Alignment (Continued)

How to score mismatches?

	A	С	D	E	F	G	Н -	->
A	4	0	-2	-1	-2	0	-2	
С	0	9	-3	-4	-2	-3	-3	
D	-2	-3	6	2	-3	-1	-1	
E	-1	-4	2	5	-3	-2	-9'	
F	-2	-2	-3	-3	6	-3		
G	0	-3	-1	-2	-3	ſ		
Н	-2	-3	-1	م				
¥					BLC	วรบ	M 6	2

BLOSUM n Substitution Matrices

- For each amino acid pair a, b – For each BLOCK
 - Align all proteins in the BLOCK
 - Eliminate proteins that are more than n% identical
 - Count F(a), F(b), F(a,b)
 - Compute Log-odds Ratio

$$\log\!\left(\frac{F(a,b)}{F(a)F(b)}\right)$$

Alternative Substitution Matrices

	С	S	Т	P	2	A	G	N	D	Е	Q	н	R	K	М	I	L	v	F	Y	W	
Ċ.	12																					C
:::::	: Q.:	\mathbb{Z}																				<u>:</u> 물
Т	-2	1	3																			Т
Ŧ	÷	1	Q,	đ																		P
A	-Z	1	1	1		2																A
G	-3	1	0	-1		1	5															Ğ
E,	4	1	٥	t t		۵	Q	4														
Þ	+ 5	Ŭ	Ģ	- 1		Ō	1	2	4													μ
Ŧ	÷Б	Q	Q	+1		Φ	D	1	3	4												Ē
0	+ 5	- 1	- 1	Q			-1	1	2	4	A											12
H	-3	-1	- 1				-2	2	1	1	3	6										Ħ
F.	-4	0	-1	Q	+	2 .	-3	0	-1	-1	1	2	6									R
Ε	45	0	0			1	-2		0	0	1	0		5								K
М	문	- 4	- 4		-	1	: 31:	74		-2	- 4	-2	Q	Q	6							M
T	-2	- 1	U A	-4		1	÷S	14	-2	+2	-2	-2	-2	+2	2	5						I
L V	~6 +2	 	-4 0			4					-2	74	-3	+3	4	4	6					L V
F	-4 -4	二 土 つ	. Ц.			U A	-:1:: - ¶	-2: 4	:÷:4: E	:⊣2 =	:-2: -5	-2	÷2 4	:÷2: ⊆5	2	: . ¹ 4 :	::2: 2	1	9	· · · · ·		E
Ŷ									_4		_4	Ē,	_1	_4	Lš.		_1	$-\frac{1}{2}$	4	10		Ŷ
т И	_ 8	_ 2	. 4	-6	_	-		_4	- 7		_ =		÷		_4	_ 5	_ 2	-6	l n	т. П	17	- W
	С	s	Т	P	7	A	G	N	D	E	Q	н	R	K	М	I	L	v	F	Y	M	

PAM250

Point Accepted Mutations (PAM)

- PAM is a unit of evolutionary distance.
- Protein sequences A and B are <u>1 PAM</u> unit apart if one is converted to the other with an average of 1 <u>accepted point mutation per 100 amino acids</u>.
- Point Mutation ⇔ Substitutions (No InDels)
- <u>Accepted</u> ⇔ incorporated into protein and passed onto progeny

True or False?

- If |A| = |B| = 400, and A and B are 1 PAM unit apart, then the <u>expected</u> number of differences between A and B is exactly 4.
- If |A| = |B|, and A and B are 100 PAM units apart, then they are <u>expected</u> to be different in every position.
- If A and B are 250 PAM units apart, then they are as distinct as a pair of random sequences.

PAM Substitution Matrices

- Align very similar pairs of sequences (<15% difference).
- Identify and ignore InDels.
- For each amino acid pair (a,b) compute log-odds ratio:

$$\log\!\!\left(\frac{F(a,b)}{F(a)F(b)}\right)$$

PAM vs BLOSUM

BLOSUM 80	BLOSUM 62	BLOSUM 45
PAM 1	PAM 120	PAM 250
Less divergent	← →	More divergent

Which Substitution Matrix?

- BLOSUM-62 matrix best for detecting most weak protein similarities.
- For particularly long and weak alignments, BLOSUM-45 matrix may be superior.

Query Length	Substitution Matrix	Gap Costs			
<35	PAM 30	(9,1)			
35-50	PAM 70	(10,1)			
50-85	BLOSUM 80	(10,1)			
>85	BLOSUM 62	(11,1)			

BLAST & FASTA

• FASTA

[Lipman Pearson '85, '88]

Basic Local Alignment Search Tool
[Altschul, Gish, Miller, Myers, Lipman '90]

Search for "Bright Angel Trail"

- Bright
 - "Bright Futures" (health initiative), "Bright Lights Film Journal",
 "The Bright Side" (crisis site), "The Armory of Bright Blades" (knife store), "Bright Ideas" (home improvement site), "Bright Angel Trail", ...
- Angel
 - "Angel of Fashion Award", "Angel Island State Park", "Recursive Angel" (poetry), "Angel Flight West" (free medical transportation), "Bright Angel Trail", ...
- Trail
 - "Appalachian Trail", "Oregon Trail", "Trail of Tears", "Bright Angel Trail", ...

FASTA Strategy

- Find "hot spots" of length **k** (exact match) for each length **k** word in query.
- Locate "runs" of "hot spots".
- Do detailed "Smith-Waterman" local alignment at these locations.

BLAST Strategy

- Lipman et al.: speeded up finding "runs" of "hot spots".
- Eugene Myers '94: "Sublinear algorithm for approximate keyword matching".
- Karlin, Altschul, Dembo '90, '91: "Statistical Significance of Matches"

General Bioinformatics Resources

- <u>PubMed</u> at National Center for Biotechnology Information (NCBI) at the National Institutes of Health (NIH):
- http://www4.ncbi.nlm.nih.gov/entrez/query.fcgi
- Try Lambda Cro (73101), Ecoli Sigma-70 (1SIG), Ecoli Sigma factor (1072030), Bacteriorhodopsin (14194473)
- <u>http://www.ncbi.nlm.nih.gov/BLAST/</u> (BLAST)

Perl: Practical Extraction & Report Language

- Created by Larry Wall, early 90s
- Portable, "glue" language for interfacing C/Fortran code, WWW/CGI, graphics, numerical analysis and much more
- Easy to use and extensible
- OOP support, simple databases, simple data structures.
- From interpreted to compiled
- high-level features, and relieves you from manual memory management, segmentation faults, bus errors, most portability problems, etc, etc.
- Competitors: Python, Tcl, Java

Perl Features

- Perl many features
 - Bit Operations, Pattern Matching, Subroutines, Packages & Modules, Objects, Interprocess Communication, Threads, Compiling, Process control
- Competitors to Perl: Python, Tcl, Java

BioPerl

- Routines for handling biosequence and alignment data.
- Why? Human Genome Project: Same project, same data. different data formats! Different input formats. Different output formats for comparable utility programs.
- BioPerl was useful to interchange data and meaningfully exchange results. "Perl Saved the Human Genome Project"
- Many routine tasks automated using BioPerl.
- String manipulations (string operations: substring, match, etc.; handling string data: names, annotations, comments, bibliographical references; regular expression operations)
- Modular: modules in any language

Sequencing Project

- a trace editor to analyze, and display the short DNA read chromatograms from DNA sequencing machines.
- a read assembler, to find overlaps between the reads and assemble them together into long contiguous sections.
- an assembly editor, to view the assemblies and make changes in places where the assembler went wrong.
- a database to keep track of it all.

Managing a Large Project

- Devise a common data exchange format.
- Use modules that have already been developed.
- Write Perl scripts to convert to and from common data exchange format.
- Write Perl scripts to "glue" it all together.

BioPerl Modules

- **Bio::PreSeq**, module for reading, accessing, manipulating, analyzing single sequences.
- **Bio::UnivAln**, module for reading, parsing, writing, slicing, and manipulating multiple biosequences (sequence multisets and alignments).
- **Bio::Struct**, module for reading, writing, accessing, manipulating, and analyzing 3D structures.
- Support for invoking **BLAST** and other programs.
- Listing: <u>bioperl-1.0.2::Bio</u> & <u>here</u>.
- **BioPerl Tutorial**

Miscellaneous

- pTk to enable building Perl-driven GUIs for X-Window systems.
- BioJava
- BioPython
- The BioCORBA Project provides an object-oriented, language neutral, platform-independent method for describing and solving bioinformatics problems.

Virtual Bioinformatics Conference

- PLEASE Register! It's Free.
- <u>http://www.ndsu.nodak.edu/virtual-genomics/conference_2002.htm</u>
- September 24-26, 2002, Access Grid, Room ECS 212.
- You can be on TV!