Reminders!

- PLEASE Register for the Virtual Bioinformatics Conference It's Free.
- September 24-26, 2002, Access Grid, Room ECS 212.
- Homework \#1
- Run the BLAST Tutorial

Useful Terms

- E value: Expected \# of chance alignments with scores $\geq \mathrm{S}$. The lower the E value, the more significant the score.
- P value: The probability of an alignment occurring with score $\geq S$ for a random sequence. Calculated by relating the observed score, S, to the expected distribution of HSP scores from comparisons of random sequences of the same length and composition as the query to the database. The most highly significant P values will be those close to 0 .
- HSP: High-scoring segment pair. Local alignments with no gaps that achieve high alignment scores

Rules of Thumb

- Most sequences with significant similarity over their entire lengths are homologous.
- Matches that are > 50\% identical in a 20-40 aa region occur frequently by chance.
- Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.
- A homologous to $B \& B$ to $C \Rightarrow A$ homologous to C.
- Low complexity regions, transmembrane regions and coiled-coil regions frequently display significant similarity without homology.
- Greater evolutionary distance implies that length of a local alignment required to achieve a statistically significant score also increases.

Rules of Thumb

- Results of searches using different scoring systems may be compared directly using normalized scores.
- If S is the (raw) score for a local alignment, the normalized score S^{\prime} (in bits) is given by

$$
S^{\prime}=\frac{\lambda-\ln (\mathrm{K})}{\ln (2)}
$$

The parameters depend on the scoring system.

- Statistically significant normalized score,

$$
S^{\prime}>\log \left(\frac{N}{E}\right)
$$

where E -value $=\mathrm{E}$, and $\mathrm{N}=$ size of search space.

Homologs: Orthologs \& Paralogs

- Homology: Similarity due to common ancestry.
- Orthologs:

Homologous sequences in different species that arose from a common ancestral gene during speciation; may or may not be responsible for a similar function.

- Paralogs: Homologous sequences within a single species that arose
 by gene duplication.

Growth of SWISS-PROT

Amino-acid composition from SWISS-PROT

Amino acid composition

PDB Growth

Growth in New Folds - PDB

Multiple Alignments

- Family alignment for the ITAM domain
- CD3D_MOUSE/1-2 EQL QP RDR EDTQ-SR G GN Q90768/1-21 DQL QP GER NDGQ-SQ A TA CD3G_SHEEP/1-2 DQL QP KER EDDQ-SH R KK P79951/1-21 NDL QP GQR SEDT-SH N SR FCEG_CAVPO/1-2 DGI TG STR NQET-YETK HE CD3Z_HUMAN/3-0 DGL QG STA TKDT- DA H MQ C79A_BOVIN/1-2 ENL EG NLD DCSM- EDIS RG C79B_MOUSE/1-2 DHT EG NID QTAT-YEDIV TL CD3H_MOUSE/1-2 NQL NE NLG RREE-DVE KK CD3Z_SHEEP/1-2 NPV NE NVG RREE-AV D RR CD3E_HUMAN/1-2 NPD EPIRKG QRDL-SGN QR CD3H_MOUSE/2-0 EGV NA QKD KMAEA SEIG TK Consensus/60\% -.lYpsLspc pcsp.YspLs pp

CLUSTALW

* identical
: conserved substitutions
. semi-conserved substitutions

```
gi|2213819 CDN-ELKSEAIIEHLCASEFALR-------------MKIKEVKKENGDKK 223
```

gi|12656123 ----ELKSEAIIEHLCASEFALR-------------MKIKEVKKENGD-- 31
gi|7512442 CKNKNDDDNDIMETLCKNDFALK--------------IKVKEITYINRDTK 211
gi|1344282 QDECKFDYVEVYETSSSGAFSLLGRFCGAEPPPHLVSSHHELAVLFRTDH 400

Red:

Blue: DE (Acidic)
Magenta: RHK (Basic)
Green: STYHCNGQ (Hydroxyl, Amine, Basic)
Gray: Others

How to Score Multiple Alignments?

- Sum of Pairs Score (SP)
- Optimal alignment: $\mathrm{O}\left(\mathrm{d}^{\mathrm{N}}\right)$ [Dynamic Prog]
- Approximate Algorithm: Approx Ratio 2
- Locate Center: O($\left.\mathrm{d}^{2} \mathrm{~N}^{2}\right)$
- Locate Consensus: $\mathrm{O}\left(\mathrm{d}^{2} \mathrm{~N}^{2}\right)$

Consensus char: char with min distance sum
Consensus string: string of consensus char
Center: input string with min distance sum

Multiple Alignment Methods

- Phylogenetic Tree Alignment (NP-Complete)
- Given tree, task is to label leaves with strings
- Iterative Method(s)
- Build a MST using the distance function
- Clustering Methods
- Hierarchical Clustering
- K-Means Clustering

Multiple Alignment Methods (Cont'd)

- Gibbs Sampling Method
- Lawrence, Altschul, Boguski, Liu, Neuwald, Winton, Science, 1993
- Hidden Markov Model
- Krogh, Brown, Mian, Sjolander, Haussler, JMB, 1994

Profile Method

Profile Method, [M. Gribskov et al., '90]

| Location | | | | | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| in Seq. | Sequence | | | | | | Protein | |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Name |
| 14 | G | V | S | A | S | A | V | Ka RbtR |
| 32 | G | V | S | E | M | T | I | Ec DeoR |
| 33 | G | V | S | P | G | T | I | Ec RpoD |
| 76 | G | A | G | I | A | T | I | Ec TrpR |
| 178 | G | C | S | R | E | T | V | Ec CAP |
| 205 | C | L | S | P | S | R | L | Ec AraC |
| 210 | C | L | S | P | S | R | L | St AraC |
| 13 | G | V | N | K | E | T | I | Br MerR |

Frequency Table

	A	C	D	E	F	G	H	I	K	L	M	N	P	Q	R	S	T	V	W	Y
1	0	2	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	4	0	0
3	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	6	0	0	0	0
4	1	0	0	1	0	0	0	1	1	0	0	0	3	0	1	0	0	0	0	0
5	1	0	0	2	0	1	0	0	0	0	1	0	0	0	0	3	0	0	0	0
6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	5	0	0	0
7	0	0	0	0	0	0	0	4	0	2	0	0	0	0	0	0	0	2	0	0

Profile Method

Frequency Table

	A	C	D	E	F	G	H	I	K	L	M	N	P	Q	R	S	T	V	W	Y
1	0	2	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	4	0	0
3	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	6	0	0	0	0
4	1	0	0	1	0	0	0	1	1	0	0	0	3	0	1	0	0	0	0	0
5	1	0	0	2	0	1	0	0	0	0	1	0	0	0	0	3	0	0	0	0
6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	5	0	0	0
7	0	0	0	0	0	0	0	4	0	2	0	0	0	0	0	0	0	2	0	0

Weight Matrix

	A	C	E	G	I	K	L	M	N	P	R	S
1	0	108	0	101	0	0	0	0	0	0	0	0
2	21	78	0	0	0	0	44	0	0	0	0	0
3	0	0	0	23	0	0	0	0	46	0	0	102
4	21	0	32	0	38	32	0	0	0	86	39	0
5	21	0	62	23	0	0	0	74	0	0	0	72
6	21	0	0	0	0	0	0	0	0	0	69	0
7	0	0	0	0	98	0	44	0	0	0	0	0

$W_{\text {eight }}[i, A A]=\log \left(\frac{\left.F_{\text {refl }}, A A\right]}{p[A A] \cdot N}\right) \cdot 100$

Profile Method

Weight Matrix

	A	C	E	G	I	K	L	M	N	P	R	S
1	0	108	0	101	0	0	0	0	0	0	0	0
2	21	78	0	0	0	0	44	0	0	0	0	0
3	0	0	0	23	0	0	0	0	46	0	0	102
4	21	0	32	0	38	32	0	0	0	86	39	0
5	21	0	62	23	0	0	0	74	0	0	0	72
6	21	0	0	0	0	0	0	0	0	0	69	0
7	0	0	0	0	98	0	44	0	0	0	0	0

Given the following protein sequence:

```
MTEDLFGDLQ D DTILA H L DN
PAEDTS R FPA L L A E LN D L L R
GELS R LGV D P A H S L E IVVVA I
CKH L GGGQV Y I P R G Q A L D S L
I R D L R I WN D F NGGNV S E L T T
RYGVTFNTVYKA I R R M R R L K
```


CpG Islands

- Regions in DNA sequences with increased occurrences of substring "CG"
- Rare: typically C gets methylated and then mutated into a T .
- Often around promoter or "start" regions of genes
- Few hundred to a few thousand bases long

Problem 1:

- Input: Small sequence S
- Output: Is S from a CpG island?
- Build Markov models: M+ and M -
- Then compare

Markov Models

+	A	C	G	T	-	A	C	G	T
A	0.180	0.274	0.426	0.120	A	0.300	0.205	0.285	0.210
C	0.171	0.368	0.274	0.188	C	0.322	0.298	0.078	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
T	0.079	0.355	0.384	0.182	T	0.177	0.239	0.292	0.292

How to distinguish?

- Compute

$$
S(x)=\log \left(\frac{P(x \mid M+)}{P(x \mid M-)}\right)=\sum_{i=1}^{L} \log \left(\frac{p_{x(i-1) x_{i}}}{m_{x(i-1) x i}}\right)=\sum_{i=1}^{L} r_{x_{(i-1)} x i}
$$

\mathbf{r}	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}
\mathbf{A}	-0.740	0.419	0.580	-0.803
\mathbf{C}	-0.913	0.302	1.812	-0.685
\mathbf{G}	-0.624	0.461	0.331	-0.730
\mathbf{T}	-1.169	0.573	0.393	-0.679

Problem 1:

- Input: Small sequence S
- Output: Is S from a CpG island?
- Build Markov Models: M+ \& M-
- Then compare

Problem 2:

- Input: Long sequence S
- Output: Identify the CpG islands in S .
- Markov models are inadequate.
- Need Hidden Markov Models.

