COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2474; Phone x3748; Email: giri@cs.fiu.edu HOMEPAGE: http://www.cs.fiu.edu/~giri https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612

Mar 27, 2014

Presentation Outline

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

1 Spectral Methods

★□> <圖> < E> < E> E のQ@

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

> Most of the material is from notes by Abhiram Ranade; http: //www.cse.iitb.ac.in/~ranade/miscdocs/svd.pdf

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 Search: Given a database of docs/images, find closest match to query

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

- Search: Given a database of docs/images, find closest match to query
- Clustering: Organize a database of docs/images into "clusters"

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

- Search: Given a database of docs/images, find closest match to query
- Clustering: Organize a database of docs/images into "clusters"
- Compression: useful for images

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

- Search: Given a database of docs/images, find closest match to query
- Clustering: Organize a database of docs/images into "clusters"
- Compression: useful for images
- Summarization: Find parts of document most representative of paragraph

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

- Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)
- Search: Given a database of docs/images, find closest match to query
- Clustering: Organize a database of docs/images into "clusters"
- Compression: useful for images
- Summarization: Find parts of document most representative of paragraph
- Graph Partitioning: partition graph into dense subgraphs; useful in VLSI where densely connected parts will be laid out on a chip; also useful in divide-and-conquer algorithms.

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

- Many methods are based on Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)
- Search: Given a database of docs/images, find closest match to query
- Clustering: Organize a database of docs/images into "clusters"
- Compression: useful for images
- Summarization: Find parts of document most representative of paragraph
- Graph Partitioning: partition graph into dense subgraphs; useful in VLSI where densely connected parts will be laid out on a chip; also useful in divide-and-conquer algorithms.
- Random Walks: Markov Chain Mixing, Google Page Rank
- Graph Connectivity, Coloring, ...

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Given *n* points in *m*-dimensional space, typically given to us as an $n \times m$ matrix *A*, where the *i*-th row gives cooridinates of the *i*-th point.

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Given *n* points in *m*-dimensional space, typically given to us as an $n \times m$ matrix *A*, where the *i*-th row gives cooridinates of the *i*-th point.

Question: Disocver structure, shape, correlations, patterns,

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Given *n* points in *m*-dimensional space, typically given to us as an $n \times m$ matrix *A*, where the *i*-th row gives cooridinates of the *i*-th point.

Question: Disocver structure, shape, correlations, patterns, ... Examples:

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Given *n* points in *m*-dimensional space, typically given to us as an $n \times m$ matrix *A*, where the *i*-th row gives cooridinates of the *i*-th point.

Question: Disocver structure, shape, correlations, patterns, ... Examples:

• Images: a_{ij} = grayscale value of *j*-th pixel in *i*-th image

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Given *n* points in *m*-dimensional space, typically given to us as an $n \times m$ matrix *A*, where the *i*-th row gives cooridinates of the *i*-th point.

Question: Disocver structure, shape, correlations, patterns, ... Examples:

• Images: a_{ij} = grayscale value of *j*-th pixel in *i*-th image

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Documents: a_{ij} = does document *i* contain term *j*

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Given *n* points in *m*-dimensional space, typically given to us as an $n \times m$ matrix *A*, where the *i*-th row gives cooridinates of the *i*-th point.

Question: Disocver structure, shape, correlations, patterns, ... Examples:

• Images: a_{ij} = grayscale value of *j*-th pixel in *i*-th image

- **Documents**: a_{ij} = does document *i* contain term *j*
- Medical: a_{ij} = measured parameter j for subject i

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Given *n* points in *m*-dimensional space, typically given to us as an $n \times m$ matrix *A*, where the *i*-th row gives cooridinates of the *i*-th point.

Question: Disocver structure, shape, correlations, patterns, ... Examples:

• Images: a_{ij} = grayscale value of *j*-th pixel in *i*-th image

- **Documents:** a_{ij} = does document *i* contain term *j*
- Medical: a_{ij} = measured parameter j for subject i

Typical Solution: Rows (points) are in low-dimensional subspace (Rank *r*) plus some noise.

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Given *n* points in *m*-dimensional space, typically given to us as an $n \times m$ matrix *A*, where the *i*-th row gives cooridinates of the *i*-th point.

Question: Disocver structure, shape, correlations, patterns, ... Examples:

- Images: a_{ij} = grayscale value of *j*-th pixel in *i*-th image
- **Documents**: a_{ij} = does document *i* contain term *j*
- Medical: a_{ij} = measured parameter *j* for subject *i*

Typical Solution: Rows (points) are in low-dimensional subspace (Rank r) plus some noise. In other words,

A = PT,

where *P* is a $n \times r$ matrix and *T* is a $r \times m$ matrix.

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods ■ 1-dimensional array with *n* items

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods ■ 1-dimensional array with *n* items

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Point in space

Giri Narasimhan

Spectral Methods

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Giri Narasimhan

Spectral Methods

n points in m-dimensional space

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

- Vector
- Matrix with n rows and m columns
 - n points in m-dimensional space
 - More important interpretation . . .

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

- Vector
- Matrix with n rows and m columns
 - n points in m-dimensional space
 - More important interpretation . . .

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Matrix with n rows and m columns

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Matrix with n rows and m columns

• Linear transformations $\mathcal{R}^m \leftrightarrow \mathcal{R}^n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Matrix with n rows and m columns

• Linear transformations $\mathcal{R}^m \leftrightarrow \mathcal{R}^n$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Eigenvalues and Eigenvectors

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Matrix with n rows and m columns

• Linear transformations $\mathcal{R}^m \leftrightarrow \mathcal{R}^n$

- Eigenvalues and Eigenvectors
 - Solutions to equation $Ax = \lambda x$

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Matrix with n rows and m columns

• Linear transformations $\mathcal{R}^m \leftrightarrow \mathcal{R}^n$

- Eigenvalues and Eigenvectors
 - Solutions to equation $Ax = \lambda x$
 - Under transformation A, an eigenvector does not change in direction, its magnitude changes by factor λ

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Matrix with n rows and m columns

• Linear transformations $\mathcal{R}^m \leftrightarrow \mathcal{R}^n$

- Eigenvalues and Eigenvectors
 - Solutions to equation $Ax = \lambda x$
 - Under transformation A, an eigenvector does not change in direction, its magnitude changes by factor λ

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Matrix with n rows and m columns

• Linear transformations $\mathcal{R}^m \leftrightarrow \mathcal{R}^n$

- Eigenvalues and Eigenvectors
 - Solutions to equation $Ax = \lambda x$
 - Under transformation A, an eigenvector does not change in direction, its magnitude changes by factor λ

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

First Singular Value and Singular Vector

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

First Singular Value and Singular Vector

Under A, singular unit vector stretches the most

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

First Singular Value and Singular Vector

Under A, singular unit vector stretches the most

 $\max \|Av_1\|_2$

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

First Singular Value and Singular Vector

Under A, singular unit vector stretches the most

 $\max ||Av_1||_2$ or $\max ||u_1^T A||_2$

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

First Singular Value and Singular Vector

Under A, singular unit vector stretches the most

 $\max \|Av_1\|_2$ or $\max \|u_1^T A\|_2$ or $\max \|u_1^T Av_1\|_2$,

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

First Singular Value and Singular Vector

Under A, singular unit vector stretches the most

 $\max \|Av_1\|_2$ or $\max \|u_1^T A\|_2$ or $\max \|u_1^T Av_1\|_2$,

implying that Av_1 is in the same direction as u_1

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

First Singular Value and Singular Vector

■ Under *A*, singular unit vector stretches the most

 $\max \|Av_1\|_2$ or $\max \|u_1^T A\|_2$ or $\max \|u_1^T Av_1\|_2$,

implying that Av_1 is in the same direction as u_1 OR that $u_1^T A$ is in the same direction as v_1^T

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

First Singular Value and Singular Vector

Under A, singular unit vector stretches the most

 $\max \|Av_1\|_2$ or $\max \|u_1^T A\|_2$ or $\max \|u_1^T Av_1\|_2$,

implying that Av_1 is in the same direction as u_1 OR that $u_1^T A$ is in the same direction as v_1^T

- First singular value $\sigma_1 = ||Av_1||_2 = ||u_1^T A||_2$.
- Additional Singular vectors

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

First Singular Value and Singular Vector

Under A, singular unit vector stretches the most

 $\max \|Av_1\|_2$ or $\max \|u_1^T A\|_2$ or $\max \|u_1^T Av_1\|_2$,

implying that Av_1 is in the same direction as u_1 OR that $u_1^T A$ is in the same direction as v_1^T

- First singular value $\sigma_1 = ||Av_1||_2 = ||u_1^T A||_2$.
- Additional Singular vectors
 - $A_1 = Av_1v_1^T = \sigma_1u_1v_1^T$ is of rank 1 and is the best rank 1 approximation to A

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

First Singular Value and Singular Vector

Under A, singular unit vector stretches the most

 $\max \|Av_1\|_2$ or $\max \|u_1^T A\|_2$ or $\max \|u_1^T Av_1\|_2$,

implying that Av_1 is in the same direction as u_1 OR that $u_1^T A$ is in the same direction as v_1^T

- First singular value $\sigma_1 = ||Av_1||_2 = ||u_1^T A||_2$.
- Additional Singular vectors
 - $A_1 = Av_1v_1^T = \sigma_1u_1v_1^T$ is of rank 1 and is the best rank 1 approximation to A
 - If A' = A − A₁, then computing u₂, v₂, σ₂ will give us the second Singular vector and value, ...

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

First Singular Value and Singular Vector

Under A, singular unit vector stretches the most

 $\max \|Av_1\|_2$ or $\max \|u_1^T A\|_2$ or $\max \|u_1^T Av_1\|_2$,

implying that Av_1 is in the same direction as u_1 OR that $u_1^T A$ is in the same direction as v_1^T

- First singular value $\sigma_1 = ||Av_1||_2 = ||u_1^T A||_2$.
- Additional Singular vectors
 - $A_1 = Av_1v_1^T = \sigma_1u_1v_1^T$ is of rank 1 and is the best rank 1 approximation to A
 - If A' = A − A₁, then computing u₂, v₂, σ₂ will give us the second Singular vector and value, ...
 - k-th singular vector is orthogonal to all previous ones

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

First Singular Value and Singular Vector

Under A, singular unit vector stretches the most

 $\max \|Av_1\|_2$ or $\max \|u_1^T A\|_2$ or $\max \|u_1^T Av_1\|_2$,

implying that Av_1 is in the same direction as u_1 OR that $u_1^T A$ is in the same direction as v_1^T

- First singular value $\sigma_1 = ||Av_1||_2 = ||u_1^T A||_2$.
- Additional Singular vectors
 - $A_1 = Av_1v_1^T = \sigma_1u_1v_1^T$ is of rank 1 and is the best rank 1 approximation to A
 - If A' = A − A₁, then computing u₂, v₂, σ₂ will give us the second Singular vector and value, ...
 - k-th singular vector is orthogonal to all previous ones

• Thus:
$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$$

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

First Singular Value and Singular Vector

Under A, singular unit vector stretches the most

 $\max \|Av_1\|_2$ or $\max \|u_1^T A\|_2$ or $\max \|u_1^T Av_1\|_2$,

implying that Av_1 is in the same direction as u_1 OR that $u_1^T A$ is in the same direction as v_1^T

- First singular value $\sigma_1 = ||Av_1||_2 = ||u_1^T A||_2$.
- Additional Singular vectors
 - $A_1 = Av_1v_1^T = \sigma_1u_1v_1^T$ is of rank 1 and is the best rank 1 approximation to A
 - If A' = A − A₁, then computing u₂, v₂, σ₂ will give us the second Singular vector and value, ...
 - k-th singular vector is orthogonal to all previous ones
 - Thus: $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ and $A_r = A$, where rank(A) = r

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Let U_k be a matrix with columns u_1, \ldots, u_k ;

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Let U_k be a matrix with columns u_1, \ldots, u_k ; Let V_k be a matrix with columns v_1, \ldots, v_k ;

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Let U_k be a matrix with columns u_1, \ldots, u_k ;

Let V_k be a matrix with columns v_1, \ldots, v_k ;

Let Σ_k be a diagonal matrix with $\sigma_1, \ldots, \sigma_k$ along diagonal;

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Let U_k be a matrix with columns u_1, \ldots, u_k ; Let V_k be a matrix with columns v_1, \ldots, v_k ;

Let Σ_k be a diagonal matrix with $\sigma_1, \ldots, \sigma_k$ along diagonal; Thus, $AV_r = U + r\Sigma_r$;

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Let U_k be a matrix with columns u_1, \ldots, u_k ; Let V_k be a matrix with columns v_1, \ldots, v_k ; Let Σ_k be a diagonal matrix with $\sigma_1, \ldots, \sigma_k$ along diagonal; Thus, $AV_r = U + r\Sigma_r$; Since $V^T = V^{-1}$, we have the SVD as

$$A = U \Sigma V^{T},$$

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Let U_k be a matrix with columns u_1, \ldots, u_k ; Let V_k be a matrix with columns v_1, \ldots, v_k ; Let Σ_k be a diagonal matrix with $\sigma_1, \ldots, \sigma_k$ along diagonal; Thus, $AV_r = U + r\Sigma_r$; Since $V^T = V^{-1}$, we have the SVD as

$$A = U \Sigma V^{T},$$

which can be computed in $O(mn^2 + m^2n)$ time [Golub and van Loan, *Matrix Computations*, 1996]

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Let U_k be a matrix with columns u_1, \ldots, u_k ; Let V_k be a matrix with columns v_1, \ldots, v_k ; Let Σ_k be a diagonal matrix with $\sigma_1, \ldots, \sigma_k$ along diagonal; Thus, $AV_r = U + r\Sigma_r$; Since $V^T = V^{-1}$, we have the SVD as

$$A = U \Sigma V^{T},$$

which can be computed in $O(mn^2 + m^2n)$ time [Golub and van Loan, *Matrix Computations*, 1996] Also A_k is the best rank k approximation to A.

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Let U_k be a matrix with columns u_1, \ldots, u_k ; Let V_k be a matrix with columns v_1, \ldots, v_k ; Let Σ_k be a diagonal matrix with $\sigma_1, \ldots, \sigma_k$ along diagonal; Thus, $AV_r = U + r\Sigma_r$; Since $V^T = V^{-1}$, we have the SVD as

$$A = U \Sigma V^{T},$$

which can be computed in $O(mn^2 + m^2n)$ time [Golub and van Loan, *Matrix Computations*, 1996] Also A_k is the best rank k approximation to A. Furthermore, $||A - A_k||_F^2 = \sigma_{k+1}^2 + \ldots + \sigma_r^2$.

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Singular vectors approximate directions of rows/columns of matrix;

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Singular vectors approximate directions of rows/columns of matrix;

 Singular values are always real; eigenvalues may be imaginary;

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Singular vectors approximate directions of rows/columns of matrix;

- Singular values are always real; eigenvalues may be imaginary;
- Left singular vectors = left eigenvectors of AA^{T} ;

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

- Singular vectors approximate directions of rows/columns of matrix;
- Singular values are always real; eigenvalues may be imaginary;
- Left singular vectors = left eigenvectors of AA^{T} ;
- Right singular vectors = right eigenvectors of $A^T A$;

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

- Singular vectors approximate directions of rows/columns of matrix;
- Singular values are always real; eigenvalues may be imaginary;
- Left singular vectors = left eigenvectors of AA^{T} ;
- Right singular vectors = right eigenvectors of $A^T A$;

$$\lambda_i = \sigma_i^2, \ i = 1, \dots, r$$

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods ■ If A is the adjacency matrix, then the Laplacian,

$$\mathcal{L}=M-A,$$

where M is the diagonal matrix of vertex degrees.

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods ■ If A is the adjacency matrix, then the Laplacian,

$$\mathcal{L}=M-A,$$

where M is the diagonal matrix of vertex degrees. • \mathcal{L} is positive semi-definite (PSD),

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods ■ If A is the adjacency matrix, then the Laplacian,

$$\mathcal{L}=M-A,$$

where M is the diagonal matrix of vertex degrees.

 L is positive semi-definite (PSD), i.e., all eigenvalues are non-negative;

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods ■ If A is the adjacency matrix, then the Laplacian,

$$\mathcal{L}=M-A,$$

where M is the diagonal matrix of vertex degrees.

 L is positive semi-definite (PSD), i.e., all eigenvalues are non-negative;

• \mathcal{L} has smallest eigenvalue = 0

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods ■ If A is the adjacency matrix, then the Laplacian,

$$\mathcal{L}=M-A,$$

where M is the diagonal matrix of vertex degrees.

- L is positive semi-definite (PSD), i.e., all eigenvalues are non-negative;
- \mathcal{L} has smallest eigenvalue = 0
- Oddly enough, the eigenvector e₂ for the second smallest eigenvalue λ₂ provides info on bisection

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods • Compute the eigenvector for the second smallest eigenvalue, *e*₂

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Compute the eigenvector for the second smallest eigenvalue, e₂

Use the signs of the vector to give a bisection

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

- Compute the eigenvector for the second smallest eigenvalue, e₂
- Use the signs of the vector to give a bisection
- Can be used to get bisections with n/2 vertices by using the median value in e_2

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

- Compute the eigenvector for the second smallest eigenvalue, *e*₂
- Use the signs of the vector to give a bisection
- Can be used to get bisections with n/2 vertices by using the median value in e_2

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Can be used to get k partitions

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

- Compute the eigenvector for the second smallest eigenvalue, *e*₂
- Use the signs of the vector to give a bisection
- Can be used to get bisections with n/2 vertices by using the median value in e_2
- Can be used to get k partitions by performing bisections recursively or by using more eigenvectors

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Let A be the adjacency matrix and M = diagonal matrix of degrees

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Let A be the adjacency matrix and M = diagonal matrix of degrees

• Construct the Laplacian (PSD)

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Let A be the adjacency matrix and M = diagonal matrix of degrees

- Construct the Laplacian (PSD)
 - Unnormalized: $\mathcal{L} = M A$

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Let A be the adjacency matrix and M = diagonal matrix of degrees

- Construct the Laplacian (PSD)
 - Unnormalized: $\mathcal{L} = M A$
 - Normalized, symmetric: $\mathcal{L} = D^{-1/2} L D^{1/2}$

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods Let A be the adjacency matrix and M = diagonal matrix of degrees

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Construct the Laplacian (PSD)
 - Unnormalized: $\mathcal{L} = M A$
 - Normalized, symmetric: $\mathcal{L} = D^{-1/2} L D^{1/2}$
 - **Random Walk**: $\mathcal{L} = D^{-1}L$

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

- Let A be the adjacency matrix and M = diagonal matrix of degrees
- Construct the Laplacian (PSD)
 - Unnormalized: $\mathcal{L} = M A$
 - Normalized, symmetric: $\mathcal{L} = D^{-1/2} L D^{1/2}$
 - Random Walk: $\mathcal{L} = D^{-1}L$
- Define L_k as the matrix with first k eigenvectors as its columns

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

- Let A be the adjacency matrix and M = diagonal matrix of degrees
- Construct the Laplacian (PSD)
 - Unnormalized: $\mathcal{L} = M A$
 - Normalized, symmetric: $\mathcal{L} = D^{-1/2} L D^{1/2}$
 - Random Walk: $\mathcal{L} = D^{-1}L$
- Define L_k as the matrix with first k eigenvectors as its columns

Cluster rows of L_k

COT 6936: Topics in Algorithms

Giri Narasimhan

Spectral Methods

- Let A be the adjacency matrix and M = diagonal matrix of degrees
- Construct the Laplacian (PSD)
 - Unnormalized: $\mathcal{L} = M A$
 - Normalized, symmetric: $\mathcal{L} = D^{-1/2} L D^{1/2}$
 - Random Walk: $\mathcal{L} = D^{-1}L$
- Define L_k as the matrix with first k eigenvectors as its columns

Cluster rows of L_k