ is stationary for any $p \in[0,1]$

Gambler's Ruin
Starting with $k$ dollars, what is the probability of reaching $n$ ?
$\mathrm{P}_{l}$ - the probability of reaching n $($ not 0$)$ when starting with $l$ dollars $\frac{\mathrm{k}}{n}$

$$
\begin{aligned}
p_{n} & =1 \\
p_{0} & =0 \\
p_{l} & =\frac{1}{2} \cdot p_{l+1}+\frac{1}{2} \cdot p_{l-1} \quad \text { for } 1 \leq l \leq n-1 \\
& \uparrow_{\text {gassed }}^{\text {night }} \underset{\substack{\text { mot } \\
\text { night }}}{\uparrow}
\end{aligned}
$$

What is the probability of reaching 0 ? $\frac{n-k}{n}$

Gambler's Ruin

How many bets until 0 or $n$ ?
$f_{k}$ - expected \#steps to get to 0 or $n$, starting from $k$

$$
\begin{aligned}
& f_{0}=0 \\
& f_{n}=0 \\
& f_{l}=1+\frac{1}{2} \cdot f_{l+1}+\frac{1}{2} \cdot f_{l-1} \quad \text { for } \quad l \in\{1,2, \ldots, n-1\}
\end{aligned}
$$

$$
f_{\ell}=\ell(n-l)
$$

Coupon Collecting

- n coupons $\quad 1,2, \ldots, n$
- each time get a coupon at random, chosen from $1, \ldots, n$
(i.e., likely will get some coupons multiple times)
- how long to get all $n$ coupons?
notice: shat. distr: :
$(0,0,0, \ldots, 0,1)$
Is this a Markov chain?
Option 1:

$$
\begin{aligned}
& \Omega=P\left(\left\{, 2_{1}, \ldots, n\right\}\right) \\
& P\left(S_{1}, S_{2}\right)= \begin{cases}\frac{1}{n} & \text { powerset } \\
\frac{\left|S_{2}\right|}{n} & \text { if } \left.S_{1} \cup S_{1}=S_{2}\right\} \text {, a\& } S_{1} \\
0 & \text { olw }\end{cases}
\end{aligned}
$$

Option 2:

$$
\begin{aligned}
& \Omega=\{0,1, \ldots, n\} \\
& (\text { how many coupons have so far) } \\
& P(i, j)= \begin{cases}\frac{n-i}{n} & \text { if } j=i+1 \\
\frac{1}{n} & \text { if } i=j \\
0 & \text { olw }\end{cases}
\end{aligned}
$$



How long to get all $n$ coupons?
random variable for
$\tau=$ \# steps until collect all $n$ coupons
$\tau_{k}=$ random variable for
\#steps (of the MC) until collect $k$ distinct coupons

$$
\tau_{n}=\tau_{1}-\tau_{0}+\tau_{2}-\tau_{1}+\tau_{3}-\tau_{2}+\ldots+\tau_{n}-\tau_{n-1}
$$

WANT: $E[\tau]$
II

$$
E\left[\tau_{n}\right]
$$

notice $\tau_{0}=0$
(no steps to gat 0 compony)
$\tau_{k+1}-\tau_{k}=$ ramdomvar. steps needed after having $k$ coupons until| collecting $k+1$ coupons

$$
E\left[\tau_{n}\right]=E\left[\tau_{1}-\tau_{0}\right]+E\left[\tau_{2}-\tau_{1}\right]+\ldots+E\left[\tau_{n}-\tau_{n-1}\right] \quad \text { (linearity of expectation) }
$$

$$
E\left[\tau_{k+1}-\tau_{k}\right]=? \quad \frac{1}{\frac{n-k}{n}}=\frac{n}{n-k} \quad \text { (inhuitivicly, expect } \frac{1}{p} \text { attempts to make }
$$

$$
=\frac{n}{n-k} \text { see next slide }
$$ to see an event w. prob. $p$ to happen)

$$
E\left[\tau_{n}\right]=\frac{n}{n}+\frac{n}{n-1}+\frac{n}{n-2}+\ldots+\frac{n}{3}+\frac{n}{2}+\frac{n}{1}=n \sum_{l=1}^{n} \frac{1}{l} \sim n \cdot \underbrace{\log n}
$$

natural log (in)

How long to get all $n$ coupons?

$$
\text { let } p=\frac{n-k}{n}
$$

the prob. of getting the $(k+1)$-st coupon, having already collected $k$, after tying $l$ times and not succeeding $l-1$ times: $(1-p)^{l-1} \cdot p, p \cdot \frac{1}{p^{2}}=\frac{1}{p}$

$$
\begin{aligned}
E\left[\tau_{k+1}-\tau_{k}\right]= & \sum_{l=1}^{\infty}(1-p)^{l-1} \cdot p \cdot l=p \cdot \sum_{\ell=0}^{\infty} q^{\ell} \cdot(\ell+1)< \\
\sum_{l=0}^{\infty} q^{\ell} \cdot(\ell+1)= & q^{0}+q^{1}+q^{2}+q^{3}+\ldots . \\
& +q^{1}+q^{2}+q^{3}+\ldots \\
& +q^{2}+q^{3}+\ldots \\
& +q^{3}+\ldots \\
& +
\end{aligned} \quad \begin{aligned}
= & \frac{1}{1-q}=\frac{1}{p} \\
= & q \cdot \frac{1}{1-q}=\frac{q}{p} \\
= & q^{2} \cdot \frac{1}{1-q}=\frac{p^{2}}{p} \\
= & q^{3} \cdot \frac{1}{1-q}=\frac{q^{3}}{p}
\end{aligned}
$$

Coupon Collecting
Proposition:
Let $i$ be the random variable for the time needed to collect all $n$ coupons. Then,

$$
\operatorname{Pr}(i>d n \log n+c n e) \cdot e^{-c} .
$$

Let $A_{i}$ be the event that we have not collected the i-th coupon type within the fist $\lceil n \log n+c n\rceil$ steps.

$$
\begin{gathered}
\operatorname{Pr}(\tau>\lceil n \log n+c n\rceil)=\operatorname{Pr}\left(\begin{array}{c}
\text { Ii st. } \\
A_{i} \\
\lceil n \log n+c n\rceil \\
\vdots
\end{array} \tau\right.
\end{gathered}
$$

dort have all coupon types yet

$$
\begin{aligned}
\operatorname{Pr}\left(A_{i}\right) & \left.=\left(1-\frac{1}{n}\right)^{\lceil\ln \log n+c n]}\right) \\
= & n\left(1-\frac{1}{n}\right)^{[\log n+c n\rceil} \\
& \leq e^{-c}
\end{aligned}
$$

(recall Lon national

How many expected steps until we get to a random, state? (I.e., what is the mixing time?)
$\Omega=$ all bin, strings of laugh $n$
move: choose a random position $k \in\{1, \ldots, n\}$ flip $k$-th bit


Lazy: move: w. prob, $\frac{1}{2}$ do nothing
not aperiodic! else
now OK
Cergodic $\Rightarrow$ unique stationary

$$
\pi(s)=\frac{1}{2^{n}}
$$

verify: $\pi \cdot P=\pi$
 distr.)
chance of getting to $s_{1}$ assuming stating in every state wo prob, $\frac{1}{2^{n}}$ :

$$
n \cdot \frac{1}{2^{n}} \cdot \frac{1}{2 n}+\frac{1}{2^{n}} \cdot \frac{1}{2}=\frac{1}{2^{n}}
$$

Random Walk on a Hypercube
How many expected steps until we get to a random state? (I.e., what is the mixing time?)
rephrased MC step:
randomly choose a position $k \in\{1, \ldots, n\}$
w. prob. $\frac{1}{2}$ flip the k-th bit else do nothing

Meaning: after selecting $k$, the $k$-th bit will be random
after selecting all positions, all bits will be random
(ie. Coupon collector!)
Hence: need $\sim n \log n$ steps

