

Computer Science Fundamentals

- Specify an input-output description of the problem.
- Design a conceptual algorithm and analyze it.
- Design data structures to refine the algorithm.
- Write the program in parts and test the parts separately.

Input: Text T; Pattern P

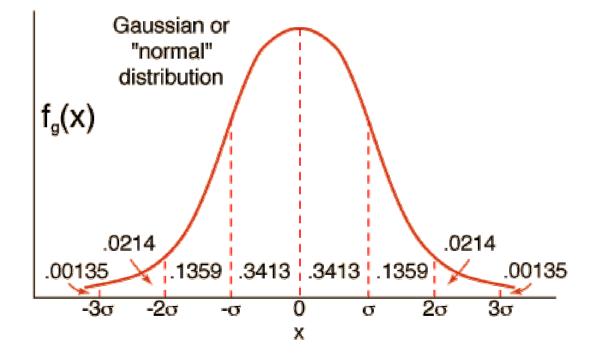
Output: All occurrences of **P** in **T**.

Methods:

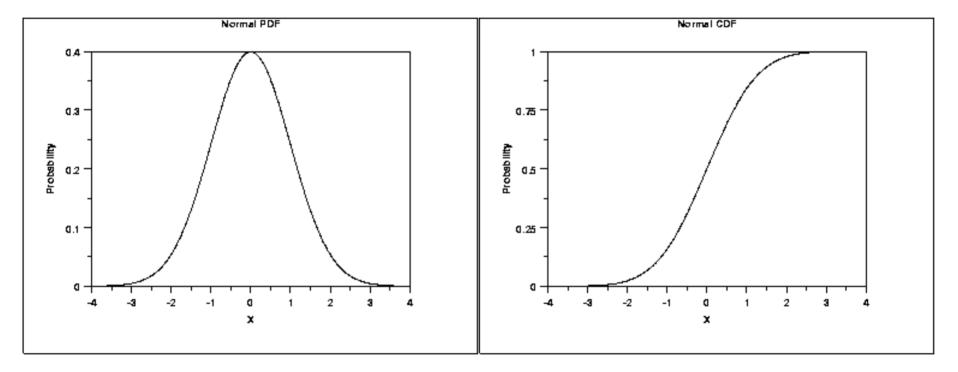
- Naïve Method **O(mn)** *time*
- Rabin-Karp Method **O(mn)** *time;* Fast on average.
- FSA-based method O(n+mA) time
- Knuth-Morris-Pratt algorithm **O(n+m)** *time*
- Boyer-Moore **O(mn)** time; Very fast on average.
- Suffix Tree method; **O(m+n)** *time*
- Shift-And method; Fast on average; Bit operations.

Evolution of Data Structures

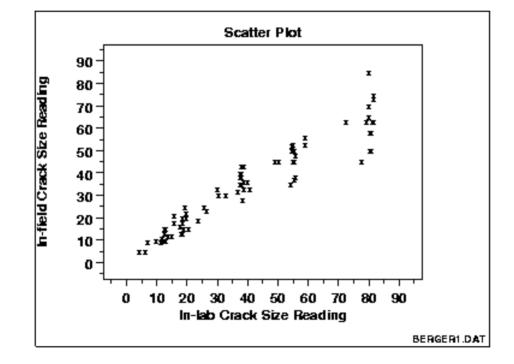
- Complex problems often required complex data structures.
- Simple data types: Lists. Applications of lists include: students roster, voters list, grocery list, list of transactions,
- Array implementation of a list. Advantage random access.
- Need for list "operations" arose "Static" vs. "dynamic" lists.
 "Storing" items in a list vs. "Maintaining" items in a list.
- Lot of research on "Sorting" and "Searching" resulted.
- "Inserting" in a specified location in a list caused the following evolution: Array implementation → Linked list implementation.
- Other linear structures e.g., stacks, queues, etc.

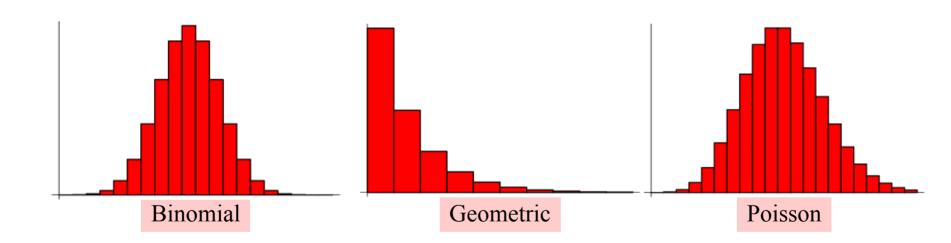

Evolution of Data Structures (Cont'd)

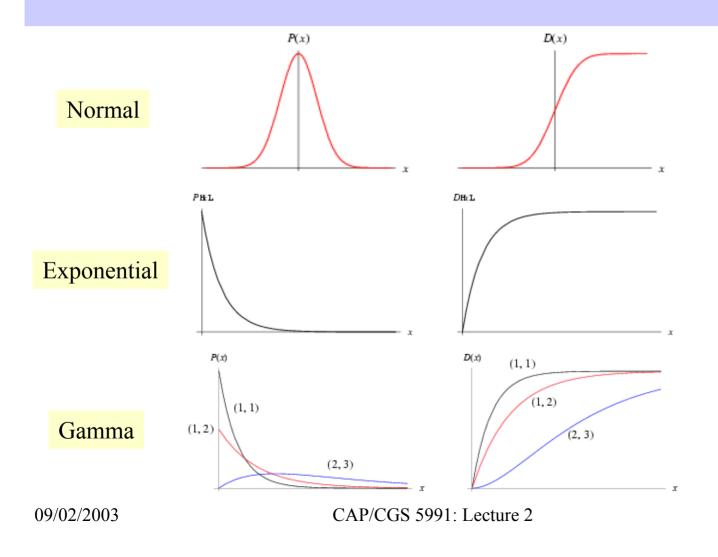
- Trees made hierarchical organization of data easy to handle. Applications of trees: administrative hierarchy in a business set up, storing an arithmetic expression, organization of the functions calls of a recursive program, etc.
- Search trees (e.g., BST) were designed to make search and retrieval efficient in trees. A BST may not allow fast search/retrieval, if it is very unbalanced, since the time complexities of the operations depended on the height of the tree. Hence the study of "balanced" trees and "nearly balanced" trees. Examples: AVL trees, 2-3 trees, 2-3-4 trees, RB trees, Skip lists, etc.
- Graphs generalize trees; model more general networks.
- Abstract data types. Advantages include: Encapsulation of data and operations, hiding of unnecessary details, localization and debugging of errors, ease of use since interface is clearly specified, ease of program development, etc.


Why is Statistics important in Bioinformatics?

- Random processes are inherent in biological processes (e.g., evolution) & in sampling (data collection).
- Errors are often unavoidable in the data collection process.
- Statistics helps in studying *trends*, *interpolations*, *extrapolations*, *categorizations*, *classifications*, *inferences*, *models*, *predictions*, *assigning confidence to predictions*, ...

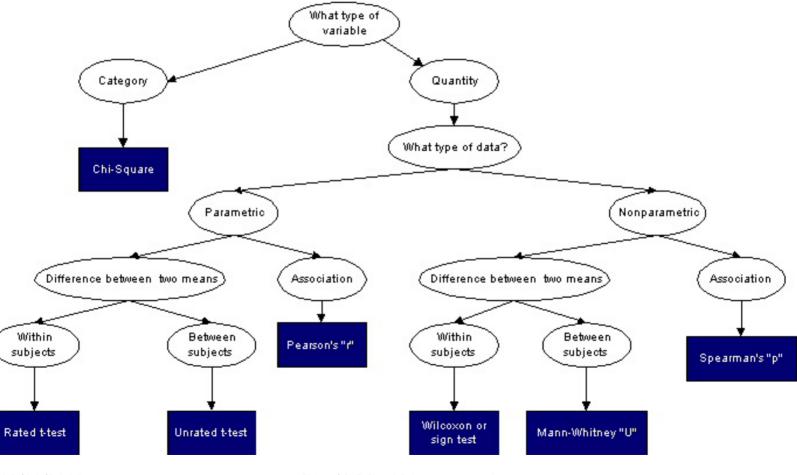

Normal/Gaussian Distribution


Density & Cumulative Distribution Functions


Graphical Techniques: Scatter Plot

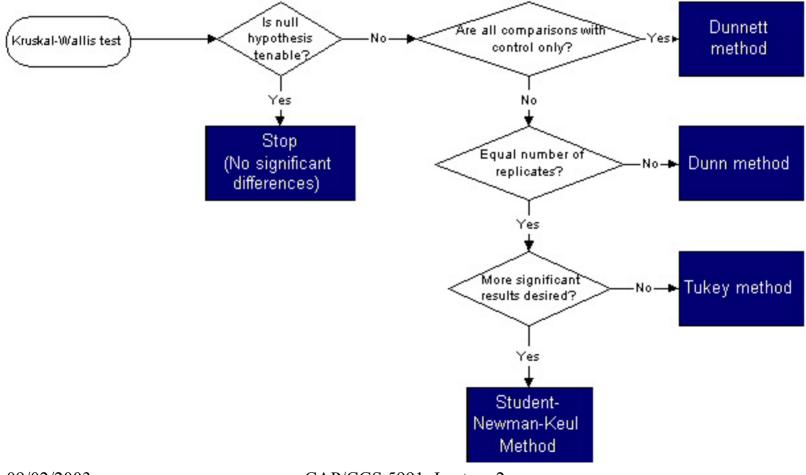
Common Discrete Distributions

Common Continuous Distributions


Monte Carlo methods

- Numerical statistical simulation methods that utilize sequences of random numbers to perform the simulation.
- The primary components of a Monte Carlo simulation method include the following:
 - *Probability distribution functions (pdf's)* --- the system described by a set of pdf's.
 - Random number generator --- uniformly distributed on the unit interval.
 - Sampling rule --- a prescription for sampling from the specified pdf's.
 - *Scoring (or tallying)* --- the outcomes must be accumulated into overall tallies or scores for the quantities of interest.
 - *Error estimation* --- an estimate of the statistical error (variance) as a function of the number of trials and other quantities must be determined.
 - *Variance reduction techniques* --- methods for reducing the variance in the estimated solution to reduce the computational time for Monte Carlo simulation.

Parametric & Non-parametric equivalents

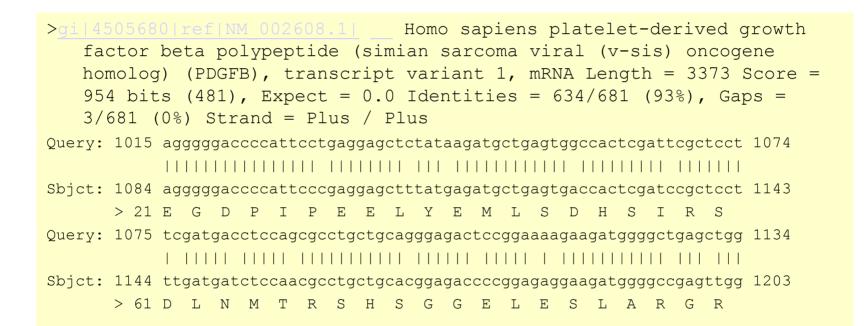

Type of test	Parametric test	Nonparametric test
2-sample	t-test	Mann-Whitney U-test
Paired sample	Paired t-test	Wilcoxon
Distribution	Chi-square	Kolmogorov-Smirnov
>2 samples	1-way ANOVA	Kruskal-Wallis
Correlation	Pearson's correlation	Spearman's correlation
Crossed comparisons	Factorial ANOVA	Friedman's Quade
Multiple comparisons	Tukey, SNK, Dunnett's, Scheffe's	Nonparametric version of its parametric equivalents

Selection of Statistical Tests

09/02/2003

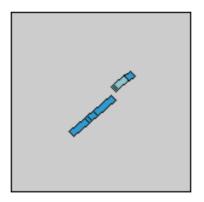
Selection of Multiple Comparison Tests

09/02/2003


Why Sequence Analysis?

- Mutation in DNA is a natural evolutionary process. Thus sequence similarity may indicate common ancestry.
- In biomolecular sequences (DNA, RNA, protein), high sequence similarity implies significant structural and/or functional similarity.
- Errors possible in database.

V-sis Oncogene - Homologies


	Score	E
Sequences producing significant alignments:	(bits)	Value
gi 332623 gb J02396.1 SEG_SSVPCS2_Simian_sarcoma_virus_v-si	. <u>4591</u>	0.0
gi 61774 emb V01201.1 RESSV1 Simian sarcoma virus proviral		
gi 332622 gb J02395.1 SEG_SSVPCS1_Simian_sarcoma_virus_LTR	. 1283	0.0
gi 885929 gb U20589.1 GLU20589 Gibbon leukemia virus envelo	. <u>1140</u>	0.0
gi 4505680 ref NM 002608.1 Homo sapiens platelet-derived g	. 954	0.0
gi 20987438 gb BC029822.1 Homo sapiens, platelet-derived g	. 954	0.0
gi 338210 gb M12783.1 HUMSISPDG Human c-sis/platelet-derive	. <u>954</u>	0.0

Sequence Alignment

Sequence Alignment

Sequence 1 gi <u>332624</u> Simian sarcoma virus v-sis transforming
protein p28 gene, complete cds; and 3' LTR long terminal repeat,
complete sequence. Length 2984 (1 .. 2984)
Sequence 2 gi <u>4505680</u> Homo sapiens platelet-derived growth factor
beta polypeptide (simian sarcoma viral (v-sis) oncogene homolog)
(PDGFB), transcript variant 1, mRNA Length 3373 (1 .. 3373)

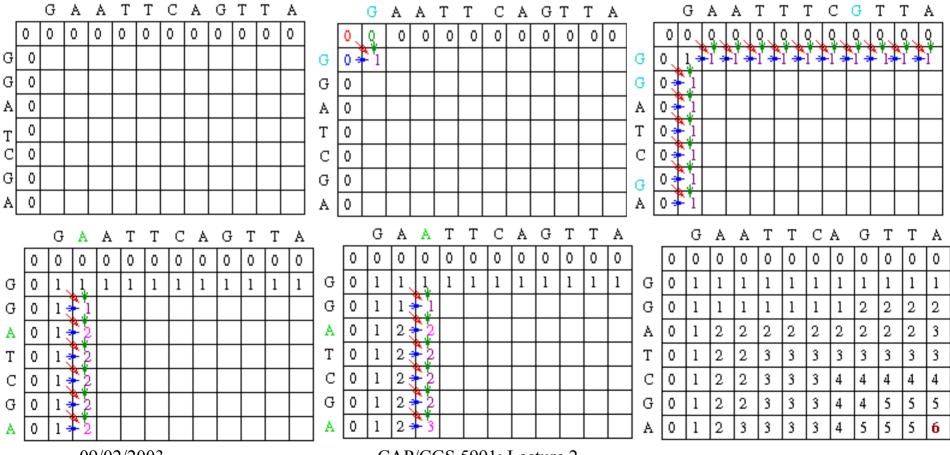
Similarity vs. Homology

- Homologous sequences share common ancestry.
- Similar sequences are "near" to each other by some criteria. Similarity can be measured using appropriate criteria.

Types of Sequence Alignments

- Global Alignment: similarity over entire length
- Local Alignment: no overall similarity, but some segment(s) is/are similar
- Semi-global Alignment: end segments may not be similar
- Multiple Alignment: similarity between sets of sequences

Homework #1


• Check out homework #1 on course homepage.

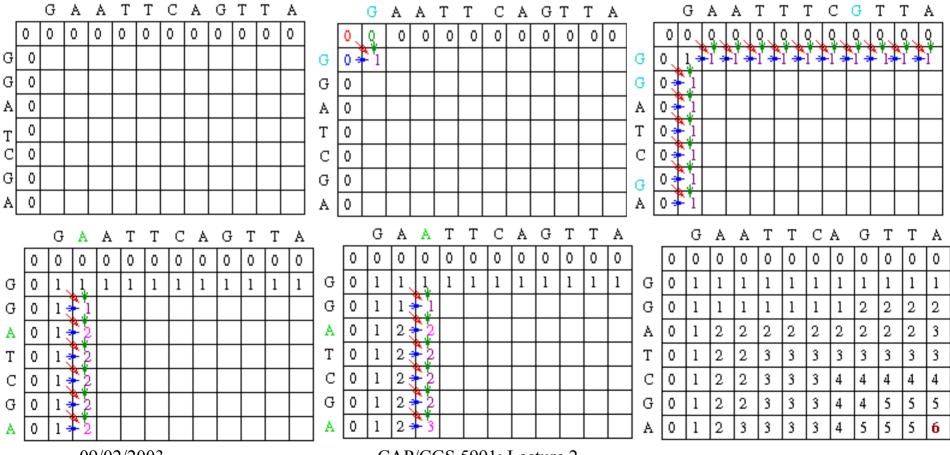
Global Sequence Alignment

- Needleman-Wunsch-Sellers algorithm.
- Dynamic Programming (DP) based.
 - Overlapping Subproblems
 - Recurrence Relation
 - Table to store solutions to subproblems
 - Ordering of subproblems to fill table
 - Traceback to find solution

Global Alignment: An example

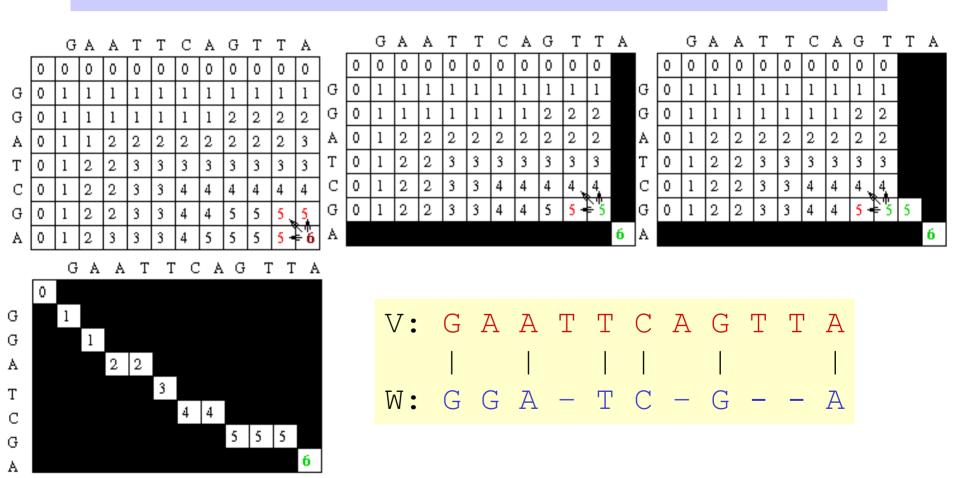
- V: G A A T T C A G T T A
- W: G G A T C G A

09/02/2003

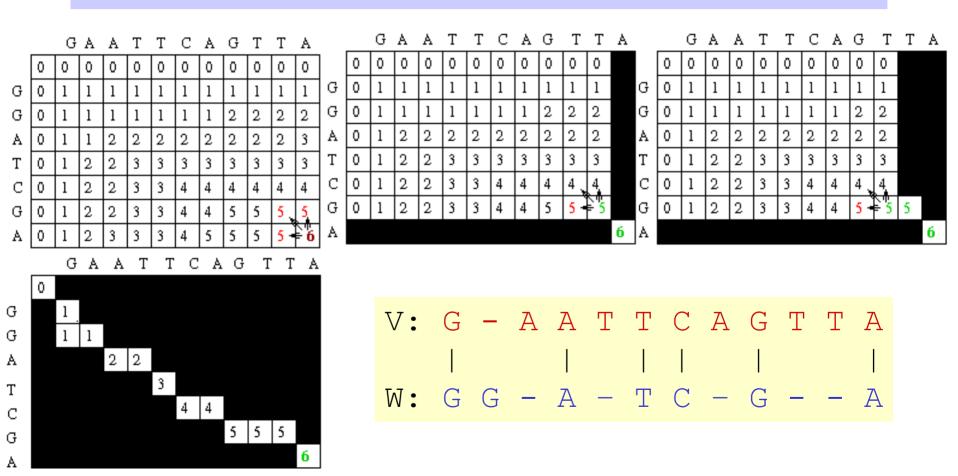

Recurrence Relation for Needleman-Wunsch-Sellers

• $S[I, J] = MAXIMUM \{$ $S[I-1, J-1] + \delta(V[I], W[J]),$ $S[I-1, J] + \delta(V[I], --),$ $S[I, J-1] + \delta(--, W[J])$ $\}$

09/02/2003


Global Alignment: An example

- V: G A A T T C A G T T A
- W: G G A T C G A


09/02/2003

Traceback

09/02/2003

Alternative Traceback

09/02/2003

	Improved Traceback											
		G	А	A	Т	Т	С	А	G	Т	Τ	А
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	×1	←1	← 1	← 1	← 1	← 1	← 1	×1	← 1	← 1	←1
G	0	×1	↑1	1	↑ 1	1	1	1	×2	← 2	← 2	← 2
А	0	1	1	×2	← 2	← 2	← 2	×2	1 2	1 2	1 2	×3
Т	0	↑1	← 2	12	×3	×3	← 3	← 3	← 3	×3	×3	† 3
С	0	1	12	12	13	13	×4	← 4	← 4	← 4	← 4	← 4
G	0	↑1	12	12	13	13	14	14	×5	← 5	← 5	← 5
A	0	1	12	×3	13	13	14	×5	↑5	↑5	↑5	×6
	V: G A – A T T C A G T T A											
	09/02/200		 W: G	; - (GA-	 - T	 C –	 G –	 - A			

Subproblems

- Optimally align V[1..I] and W[1..J] for every possible values of I and J.
- Having optimally aligned
 - V[1..I-1] and W[1..J-1]
 - V[1..I] and W[1..J-1]
 - V[1..I-1] and W[1, J]

It is possible to optimally align V[1..I] and W[1..J]

Time Complexity

• O(mn),

where m = length of V, and n = length of W.

Generalizations of Similarity Function

- Mismatch Penalty = α
- Spaces (Insertions/Deletions, InDels) = β
- Affine Gap Penalties:
 (Gap open, Gap extension) = (γ,δ)
- Weighted Mismatch = $\Phi(a,b)$
- Weighted Matches = $\Omega(a)$

Alternative Scoring Schemes

		G	А	А	Т	Т	С	А	G	Т	Т	А
	0	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12
G	-2	× 1	← -1	← -2	← -3	← -4	← -5	← -6	← -7	← -8	← -9	← -10
G	-3	1	× -1	← -3	← -4	← -5	← -6	← -7	× -5	← -7	← -8	← - 9
А	-4	1 -2	× 0	× 0	← -2	← -3	← -4	← -5	← -6	← -7	← -8	× -7
Т	-5	^- 3	^ -2	^ -2	× 1	← -1	← -2	← -3	← -4	← -5	← -6	← - 7
С	-6	1-4	^ -3	^ -3	↑- 1	× -1	× 0	← -2	← -3	← -4	← -5	← -6
G	-7	1 -5	^- 4	↑- 4	^ -2	^- 3	^ -2	× -2	× -1	← -3	← -4	← -5
Α	-8	^- 6	^ -5	^ -5	^- 3	^-4	^- 3	× -1	^- 3	× -3	× -5	× -3
Match +1 Mismatch – Gap (-2, -1)		V: W:	G A I G G	A T A T	T C - C	A G - G	тт	A I A				

09/02/2003

Local Sequence Alignment

- Example: comparing long stretches of anonymous DNA; aligning proteins that share only some motifs or domains.
- Smith-Waterman Algorithm

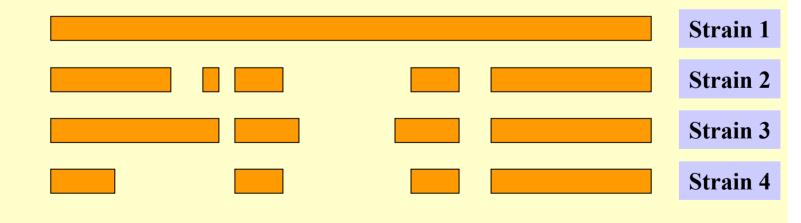
• $S[I, J] = MAXIMUM \{$ $S[I-1, J-1] + \delta(V[I], W[J]),$ $S[I-1, J] + \delta(V[I], -),$ $S[I, J-1] + \delta(-, W[J]) \}$

Global Alignment

• $S[I, J] = MAXIMUM \{ 0, S[I-1, J-1] + \delta(V[I], W[J]), S[I-1, J] + \delta(V[I], --), S[I, J-1] + \delta(V[I], --), S[I, J-1] + \delta(--, W[J]) \}$

Local Alignment

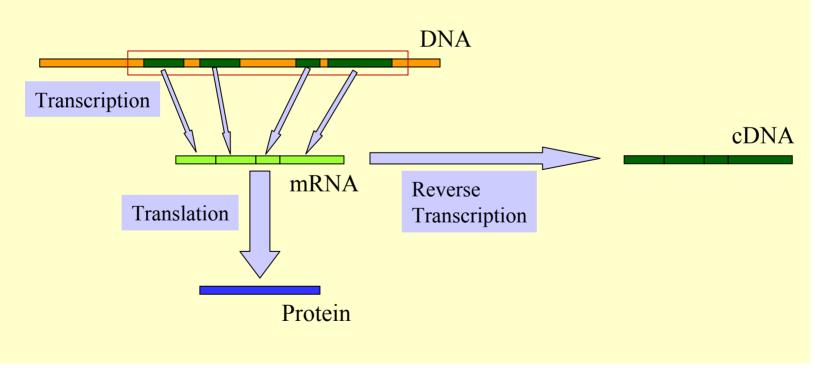
09/02/2003


Local Alignment: Example

		G	А	А	Т	Т	С	А	G	Т	Т	А
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	× 1	0	0	0	0	0	0	0	0	0	0
G	0	× 1	← 0	0	0	0	0	0	× 1	0	0	0
А	0	0	× 2	× 1	0	0	0	× 1	0	0	0	× 1
Т	0	0	↑ 0	× 1	× 2	←1	0	0	0	× 1	× 1	0
С	0	0	0	0	↑ 0	× 0	× 2	0	0	0	0	0
G	0	0	0	0	0	0	0	0	× 1	0	0	0
А	0	0	× 1	× 1	0	0	0	× 1	0	0	0	× 1
Match +1 Mismatch -1 Gap (-1, -1)V: $-$ G A A T T C I G A A T T C I G A G T T A A C F C F G G F F G G F F C F C F G G F 												

09/02/2003

Why Gaps?


- Example: Finding the gene site for a given (eukaryotic) cDNA requires "gaps".
- Example: HIV-virus strains

CAP/CGS 5991: Lecture 2

What is cDNA?

• cDNA = Copy DNA

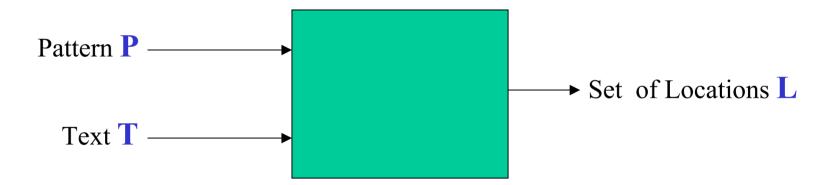
Properties of Smith-Waterman Algorithm

- How to find all regions of "high similarity"?
 Find all entries above a threshold score and traceback.
- What if: Matches = 1 & Mismatches/spaces = 0?
 Longest Common Subsequence Problem
- What if: Matches = 1 & Mismatches/spaces = -∞?
 Longest Common Substring Problem
- What if the average entry is positive?
 - Global Alignment

How to score mismatches?

	A	С	D	Е	F	G	$H \rightarrow$	-
A	4	0	-2	-1	-2	0	-2	
С	0	9	-3	-4	-2	-3	-3	
D	-2	-3	6	2	-3	-1	-1	
Е	-1	-4	2	5	-3	-2	9	
F	-2	-2	-3	-3	6	-3		
G	0	-3	-1	-2	-3	ſ	~	
н	-2	-3	-1	مر				
¥	BLOSUM 62							

09/02/2003


CAP/CGS 5991: Lecture 2

BLOSUM n Substitution Matrices

- For each amino acid pair a, b – For each BLOCK
 - Align all proteins in the BLOCK
 - Eliminate proteins that are more than n% identical
 - Count F(a), F(b), F(a,b)
 - Compute Log-odds Ratio

$$\log\!\left(\frac{F(a,b)}{F(a)F(b)}\right)$$

(Approximate) String Matching Text T, Pattern P **Applications: Input: Question(s):** Is **P** already in the database **T**? Does **P** occur in **T**? Locate **P** in **T**. Find one occurrence of **P** in **T**. Can **P** be used as a primer for **T**? Find all occurrences of **P** in **T**. Is **P** homologous to anything in **T**? Count # of occurrences of **P** in **T**. Has **P** been contaminated by **T**? Find longest substring of **P** in **T**. Is $\underline{prefix}(\mathbf{P}) = \underline{suffix}(\mathbf{T})$? Find closest substring of **P** in **T**. Locate tandem repeats of **P** in **T**. Locate direct repeats of **P** in **T**.

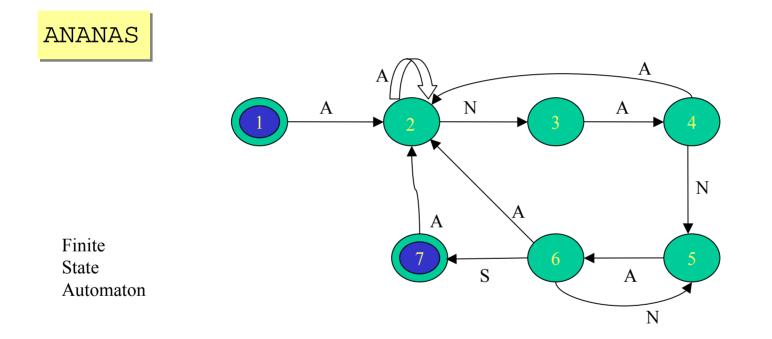
Many More variants

Input: Text T; Pattern P

Output: All occurrences of **P** in **T**.

Methods:

- Naïve Method
- Rabin-Karp Method
- FSA-based method
- Knuth-Morris-Pratt algorithm
- Boyer-Moore
- Suffix Tree method
- Shift-And method


Naive Strategy

ATAQAANANASPVANAGVERANANESISITALVDANANANANAS

AN AN ANANAS

FFFFFANANAS ANANAS ANANAS

ATAQAANANASPVANAGVERANANESISITALVDANANANANAS

09/02/2003

CAP/CGS 5991: Lecture 2

State Transition Diagram

		Α	Ν	S	*
-	0	1	0	0	0
Α	1	1	2	0	0
AN	2	3	0	0	0
ANA	3	1	4	0	0
ANAN	4	5	0	0	0
ANANA	5	1	4	6	0
ANANAS	6	1	0	0	0

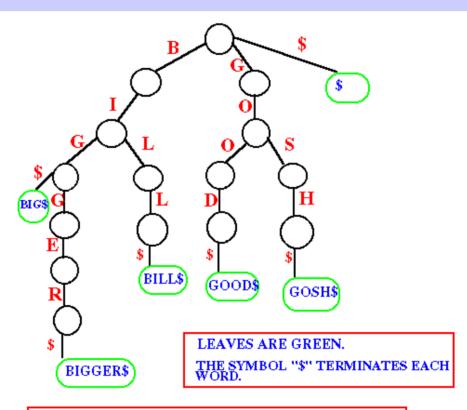
Input: Text T; Pattern P

Output: All occurrences of **P** in **T**.

Sliding Window Strategy:

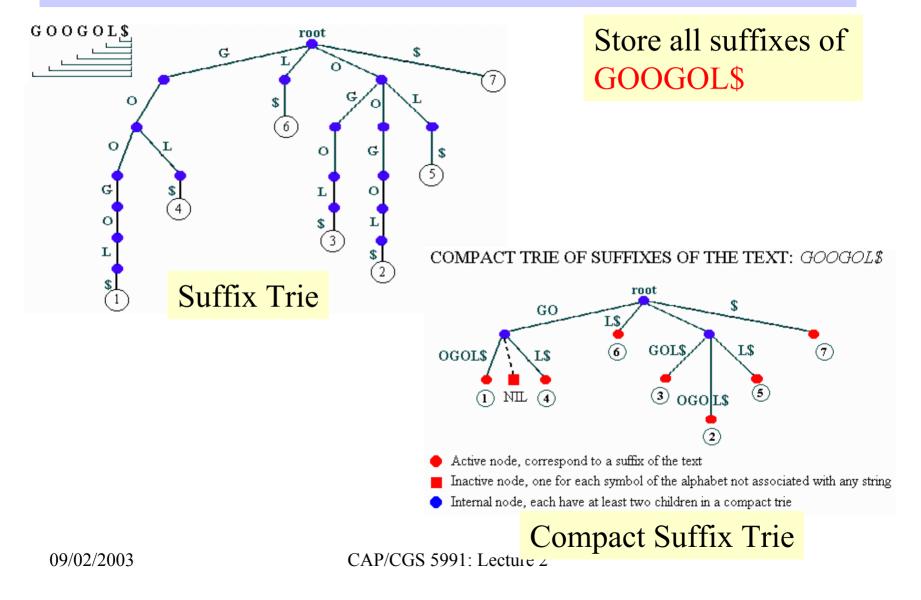
```
Initialize window on T;
```

```
While (window within T) do
```

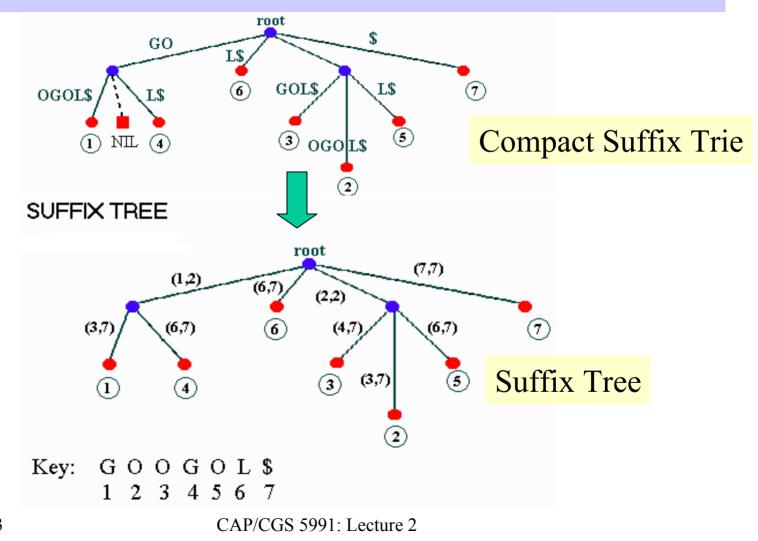

Scan: if (window = P) then report it;

```
Shift: shift window to right (by ?? positions)
```

endwhile;


Tries

Storing: BIG BIGGER BILL GOOD GOSH



In this figure, the strings either start with B or G. Therefore, the root of the trie is connected to 3 edges called B, G and \$.

Suffix Tries & Compact Suffix Tries

Suffix Tries to Suffix Trees

09/02/2003

Suffix Trees

- Linear-time construction!
- String Matching, Substring matching, substring common to k of n strings
- All-pairs prefix-suffix problem
- Repeats & Tandem repeats
- Approximate string matching