COT 6936: Topics in Algorithms

Giri Narasimhan

ECS 254A / EC 2474; Phone x3748; Email: giri@cs.fiu.edu HOMEPAGE: http://www.cs.fiu.edu/~giri
https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612
Apr 8, 2014

Presentation Outline

Applications

- Graphics

Applications

- Graphics
- Robotics

Applications

- Graphics
- Robotics
- Sensor Networks

Applications

- Graphics
- Robotics
- Sensor Networks

■ ...

Presentation Outline

Convex Hull Problem

- This is a fundamental problem in Computational Geometry.
- There are many algorithms for solving this problem ...

Convexity

■ Convex Regions A region in space is called convex if line joining any two points in the region is completely contained in the region.

Convexity

■ Convex Regions A region in space is called convex if line joining any two points in the region is completely contained in the region.

Convexity

■ Convex Regions A region in space is called convex if line joining any two points in the region is completely contained in the region.

Convex Hulls

- Convex Hull: of a set of points, S , is the smallest convex region containing S.

Convex Hulls

■ Convex Hull: of a set of points, S, is the smallest convex region containing S.

Convex Hulls - Rubber Band Analogy

- Convex Hull: of a set of points, S, is the smallest convex region containing S.

Convex Hulls - Rubber Band Analogy

- Convex Hull: of a set of points, S , is the smallest convex region containing S.

3-D Convex Hulls

■ Convex Hull: of a set of points, S , is the smallest convex region containing S.

3-D Convex Hulls

■ Convex Hull: of a set of points, S, is the smallest convex region containing S.

Presentation Outline

Convex Hulls

■ Graham Scan algorithm:

Convex Hulls

- Graham Scan algorithm:

Convex Hulls

- Graham Scan algorithm:

http://www.personal.kent.edu/~rmuhamma/ Compgeometry/MyCG/ConvexHull/GrahamScan/ grahamScan.htm

Convex Hulls

■ Graham Scan algorithm:

http://www.personal.kent.edu/~rmuhamma/ Compgeometry/MyCG/ConvexHull/GrahamScan/ grahamScan.htm
Also shows proof of correctness;

Convex Hulls

- Graham Scan algorithm:

http://www.personal.kent.edu/~rmuhamma/ Compgeometry/MyCG/ConvexHull/GrahamScan/ grahamScan.htm
Also shows proof of correctness;
$O(n \log n)$ time, mainly for sorting

Convex Hulls

■ Jarvis March algorithm:

Convex Hulls

COT 6936:
Topics in Algorithms

Giri
Narasimhan

■ Jarvis March algorithm:

Package Wrapping - Jarvis March

■ Time Complexity $=($ Cost of iteration $) \times$ (Number of iterations)

Package Wrapping - Jarvis March

■ Time Complexity $=($ Cost of iteration $) \times$ (Number of iterations)
■ Cost of each iteration

Package Wrapping - Jarvis March

■ Time Complexity $=($ Cost of iteration $) \times$ (Number of iterations)
■ Cost of each iteration $=O(n)$

Package Wrapping - Jarvis March

■ Time Complexity $=($ Cost of iteration $) \times$ (Number of iterations)

- Cost of each iteration $=O(n)$

■ Number of iterations

Package Wrapping - Jarvis March

■ Time Complexity $=($ Cost of iteration $) \times$ (Number of iterations)

- Cost of each iteration $=O(n)$

■ Number of iterations $=O(n)$

Package Wrapping - Jarvis March

■ Time Complexity $=($ Cost of iteration $) \times$ (Number of iterations)

- Cost of each iteration $=O(n)$

■ Number of iterations $=O(n)$

- It is really $O(h)$, where $h=$ number of points on hull

Package Wrapping - Jarvis March

■ Time Complexity $=($ Cost of iteration $) \times$ (Number of iterations)
■ Cost of each iteration $=O(n)$
■ Number of iterations $=O(n)$

- It is really $O(h)$, where $h=$ number of points on hull
- Total cost $=O(n h)$

Package Wrapping - Jarvis March

- Time Complexity $=($ Cost of iteration $) \times($ Number of iterations)
- Cost of each iteration $=O(n)$

■ Number of iterations $=O(n)$

- It is really $O(h)$, where $h=$ number of points on hull
- Total cost $=O(n h)$ [Output-Sensitive analysis]

Package Wrapping - Jarvis March

■ Time Complexity $=($ Cost of iteration $) \times$ (Number of iterations)

- Cost of each iteration $=O(n)$

■ Number of iterations $=O(n)$

- It is really $O(h)$, where $h=$ number of points on hull
- Total cost $=O(n h)$ [Output-Sensitive analysis]
- Which is better $O(n \log n)$ or $O(n h)$?

Package Wrapping - Jarvis March

■ Time Complexity $=($ Cost of iteration $) \times$ (Number of iterations)

- Cost of each iteration $=O(n)$

■ Number of iterations $=O(n)$

- It is really $O(h)$, where $h=$ number of points on hull
- Total cost $=O(n h)$ [Output-Sensitive analysis]
- Which is better $O(n \log n)$ or $O(n h)$?

■ Lower bound

Package Wrapping - Jarvis March

■ Time Complexity $=($ Cost of iteration $) \times$ (Number of iterations)

- Cost of each iteration $=O(n)$

■ Number of iterations $=O(n)$

- It is really $O(h)$, where $h=$ number of points on hull
- Total cost $=O(n h)$ [Output-Sensitive analysis]
- Which is better $O(n \log n)$ or $O(n h)$?

■ Lower bound $=\omega(n \log h)$

Presentation Outline

Chan's Algorithm

■ Combines the benefits of both algorithms

Chan's Algorithm

- Combines the benefits of both algorithms

■ Partition points into n / m groups of size m

Chan's Algorithm

- Combines the benefits of both algorithms

■ Partition points into n / m groups of size m

- Use Graham Scan on each group.

Chan's Algorithm

- Combines the benefits of both algorithms
- Partition points into n / m groups of size m

■ Use Graham Scan on each group.

- Total time $=O((m \log m) \cdot(n / m))=O(n \log m)$

Chan's Algorithm

- Combines the benefits of both algorithms
- Partition points into n / m groups of size m

■ Use Graham Scan on each group.

- Total time $=O((m \log m) \cdot(n / m))=O(n \log m)$

■ Merge the n / m convex hulls using the Jarvis Macrh algorithm by treating each group as a big point.

Chan's Algorithm

- Combines the benefits of both algorithms
- Partition points into n / m groups of size m

■ Use Graham Scan on each group.

- Total time $=O((m \log m) \cdot(n / m))=O(n \log m)$
- Merge the n / m convex hulls using the Jarvis Macrh algorithm by treating each group as a big point.
- Tangent between point and convex hull with m points can be computed in $O(\log m)$ time.

Chan's Algorithm

- Combines the benefits of both algorithms
- Partition points into n / m groups of size m

■ Use Graham Scan on each group.

- Total time $=O((m \log m) \cdot(n / m))=O(n \log m)$
- Merge the n / m convex hulls using the Jarvis Macrh algorithm by treating each group as a big point.
- Tangent between point and convex hull with m points can be computed in $O(\log m)$ time.
- Total time $=$

Chan's Algorithm

- Combines the benefits of both algorithms
- Partition points into n / m groups of size m

■ Use Graham Scan on each group.

- Total time $=O((m \log m) \cdot(n / m))=O(n \log m)$
- Merge the n / m convex hulls using the Jarvis Macrh algorithm by treating each group as a big point.
- Tangent between point and convex hull with m points can be computed in $O(\log m)$ time.
- Total time $=$

$$
O((n / m)(\log m)(h))
$$

Chan's Algorithm

- Combines the benefits of both algorithms
- Partition points into n / m groups of size m

■ Use Graham Scan on each group.

- Total time $=O((m \log m) \cdot(n / m))=O(n \log m)$
- Merge the n / m convex hulls using the Jarvis Macrh algorithm by treating each group as a big point.
- Tangent between point and convex hull with m points can be computed in $O(\log m)$ time.
- Total time $=$

$$
O((n / m)(\log m)(h))=O((n / m) h \log m)
$$

Chan's Algorithm

- Time Complexity

Chan's Algorithm

- Time Complexity $=O\left(n \log m+\frac{n}{m} h \log m\right)$

Chan's Algorithm

- Time Complexity $=O\left(n \log m+\frac{n}{m} h \log m\right)$
- If $m=h$, then Time

Chan's Algorithm

- Time Complexity $=O\left(n \log m+\frac{n}{m} h \log m\right)$

■ If $m=h$, then Time $=O(n \log h)$

Chan's Algorithm

- Time Complexity $=O\left(n \log m+\frac{n}{m} h \log m\right)$

■ If $m=h$, then Time $=O(n \log h)$
■ Problem: We don't know h!

Chan's Algorithm

- Time Complexity $=O\left(n \log m+\frac{n}{m} h \log m\right)$

■ If $m=h$, then Time $=O(n \log h)$
■ Problem: We don't know h!
■ Guess h...

Chan's Algorithm

- Time Complexity $=O\left(n \log m+\frac{n}{m} h \log m\right)$
- If $m=h$, then Time $=O(n \log h)$

■ Problem: We don't know h!
■ Guess h ... How?

Chan's Algorithm

- Time Complexity $=O\left(n \log m+\frac{n}{m} h \log m\right)$
- If $m=h$, then Time $=O(n \log h)$

■ Problem: We don't know h !
■ Guess h ... How?

- Linear Search: $O(n h \log h)$

Chan's Algorithm

- Time Complexity $=O\left(n \log m+\frac{n}{m} h \log m\right)$
- If $m=h$, then Time $=O(n \log h)$

■ Problem: We don't know h!
■ Guess h ... How?

- Linear Search: $O(n h \log h)$
- Binary Search: $O\left(n \log ^{2} h\right)$

Chan's Algorithm

- Time Complexity $=O\left(n \log m+\frac{n}{m} h \log m\right)$

■ If $m=h$, then Time $=O(n \log h)$
■ Problem: We don't know h!
■ Guess h ... How?

- Linear Search: $O(n h \log h)$
- Binary Search: $O\left(n \log ^{2} h\right)$
- Doubling Search:

Chan's Algorithm

- Time Complexity $=O\left(n \log m+\frac{n}{m} h \log m\right)$

■ If $m=h$, then Time $=O(n \log h)$
■ Problem: We don't know h!
■ Guess h ... How?

- Linear Search: $O(n h \log h)$
- Binary Search: $O\left(n \log ^{2} h\right)$

■ Doubling Search: Try $m=1,2,4,8, \ldots$

Chan's Algorithm

- Time Complexity $=O\left(n \log m+\frac{n}{m} h \log m\right)$

■ If $m=h$, then Time $=O(n \log h)$
■ Problem: We don't know h!
■ Guess h ... How?

- Linear Search: $O(n h \log h)$
- Binary Search: $O\left(n \log ^{2} h\right)$
- Doubling Search: Try $m=1,2,4,8, \ldots$ Time Complexity $=O\left(n \log ^{2} h\right)$

Finishing the Analysis

- Another idea:

Finishing the Analysis

- Another idea: What if $m=h^{2}$?

Finishing the Analysis

- Another idea: What if $m=h^{2}$?
- Then $O(n \log m)=O(n \log h)$

Finishing the Analysis

- Another idea: What if $m=h^{2}$?
- Then $O(n \log m)=O(n \log h)$
- Try $m=2,4,16,256, \ldots$.

Finishing the Analysis

- Another idea: What if $m=h^{2}$?
- Then $O(n \log m)=O(n \log h)$
- Try $m=2,4,16,256, \ldots$..

■ Analysis:

Finishing the Analysis

- Another idea: What if $m=h^{2}$?
- Then $O(n \log m)=O(n \log h)$
- Try $m=2,4,16,256, \ldots$..

■ Analysis:

$$
\sum_{t=1}^{\lg \lg h} n 2^{t}=n \sum_{t=1}^{\lg \lg h} 2^{t} \leq n 2^{1+\lg \lg h}=2 n \lg h=O(n \log h)
$$

