COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2474; Phone x3748; Email: giri@cs.fiu.edu HOMEPAGE: http://www.cs.fiu.edu/~giri
https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612
Mar 27, 2014

Presentation Outline

1 Spectral Methods

Source

■ Most of the material is from notes by Abhiram Ranade; http:
//www.cse.iitb.ac.in/~ranade/miscdocs/svd.pdf

Applications

COT 6936
Topics in
Algorithms
Giri
Narasimhan

■ Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

Applications

■ Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

- Search: Given a database of docs/images, find closest match to query

Applications

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Spectral
Methods

■ Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

- Search: Given a database of docs/images, find closest match to query
■ Clustering: Organize a database of docs/images into "clusters"

Applications

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Spectral
Methods

■ Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

- Search: Given a database of docs/images, find closest match to query
■ Clustering: Organize a database of docs/images into "clusters"
- Compression: useful for images

Applications

■ Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

- Search: Given a database of docs/images, find closest match to query
- Clustering: Organize a database of docs/images into "clusters"
- Compression: useful for images

■ Summarization: Find parts of document most representative of paragraph

Applications

■ Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

- Search: Given a database of docs/images, find closest match to query
■ Clustering: Organize a database of docs/images into "clusters"
- Compression: useful for images

■ Summarization: Find parts of document most representative of paragraph
■ Graph Partitioning: partition graph into dense subgraphs; useful in VLSI where densely connected parts will be laid out on a chip; also useful in divide-and-conquer algorithms.

Applications

■ Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

- Search: Given a database of docs/images, find closest match to query
- Clustering: Organize a database of docs/images into "clusters"
- Compression: useful for images

■ Summarization: Find parts of document most representative of paragraph
■ Graph Partitioning: partition graph into dense subgraphs; useful in VLSI where densely connected parts will be laid out on a chip; also useful in divide-and-conquer algorithms.
■ Random Walks: Markov Chain Mixing, Google Page Rank
■ Graph Connectivity, Coloring, ...

Common Theme

Given n points in m-dimensional space, typically given to us as an $n \times m$ matrix A, where the i-th row gives cooridinates of the i-th point.

Common Theme

Given n points in m-dimensional space, typically given to us as an $n \times m$ matrix A, where the i-th row gives cooridinates of the i-th point.
Question: Disocver structure, shape, correlations, patterns, ...

Common Theme

Given n points in m-dimensional space, typically given to us as an $n \times m$ matrix A, where the i-th row gives cooridinates of the i-th point.
Question: Disocver structure, shape, correlations, patterns, ... Examples:

Common Theme

Given n points in m-dimensional space, typically given to us as an $n \times m$ matrix A, where the i-th row gives cooridinates of the i-th point.
Question: Disocver structure, shape, correlations, patterns, ... Examples:

■ Images: $a_{i j}=$ grayscale value of j-th pixel in i-th image

Common Theme

Given n points in m-dimensional space, typically given to us as an $n \times m$ matrix A, where the i-th row gives cooridinates of the i-th point.
Question: Disocver structure, shape, correlations, patterns, ... Examples:

■ Images: $a_{i j}=$ grayscale value of j-th pixel in i-th image

- Documents: $a_{i j}=$ does document i contain term j

Common Theme

Given n points in m-dimensional space, typically given to us as an $n \times m$ matrix A, where the i-th row gives cooridinates of the i-th point.
Question: Disocver structure, shape, correlations, patterns, ... Examples:

■ Images: $a_{i j}=$ grayscale value of j-th pixel in i-th image

- Documents: $a_{i j}=$ does document i contain term j

■ Medical: $a_{i j}=$ measured parameter j for subject i

Common Theme

Given n points in m-dimensional space, typically given to us as an $n \times m$ matrix A, where the i-th row gives cooridinates of the i-th point.
Question: Disocver structure, shape, correlations, patterns, ... Examples:

■ Images: $a_{i j}=$ grayscale value of j-th pixel in i-th image

- Documents: $a_{i j}=$ does document i contain term j

■ Medical: $a_{i j}=$ measured parameter j for subject i Typical Solution: Rows (points) are in low-dimensional subspace (Rank r) plus some noise.

Common Theme

Given n points in m-dimensional space, typically given to us as an $n \times m$ matrix A, where the i-th row gives cooridinates of the i-th point.
Question: Disocver structure, shape, correlations, patterns, ... Examples:

■ Images: $a_{i j}=$ grayscale value of j-th pixel in i-th image

- Documents: $a_{i j}=$ does document i contain term j

■ Medical: $a_{i j}=$ measured parameter j for subject i
Typical Solution: Rows (points) are in low-dimensional subspace (Rank r) plus some noise. In other words,

$$
A=P T
$$

where P is a $n \times r$ matrix and T is a $r \times m$ matrix.

Geometric Interpretations

- 1-dimensional array with n items

Geometric Interpretations

- 1-dimensional array with n items
- Point in space

Geometric Interpretations

- 1-dimensional array with n items
- Point in space

Geometric Interpretations

■ 1-dimensional array with n items

- Point in space

- Vector

■ Matrix with n rows and m columns

Geometric Interpretations

■ 1-dimensional array with n items

- Point in space

- Vector
- Matrix with n rows and m columns
- n points in m-dimensional space

Geometric Interpretations

■ 1-dimensional array with n items

- Point in space

- Vector

■ Matrix with n rows and m columns

- n points in m-dimensional space
- More important interpretation ...

Geometric Interpretations

■ 1-dimensional array with n items

- Point in space

- Vector

■ Matrix with n rows and m columns

- n points in m-dimensional space
- More important interpretation ...

Geometric Interpretations ... 2

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

- Matrix with n rows and m columns

Geometric Interpretations ... 2

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

- Matrix with n rows and m columns

■ Linear transformations $\mathcal{R}^{m} \leftrightarrow \mathcal{R}^{n}$

Geometric Interpretations ... 2

- Matrix with n rows and m columns

■ Linear transformations $\mathcal{R}^{m} \leftrightarrow \mathcal{R}^{n}$

- Eigenvalues and Eigenvectors

Geometric Interpretations ... 2

- Matrix with n rows and m columns

■ Linear transformations $\mathcal{R}^{m} \leftrightarrow \mathcal{R}^{n}$

- Eigenvalues and Eigenvectors
- Solutions to equation $A x=\lambda x$

Geometric Interpretations ... 2

- Matrix with n rows and m columns

■ Linear transformations $\mathcal{R}^{m} \leftrightarrow \mathcal{R}^{n}$

- Eigenvalues and Eigenvectors
- Solutions to equation $A x=\lambda x$
- Under transformation A, an eigenvector does not change in direction, its magnitude changes by factor λ

Geometric Interpretations ... 2

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

- Matrix with n rows and m columns

■ Linear transformations $\mathcal{R}^{m} \leftrightarrow \mathcal{R}^{n}$

■ Eigenvalues and Eigenvectors

- Solutions to equation $A x=\lambda x$
- Under transformation A, an eigenvector does not change in direction, its magnitude changes by factor λ

Geometric Interpretations ... 2

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

- Matrix with n rows and m columns

■ Linear transformations $\mathcal{R}^{m} \leftrightarrow \mathcal{R}^{n}$

- Eigenvalues and Eigenvectors
- Solutions to equation $A x=\lambda x$
- Under transformation A, an eigenvector does not change in direction, its magnitude changes by factor λ

- Decomposition: $A=Q \wedge Q^{-1}$

Geometric Interpretations ... 3

■ First Singular Value and Singular Vector

Geometric Interpretations ... 3

■ First Singular Value and Singular Vector

- Under A, singular unit vector stretches the most

Geometric Interpretations ... 3

■ First Singular Value and Singular Vector

- Under A, singular unit vector stretches the most

$$
\max \left\|A v_{1}\right\|_{2}
$$

Geometric Interpretations ... 3

■ First Singular Value and Singular Vector

- Under A, singular unit vector stretches the most

$$
\max \left\|A v_{1}\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A\right\|_{2}
$$

Geometric Interpretations ... 3

■ First Singular Value and Singular Vector

- Under A, singular unit vector stretches the most

$$
\max \left\|A v_{1}\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A v_{1}\right\|_{2},
$$

Geometric Interpretations ... 3

■ First Singular Value and Singular Vector

- Under A, singular unit vector stretches the most

$$
\max \left\|A v_{1}\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A v_{1}\right\|_{2},
$$ implying that $A v_{1}$ is in the same direction as u_{1}

Geometric Interpretations ... 3

■ First Singular Value and Singular Vector

- Under A, singular unit vector stretches the most

$$
\max \left\|A v_{1}\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A v_{1}\right\|_{2},
$$

implying that $A v_{1}$ is in the same direction as u_{1} OR that $u_{1}^{T} A$ is in the same direction as v_{1}^{T}

Geometric Interpretations ... 3

- First Singular Value and Singular Vector

■ Under A, singular unit vector stretches the most

$$
\max \left\|A v_{1}\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A v_{1}\right\|_{2}
$$

implying that $A v_{1}$ is in the same direction as u_{1} OR that $u_{1}^{T} A$ is in the same direction as v_{1}^{T}
■ First singular value $\sigma_{1}=\left\|A v_{1}\right\|_{2}=\left\|u_{1}^{T} A\right\|_{2}$.

- Additional Singular vectors

Geometric Interpretations ... 3

- First Singular Value and Singular Vector

■ Under A, singular unit vector stretches the most

$$
\max \left\|A v_{1}\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A v_{1}\right\|_{2}
$$ implying that $A v_{1}$ is in the same direction as u_{1} OR that $u_{1}^{T} A$ is in the same direction as v_{1}^{T}

■ First singular value $\sigma_{1}=\left\|A v_{1}\right\|_{2}=\left\|u_{1}^{T} A\right\|_{2}$.

- Additional Singular vectors

■ $A_{1}=A v_{1} v_{1}^{T}=\sigma_{1} u_{1} v_{1}^{T}$ is of rank 1 and is the best rank 1 approximation to A

Geometric Interpretations ... 3

- First Singular Value and Singular Vector

■ Under A, singular unit vector stretches the most

$$
\max \left\|A v_{1}\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A v_{1}\right\|_{2}
$$ implying that $A v_{1}$ is in the same direction as u_{1} OR that $u_{1}^{T} A$ is in the same direction as v_{1}^{T}

$■$ First singular value $\sigma_{1}=\left\|A v_{1}\right\|_{2}=\left\|u_{1}^{T} A\right\|_{2}$.

- Additional Singular vectors

■ $A_{1}=A v_{1} v_{1}^{T}=\sigma_{1} u_{1} v_{1}^{T}$ is of rank 1 and is the best rank 1 approximation to A
■ If $A^{\prime}=A-A_{1}$, then computing u_{2}, v_{2}, σ_{2} will give us the second Singular vector and value, ...

Geometric Interpretations ... 3

- First Singular Value and Singular Vector

■ Under A, singular unit vector stretches the most

$$
\max \left\|A v_{1}\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A v_{1}\right\|_{2}
$$

implying that $A v_{1}$ is in the same direction as u_{1} OR that $u_{1}^{T} A$ is in the same direction as v_{1}^{T}
$■$ First singular value $\sigma_{1}=\left\|A v_{1}\right\|_{2}=\left\|u_{1}^{T} A\right\|_{2}$.

- Additional Singular vectors

■ $A_{1}=A v_{1} v_{1}^{T}=\sigma_{1} u_{1} v_{1}^{T}$ is of rank 1 and is the best rank 1 approximation to A
■ If $A^{\prime}=A-A_{1}$, then computing u_{2}, v_{2}, σ_{2} will give us the second Singular vector and value, ...
■ k-th singular vector is orthogonal to all previous ones

Geometric Interpretations ... 3

- First Singular Value and Singular Vector

■ Under A, singular unit vector stretches the most

$$
\max \left\|A v_{1}\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A v_{1}\right\|_{2}
$$

implying that $A v_{1}$ is in the same direction as u_{1} OR that $u_{1}^{T} A$ is in the same direction as v_{1}^{T}
$■$ First singular value $\sigma_{1}=\left\|A v_{1}\right\|_{2}=\left\|u_{1}^{T} A\right\|_{2}$.

- Additional Singular vectors

■ $A_{1}=A v_{1} v_{1}^{T}=\sigma_{1} u_{1} v_{1}^{T}$ is of rank 1 and is the best rank 1 approximation to A
■ If $A^{\prime}=A-A_{1}$, then computing u_{2}, v_{2}, σ_{2} will give us the second Singular vector and value, ...
■ k-th singular vector is orthogonal to all previous ones
■ Thus: $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}$

Geometric Interpretations ... 3

- First Singular Value and Singular Vector

■ Under A, singular unit vector stretches the most

$$
\max \left\|A v_{1}\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A\right\|_{2} \quad \text { or } \quad \max \left\|u_{1}^{T} A v_{1}\right\|_{2}
$$ implying that $A v_{1}$ is in the same direction as u_{1} OR that $u_{1}^{T} A$ is in the same direction as v_{1}^{T}

■ First singular value $\sigma_{1}=\left\|A v_{1}\right\|_{2}=\left\|u_{1}^{T} A\right\|_{2}$.

- Additional Singular vectors

■ $A_{1}=A v_{1} v_{1}^{T}=\sigma_{1} u_{1} v_{1}^{T}$ is of rank 1 and is the best rank 1 approximation to A
■ If $A^{\prime}=A-A_{1}$, then computing u_{2}, v_{2}, σ_{2} will give us the second Singular vector and value, ...
■ k-th singular vector is orthogonal to all previous ones
■ Thus: $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}$ and $A_{r}=A$, where $\operatorname{rank}(A)=r$

Singular Value Decomposition (SVD)

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Let U_{k} be a matrix with columns u_{1}, \ldots, u_{k};

Singular Value Decomposition (SVD)

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Let U_{k} be a matrix with columns u_{1}, \ldots, u_{k}; Let V_{k} be a matrix with columns v_{1}, \ldots, v_{k};

Singular Value Decomposition (SVD)

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

Spectral Methods

Let U_{k} be a matrix with columns u_{1}, \ldots, u_{k};
Let V_{k} be a matrix with columns v_{1}, \ldots, v_{k};
Let Σ_{k} be a diagonal matrix with $\sigma_{1}, \ldots, \sigma_{k}$ along diagonal;

Singular Value Decomposition (SVD)

Let U_{k} be a matrix with columns u_{1}, \ldots, u_{k};
Let V_{k} be a matrix with columns v_{1}, \ldots, v_{k};
Let Σ_{k} be a diagonal matrix with $\sigma_{1}, \ldots, \sigma_{k}$ along diagonal; Thus, $A V_{r}=U+r \Sigma_{r}$;

Singular Value Decomposition (SVD)

COT 6936:
Topics in
Algorithms

Giri
Narasimhan

Spectral
Methods

Let U_{k} be a matrix with columns u_{1}, \ldots, u_{k};
Let V_{k} be a matrix with columns v_{1}, \ldots, v_{k};
Let Σ_{k} be a diagonal matrix with $\sigma_{1}, \ldots, \sigma_{k}$ along diagonal;
Thus, $A V_{r}=U+r \Sigma_{r}$;
Since $V^{T}=V^{-1}$, we have the SVD as

$$
A=U \Sigma V^{\top},
$$

Singular Value Decomposition (SVD)

Let U_{k} be a matrix with columns u_{1}, \ldots, u_{k};
Let V_{k} be a matrix with columns v_{1}, \ldots, v_{k};
Let Σ_{k} be a diagonal matrix with $\sigma_{1}, \ldots, \sigma_{k}$ along diagonal;
Thus, $A V_{r}=U+r \Sigma_{r}$;
Since $V^{T}=V^{-1}$, we have the SVD as

$$
A=U \Sigma V^{T},
$$

which can be computed in $O\left(m n^{2}+m^{2} n\right)$ time [Golub and van Loan, Matrix Computations, 1996]

Singular Value Decomposition (SVD)

Let U_{k} be a matrix with columns u_{1}, \ldots, u_{k};
Let V_{k} be a matrix with columns v_{1}, \ldots, v_{k};
Let Σ_{k} be a diagonal matrix with $\sigma_{1}, \ldots, \sigma_{k}$ along diagonal;
Thus, $A V_{r}=U+r \Sigma_{r}$;
Since $V^{T}=V^{-1}$, we have the SVD as

$$
A=U \Sigma V^{T},
$$

which can be computed in $O\left(m n^{2}+m^{2} n\right)$ time [Golub and van Loan, Matrix Computations, 1996]
Also A_{k} is the best rank k approximation to A.

Singular Value Decomposition (SVD)

Let U_{k} be a matrix with columns u_{1}, \ldots, u_{k};
Let V_{k} be a matrix with columns v_{1}, \ldots, v_{k};
Let Σ_{k} be a diagonal matrix with $\sigma_{1}, \ldots, \sigma_{k}$ along diagonal;
Thus, $A V_{r}=U+r \Sigma_{r}$;
Since $V^{T}=V^{-1}$, we have the SVD as

$$
A=U \Sigma V^{T}
$$

which can be computed in $O\left(m n^{2}+m^{2} n\right)$ time [Golub and van Loan, Matrix Computations, 1996]
Also A_{k} is the best rank k approximation to A.
Furthermore, $\left\|A-A_{k}\right\|_{F}^{2}=\sigma_{k+1}^{2}+\ldots+\sigma_{r}^{2}$.

Singular Values/Vectors vs Eigenvectors/values

- Singular vectors approximate directions of rows/columns of matrix;

Singular Values/Vectors vs Eigenvectors/values

COT 6936:
Topics in
Algorithms
Giri
Narasimhan

■ Singular vectors approximate directions of rows/columns of matrix;

- Singular values are always real; eigenvalues may be imaginary;

Singular Values/Vectors vs Eigenvectors/values

■ Singular vectors approximate directions of rows/columns of matrix;

■ Singular values are always real; eigenvalues may be imaginary;
■ Left singular vectors $=$ left eigenvectors of $A A^{T}$;

Singular Values/Vectors vs Eigenvectors/values

■ Singular vectors approximate directions of rows/columns of matrix;

■ Singular values are always real; eigenvalues may be imaginary;
■ Left singular vectors $=$ left eigenvectors of $A A^{T}$;
■ Right singular vectors $=$ right eigenvectors of $A^{T} A$;

Singular Values/Vectors vs Eigenvectors/values

■ Singular vectors approximate directions of rows/columns of matrix;

■ Singular values are always real; eigenvalues may be imaginary;
■ Left singular vectors $=$ left eigenvectors of $A A^{T}$;
■ Right singular vectors $=$ right eigenvectors of $A^{T} A$;
■ $\lambda_{i}=\sigma_{i}^{2}, i=1, \ldots, r$

Graph Bisection

- If A is the adjacency matrix, then the Laplacian,

$$
\mathcal{L}=M-A,
$$

where M is the diagonal matrix of vertex degrees.

Graph Bisection

- If A is the adjacency matrix, then the Laplacian,

$$
\mathcal{L}=M-A,
$$

where M is the diagonal matrix of vertex degrees.

- \mathcal{L} is positive semi-definite (PSD),

Graph Bisection

- If A is the adjacency matrix, then the Laplacian,

$$
\mathcal{L}=M-A,
$$

where M is the diagonal matrix of vertex degrees.

- \mathcal{L} is positive semi-definite (PSD), i.e., all eigenvalues are non-negative;

Graph Bisection

- If A is the adjacency matrix, then the Laplacian,

$$
\mathcal{L}=M-A,
$$

where M is the diagonal matrix of vertex degrees.

- \mathcal{L} is positive semi-definite (PSD), i.e., all eigenvalues are non-negative;
- \mathcal{L} has smallest eigenvalue $=0$

Graph Bisection

- If A is the adjacency matrix, then the Laplacian,

$$
\mathcal{L}=M-A,
$$

where M is the diagonal matrix of vertex degrees.

- \mathcal{L} is positive semi-definite (PSD), i.e., all eigenvalues are non-negative;
- \mathcal{L} has smallest eigenvalue $=0$

■ Oddly enough, the eigenvector e_{2} for the second smallest eigenvalue λ_{2} provides info on bisection

Graph Bisection ... 2

■ Compute the eigenvector for the second smallest eigenvalue, e_{2}

Graph Bisection ... 2

■ Compute the eigenvector for the second smallest eigenvalue, e_{2}
■ Use the signs of the vector to give a bisection

Graph Bisection ... 2

■ Compute the eigenvector for the second smallest eigenvalue, e_{2}

- Use the signs of the vector to give a bisection
- Can be used to get bisections with $n / 2$ vertices - by using the median value in e_{2}

Graph Bisection ... 2

■ Compute the eigenvector for the second smallest eigenvalue, e_{2}

- Use the signs of the vector to give a bisection
- Can be used to get bisections with $n / 2$ vertices - by using the median value in e_{2}
- Can be used to get k partitions

Graph Bisection ... 2

■ Compute the eigenvector for the second smallest eigenvalue, e_{2}

- Use the signs of the vector to give a bisection
- Can be used to get bisections with $n / 2$ vertices - by using the median value in e_{2}
- Can be used to get k partitions by performing bisections recursively or by using more eigenvectors

Spectral Clustering

- Let A be the adjacency matrix and $M=$ diagonal matrix of degrees

Spectral Clustering

- Let A be the adjacency matrix and $M=$ diagonal matrix of degrees
- Construct the Laplacian (PSD)

Spectral Clustering

- Let A be the adjacency matrix and $M=$ diagonal matrix of degrees
- Construct the Laplacian (PSD)

■ Unnormalized: $\mathcal{L}=M-A$

Spectral Clustering

- Let A be the adjacency matrix and $M=$ diagonal matrix of degrees
- Construct the Laplacian (PSD)

■ Unnormalized: $\mathcal{L}=M-A$

- Normalized, symmetric: $\mathcal{L}=D^{-1 / 2} L D^{1 / 2}$

Spectral Clustering

- Let A be the adjacency matrix and $M=$ diagonal matrix of degrees
- Construct the Laplacian (PSD)
- Unnormalized: $\mathcal{L}=M-A$
- Normalized, symmetric: $\mathcal{L}=D^{-1 / 2} L D^{1 / 2}$
- Random Walk: $\mathcal{L}=D^{-1} L$

Spectral Clustering

- Let A be the adjacency matrix and $M=$ diagonal matrix of degrees
- Construct the Laplacian (PSD)

■ Unnormalized: $\mathcal{L}=M-A$

- Normalized, symmetric: $\mathcal{L}=D^{-1 / 2} L D^{1 / 2}$
- Random Walk: $\mathcal{L}=D^{-1} L$

■ Define \mathcal{L}_{k} as the matrix with first k eigenvectors as its columns

Spectral Clustering

- Let A be the adjacency matrix and $M=$ diagonal matrix of degrees
- Construct the Laplacian (PSD)

■ Unnormalized: $\mathcal{L}=M-A$

- Normalized, symmetric: $\mathcal{L}=D^{-1 / 2} L D^{1 / 2}$
- Random Walk: $\mathcal{L}=D^{-1} L$
- Define \mathcal{L}_{k} as the matrix with first k eigenvectors as its columns
- Cluster rows of L_{k}

Spectral Clustering

- Let A be the adjacency matrix and $M=$ diagonal matrix of degrees
- Construct the Laplacian (PSD)

■ Unnormalized: $\mathcal{L}=M-A$

- Normalized, symmetric: $\mathcal{L}=D^{-1 / 2} L D^{1 / 2}$
- Random Walk: $\mathcal{L}=D^{-1} L$
- Define \mathcal{L}_{k} as the matrix with first k eigenvectors as its columns
- Cluster rows of L_{k}

