The 2 star players

structure of bemagglutinin from influenza virus. The structure comprises about 550 aminoacids arranged in two chains HA₁ (red) and HA₂ (blue). The first half of each chain has a lighter color in the diagram. The subunit is very clongated with a long stemlike region built up by residues from both chains and includes one of the longest o belices known in a globular structure, about 75Å long. The globular head is formed by residues only from HA₂. (Courtesy of Don Wiley, Harvard University.)

1

Lecture 2

The Players

DNA
String with alphabet {A, C, G, T}
Nucleotides/Bases
RNA
String with alphabet {A, C, G, U} Bases
String with alphabet {A, C, G, U} Bases Protein
String with alphabet {A, C, G, U} Bases Protein String with 20-letter alphabet

Central Dogma

- DNA acts as a template to replicate itself.
- DNA is trasnscribed into RNA.
- RNA is translated into **Protein**.

Complementary Bases

Proteins – Amino acids

amino acid	3 letter code	1 letter code
alanine	Ala	A
arginine	Arg	R
aspartic acid	Asp	D
asparginine	Asn	N
cysteine	Cys	C
glutamic acid	Glu	E
glutamine	Gln	Q
glycine	Gly	G
histine	His	Н
isoleucine	Ile	1
leucine	Leu	L
lysine	Lys	K
methionine	Met	M
phenylalanine	Phe	F
proline	Pro	P
serine	Ser	S
threonine	Thr	Т
tryptophan	Trp	W
tyrosine	Tyr	Y
valine	Val	V

Table 1.1: Amino acid abbreviations

Protein: Structure

Figure 1.1 The amino acid sequence of a protein's polypeptide chain is called its **primary** structure. Different regions of the sequence form local regular **secondary** structure, such as alpha (a) helices or beta (β) strands. The **tertiary** structure is formed by packing such structural elements into one or several compact globular units called **domains**. The final protein may contain several polypeptide chains arranged in a **quaternary** structure. By formation of such tertiary and quaternary structure amino acids far apart in the sequence are brought close together in three dimensions to form a functional region, an **active site**.

Proteins: Active Sites

Chromosomes

RNA

Figure 5.21 Schematic diagram of the subunit structure of bemagglutinin from influenza virus. The structure comprises about 550 amino acids arranged in two chains HA₃ (red) and HA₂ (blue). The first half of each chain has a lighter color in the diagram. The subunit is very clongated with a long stemlike region built up by residues from both chains and includes one of the longest o belices known in a globular structure, about 75Å long. The globular head is formed by residues only from HA₂. (Courtesy of Don Wiley, Harvard University.)

Lecture 2

(Approximate) String Matching **Applications:** Text **T**, Pattern **P Input:** Is **P** already in the database **T**? **Question(s):** Does **P** occur in **T**? Locate **P** in **T**. Can P be used as a primer for T? Find one occurrence of **P** in **T**. Is **P** homologous to anything in Find all occurrences of **P** in **T**. **T**? Count # of occurrences of **P** in **T**. Has **P** been contaminated by **T**? Find longest substring of **P** in **T**. Is $\underline{prefix}(\mathbf{P}) = \underline{suffix}(\mathbf{T})$? Find closest substring of **P** in **T**. Locate tandem repeats of **P** in **T**. Locate direct repeats of **P** in **T**. Many More variants

Input: Text T; Pattern P

Output: All occurrences of **P** in **T**.

Methods:

- Naïve Method **O(mn)** *time*
- Rabin-Karp Method **O(mn)** *time;* Fast on average.
- FSA-based method O(n+mA) time
- Knuth-Morris-Pratt algorithm **O(n+m)** *time*
- Boyer-Moore **O(mn)** time; Very fast on average.
- Suffix Tree method; **O(m+n)** *time*
- Shift-And method; Fast on average; Bit operations.