Sequencing
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Shotgun Sequencing

Hierarchical shotgun sequencing
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sequence TGATCATGCTTARACCCTGTGCATCCTACTG. & .
Assembly . ..ACCGTAAATGGGCTGATCATGCTTAAACCCTGTGCATCCTACTG. | .
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Human Genome Project

Play the Sequencing Video:
e Download Windows file from

e Then run it on your PC.
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Assembly: Simple Example

e ACCGT, CGTGC, TTAC, TACCGT
« Total length =~10

» —-ACCGT--
» —-—-—=CGTGC
» TJTTAC——--——-
» —TACCGT—

» TTACCGTGC
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Assembly: Complications

« Errors in input sequence fragments (~3%)
— Indels or substitutions

o Contamination by host DNA
e Chimeric fragments (Joining of non-contiguous fragments)
e Unknown orientation

* Repeats (long repeats)
— Fragment contained in a repeat
— Repeat copies not exact copies
— Inherently ambiguous assemblies possible
— Inverted repeats

Inadequate Coverage
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Assembly: Complications

w = AGTATTGGCAATC
z = AATCGATG

u = ATGCAAACCT

x = CCTTTTGG

y = TTGGCAATCACT

~~=--TTGGCAATCACT
AGTATTGGCAATCACTAATCGATGCAAACCTTTTGG

FIGURE 4.20

A bad solution for an assembly problem, with a multiple
alignment whose consensus is a shortest common
superstring. This solution has length 36 and is generated by
the Greedy algorithm. However, its weakest link is zero.

AGTATTGGCAATCGATGCAAACCTTTTGGCAATCACT

FIGURE 4.21

Solution according to the unique Hamiltonian path. This
solution has length 37, but exhibits better linkage. Its

10/28/0310/21/2003 weakest link is 3



Assembly: Complications

A X B X C X D
A X C X B X D
FIGURE 4.8
Target sequence leading to ambiguous assembly because of
repeats of the form X X X.
X B Y C X D Y
X D Y C X B Y
FIGURE 4.9
Target sequence leading to ambiguous assembly because of
repeats of the form XY XY.

| ~~y I
I |
X B Y C X D Y
X D Y C X B Y
FIGURE 4.9
Target sequence leading to ambiguous assembly because of
repeats of the form XY XY .

X rotate | 180° X

-~

X X
FIGURE 4.10

Target sequence with inverted repeat. The region marked X
is the reverse complement of the region marked X.



Miscellaneous

« Contig: A continuously covered region iIn
the assembly.

» Other sequencing methods:
— Sequencing by Hybridization (SBH)
— Dual end sequencing

— Chromosome Walking (see page 5-6 of
Pevzner’s text).
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SBH

o Suppose that the only length 4 fragments
that hybridize to S are: TAGG, GGCA,
CAAA, GCAA, ATAG, AGGC. Then
what Is S, If it Is of length ~9?

TAGG GGCA CAAA

Hamiltonian Path Problem
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SBH

TAG GGC CAA

GCA ATA AGG

Eulerian Path Problem
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Assembly Software

Parallel EST alignment engine ( ) with a
CORBA interface to alignment database. Can perform ad hoc
assemblies. Can act as foundation for CORBA-based EST assembly
and editing package. [Parsons, EBI]

Software using multiple alternative sequence assembly "engines"
writing to a common format file [Staden, Cambridge]

( ).
Phrap,( )

Assembler (TIGR) for EST and Microbial whole-genome assembly
( )

FAK2 and FAKtory ( ) [Myers]
GCG ( )
Falcon [Gryan, Harvard] fast ( )
SPACE, SPASS [Lawrence Berkeley Labs] (

)
CAP 2 [Huang] ( )
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Theory of Evolution

e Charles Darwin
— 1858-59: Origin of Species
— 5 year voyage of H.M.S. Beagle (1831-36)
— Populations have variations.

— Natural Selection & Survival of the fittest: nature
selects best adapted varieties to survive and to
reproduce.

— Speciation arises by splitting of one population into
subpopulations.
— Gregor Mendel and his work (1856-63) on inheritance.
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Dominant View of Evolution

 All existing organisms are derived from a
common ancestor and that new species arise
by splitting of a population into
subpopulations that do not cross-breed.

* Organization: Directed Rooted Tree;
EXxisting species: Leaves; Common ancestor

species (divergence event): Internal node;
Length of an edge: Time.
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Constructing
Evolutionary/Phylogenetic Trees

e 2 broad categories:

— Distance-based methods
» Ultrametric [Nodes are labeled; distance = label of LCA]
» Additive: [Edges have weights; distance = length of path]
— UPGMA
— Transformed Distance
— Neighbor-Joining
— Character-based [Edges have labels; set of changes =
set of labels on path]
o Maximum Parsimony
e Maximum Likelihood
» Bayesian Methods

10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9
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Ultrametric

e An ultrametric tree:
— decreasing internal node labels

— distance between two nodes Is
label of least common ancestor.

e An ultrametric distance matrix:

— Symmetric matrix such that for
every 1, |, k, there is tie for
maximum of D(i,j), D(j,k), D(i,k)

10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9
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Ultrametric: Assumptions

 Molecular Clock Hypothesis, Zuckerkandl
& Pauling, 1962: Accepted point mutations
In amino acid sequence of a protein occurs
at a constant rate.

— Varies from protein to protein
— Varies from one part of a protein to another
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Ultrametric Data Sources

e Lab-
~Ta
hy

nased methods: hybridization
ke denatured DNA of the 2 taxa and let them

oridize. Then measure energy to separate.

* Seguence-based methods: distance
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Ultrametric: Example

TIOMM OO|m|>
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Ultrametric: Example

A/B|IC/DE|F|G|H

TIOMM OO|m|>
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Ultrametric: Distances Computed

A/BIC/DE|F|G|H
0 3| 4 4 |1 3| 4
0 2 14| 4

2

TIOMM OO|m|>
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Additive-Distance Trees

Additive distance trees are edge-weighted trees, with distance
between leaf nodes are exactly equal to length of path

between nodes.

A | B

0

eNNOONENEN@)

O0O|m| >

O|loo|o|wo|T

10/28/0310/21/2003
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Unrooted Trees on 4 Taxa

C
A
D
D
B
D
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Four-Point Condition

e |If the true tree Is as shown below, then
2. dpg +dcp <dpp +dpc

A C
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Unweighted pair-group method with

arithmetic means (UPGMA)

A B C AB C
B | dag C d(AB)C
C | dac | dac D d(AB)D dep
D dAD dBD dCD
deagyc = (dac * dgc) /2
dag/2

10/28/0310/21/2003
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Transformed Distance Method

« UPGMA makes errors when rate constancy
among lineages does not hold.

 Remedy: introduce an outgroup & make

corrections n
- Dij— Dio—Djo Z Dk/
Dij'= +| k=L -

2

 Now apply UPGMA
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Saitou & Nei: Neighbor-Joining Method

o Start with a star topology.

 Find the pair to separate such that the total
length of the tree is minimized. The palir IS
then replaced by its arithmetic mean, and
the process IS repeated.

S12 :7 2(n_ )Z(le-l- D2k)+

Z Dij

) 3<i<j<n
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Neilghbor-Joining

812:7 2(n_ )Z(le-l-DZk)-I-( )3ZDij

<|<J<n
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Constructing
Evolutionary/Phylogenetic Trees

e 2 broad categories:

— Distance-based methods
o Ultrametric
o Additive:
- UPGMA
— Transformed Distance
— Neighbor-Joining
— Character-based
o Maximum Parsimony
o Maximum Likelihood
» Bayesian Methods

10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9

31



Character-based Methods

 [nput: characters, morphological features, sequences, etc.

e QOutput: phylogenetic tree that provides the history of what
features changed. [Perfect Phylogeny Problem]

» one leaf/object, 1 edge per character, path <<changed traits

1| 2 4 | 5
Al 1|1 0 | o
B | 0| o 0 | o
c | 1|1 0 | 1
D | o | o 1| o
E| o | 1 0 | o A ¢

10/28/0310/21/2003
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Example

 Perfect phylogeny does not always exist.
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Maximum Parsimony

 Minimize the total number of mutations
Implied by the evolutionary history

10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9
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Examples of Character Data

1 2 3 4 5 Characters/Sites
1 1 0 0 0 Sequences | 1 | 2 3 4 5 6
0 0 1 0 1 1 AlA|G|A|G|T
1 1 0 0 1 2 AlG|lC|C|G|T
0 0 1 1 0 3 A|lG|A|T|A|T
0 1 0 0 1 4 A|lG|A|G|A|T

10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9




Maximum Parsimony Method: Example

Characters/Sites

Sequences 2 3 4 5 6 7

1 A|G|A |G| T|T

2 G|C|C|G|T|T

3 G|A|T|A|T]|C

4 G|A|G|A|T]|C
10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9
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Unrooted Trees on 4 Taxa

C
A
D
D
B
D
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Treel Tree I Tree ITI

((1,2,34) (13),(24)
(a) Site 3 1G A3 1G . . C2 1G .
>G . A< >A A/ >A'
[ )
2C Ad 3A \A4 4A '
(b) Sited 1A T3 1A, C2 1A
D D e
2C G4 3T G4 4G
(0 Site5 1G A3 1G_, . G2 1G_,
>G = A/ >A A< >A
2G \A4 3A Ad 4A
(d) Site9 1A A3 1A ' T2 1A

=4

=

/N

L]
-]
-

\/
AN
\ A

\ A

-
-1

3A T4

FIGURE 514 Three possible unrooted trees (I, II, and III) for four DNA sequences
(1, 2, 3, and 4) that have been used to choose the most parsimonious tree. The pos-
sible phylogenetic relationships among the four sequences are shown in Newick
format. The terminal nodes are marked by the sequence number and the nucleo-
tide type at homologous positions in the extant species. Each dot on a branch
means a substitution is inferred on that branch. Note that the nucleotides at the
two internal nodes of each tree represent one possible reconstruction from among
several alternatives. For example, the nucleotides at both the internal nodes of tree
111(d) (bottom right) can be A instead of T. In this case, the two substitutions will
be positioned on the branches leading to species 2 and 4. Alternatively, other com-
binations of nucleotides can be placed at the internal nodes. However, these alter-
natives will require three substitutions or more. The minimum number of substi-

tutions required for site 9 is two.

((1,4),(2,3))

|

/XS

-]
W

AN N

O
[¥]

o

)
™)

>
w

>
w

O
')

>
o

~3
(X}

AW |IDN]|PF

> (> (> |[> |
OREoOREORR AL
>|I>(O|O|w
QO] >|+s
>|I>|O|O|o
—A|d|d|d|o
O|lO(d|d |
O|0[0O0O |
—A|>|H|>|©




Inferring nucleotides on internal nodes

(a) (AT) (b) (TAGC)
11
T (TAG)
10 10
(AGT) (AG)
9 9
(CT) (GT) T A
A A VAN
1 2 3 4 5 6 2 4 5 6 3 1
C T G T A A T T A A G C

FIGURE 5.15 Nucleotides in six extant species (1-6) and inferred possible
nucleotides in five ancestral species (7-11) according to the method of Fitch (1971).
Unions are indicated by parentheses. Two different trees (a and b) are depicted.
Note that the inference of an ancestral nucleotide at an internal node is dependent

on the tree. Modified from Fitch (1971).
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B C

\< t Step 1

A s

Searching for the \<< \2/ \<<

Maximum
Parsimony Tree: /o N & NS e
Exhaustive <<< Qg \<<< Y <<<
SearCh B ED AC D EA E Z D A:Z D CA

FIGURE 5.16 Exhaustive stepwise construction of all 15 possible trees for five
OTUs. In step 1, we form the only possible unrooted tree for the first three OTUs
(A, B, and C). In step 2, we add OTU D to each of the three branches of the tree in
step 1, thereby generating three unrooted trees for four OTUs. In step 3, we add
10/28/0310/21/2003 OTU E to each of the five branches of the three trees in step 2, thereby generating

15 unrooted trees. Additions of OTUs are shown as heavier lines. Modifed from
Swofford et al. (1996).




Searching for the
Maximum
Parsimony Tree:
Branch-&-Bound

C21 C2.2

M I 9 .




Probabilistic Models of Evolution

e Assuming a model of substitution,
- Pr{S;(t+A) = Y [Si(t) = X},
« Using this formula it Is possible to
compute the likelihood that data
D is generated by a given Y
phylogenetic tree T under a model
of substitution. Now find the tree
with the maximum likelihood.
*Time elapsed? A
*Prob of change along edge?
Pr{S;(t+A) = Y [S;(t) = X}
*Prob of data? Product of
prob for all edges
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(a) 1 2 3 4 5 6 7 8 9
OTUl A A G A C T T C A
OTU2 A G C C C T T C T
OTU3 A G A T A T C C A
OTU4 A G A G G T C C T

{b) OTU1 OTU3

HTU5
/
HTUs
oTu2 OTU4
(©
C C
L(s) = Prob >A—A<A + Prob >A—C
C G C
C C
+ Prob >C—A<A + Prob >C—C
C G C
C
/A + Prob \T—C
C/

C C
/A + Prob

+ Prob

C
AN
+ Prob T—A
(>-<

' n
(d) L= L(l) X L(z) X L(3) XX L(n) =i l;[lL({)

zzz2z3

n
(e) Inl = ]nL(l) + h1L(2) + ]1‘11_.(3) +ot L(n) =i § 1]1’1L(,')

FIGURE 5.19 Schematic representation of
the calculation of the likelihood of a tree.
(a) Data in the form of sequence align-
ment of length z, (b) One of three possi-
ble trees for the four taxa whose
sequences are shown in (a). (c) The likeli-
hood of a particular site, in this case site
5, equals the sums of the 16 probabilities
of every possible reconstruction of ances-
tral states at nodes 5 and 6 in (b). (d) The
likelihood of the tree in (b) is the product
of the individual likelihoods for all n
sites. (e) The likelihood is usually evalu-
ated by summing the logarithms of the
likelihoods at each site, and reported as
the log likelihood of the tree. Modified
from Swofford et al. (1996).

C
+ Prob >A—-T ( ] + Prob /A—G\ )
C
+ Prob >C—T<A\ + Prob >C—G<A
C G) C G
C C
N Ny
+ Prob T—T + Prob T—G
(5) (<)
C
+ Prob >G T/A + Prob >G—G/A
C \G C \G

Computing

Maximum

Likelihood
Tree
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Models of Nucleotide Substitution

Jukes-Cantor

1-3a o o o
o 1-3a o o
o o 1-3a o
o o o 1-3a

PAM Matrix for Amino Acids

10/28/0310/21/2003

Kimura 3ST
1-a-B-y o] p Y
o 1- a- B-y Y p
B Y 1- a- By o
Y o 1- a- B-y
44
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FIGURE 14.3. Parsimony and Maximum Likelihood trees
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PHYLIP’s
Distance-

based
Methods
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FIGURE 14.2. UPGMA and neighbor-joining trees
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Bootstrap:
Estimating
confidence
level of a
phylogenetic
hypothesis

10/28/0310/21/2003

Sample

Pseudosample 1

111126668810131313131516171719
1GGGGAAAAGGCGGGGTCAAA
2GGGGCGGGGGAGGGGAGAAA
3CCCCAAAAAAAGGGGGTAAA
4CCCCAAAAAAAGGGGGTAAA
5GGGGCCCCGGAGGGGTTAAA

123456789101 12131151617181920
1GAGGGAGGACCCGATCAAAA
2GCGTGGGGAACCGGAGAAAA
JCAGCAGAGAAACAGAGTAAAC
4 CAAAGAGCAACGAGTTAAAC
5GCGGACAGAAAAGATTAAAT

Pseudosample 2

222257889101 121214141717182020
1AAAAGGGGACCCCAAAAAAA
2CCCCGGGGAACCCGGAAAAA
JAAAAGGAAAACAAAAAAACC
4 AAAAGGAACAACCAAAAACC
5CCCCAAGGAAAAAAAAAATT

(b) Subhypothesis 1

3

CAP/CGS 5991 Lecture 10Lecture 9

5
Subhypothesis 2

»

Pseudosample n

3335567799 NUNNIN1212181818
1GGGGGAGGAACCCCCCCAAA
2GGGGGGGGAACCCCCCCAAA
3GGGGGAGGAACCCCCAAAAA
4 AAAGGAGGCCAAAAACCAAA
5GGGAACAAAAAAAAAAAAAA

FIGURE 526 The bootstrap technique. (a) From the data sample
we build an inferred phylogenetic tree. The sample is also used
to generate n pseudosamples by site resampling with replace-
ment. From each of these pseudosamples we build a bootstrap
tree by using the same method of phylogenetic reconstruction as
that employed in the derivation of the inferred tree. (b) The
inferred tree is used as a null hypothesis composed of two sub-
hypotheses (left). Circled numbers on the internal branches are
the percentage of bootstrap trees (i.e., bootstrap values) support-

ing clades (3,4) and (2,5).



Tree Evaluation Methods

e Bootstrap

o Skewness Test (Randomized Trees)

o Permutation Test (Randomized Characters)
o Parametric bootstrap

 Likelihood Ratio Tests
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Computing Evolutionary Relationships:

Basic Assumptions

 Evolutionary divergences are strictly
bifurcating, 1.e., observed data can be
represented by a tree. [Exceptions: transfer
of genetic material between organisms]

o Sampling of individuals from a group is
enough to determine the relationships

« Each individual evolves independently.

10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9
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Comparisons

« UPGMA (fast)
— assumes rate constancy; rarely used.

o Additive Methods (fast)
— If four-point condition is satisfied, works well
— Quality depends on quality of distance data
— Does not consider multiple substitutions at site
— Long sequences & small distances, small errors.
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Additive Metrics: Four-Point
Condition

e |If the true tree Is as shown below, then
2. dpg +dcp <dpp +dpc

A C

10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9
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Ultrametric vs Additive Metrics

 Check whether A 1s an additive distance matrix.

|

e Check whether U 1s an ultrametric matrix

COMMENT: This 1s just a reduction. It does not
mean that one can build a tree for the same data!

10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9
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Comparisons

e Maximum Parsimony
— Character-based methods trusted more.
— MP assumes “simplest explanation is always the best”!

— No explicit assumptions, except that a tree that requires
fewer substitutions is better

— Faster evolution on long branches may give rise to
homoplasies, and MP may go wrong.

— Performance depends on the number of informative
sites, and is usually not so good with finding clades.

— If more than one tree, builds consensus trees.
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Comparisons

e Maximum Likelihood
— Uses all sites, unlike MP method.

— Makes assumptions on the rate and pattern of
substitution.

— Relatively insensitive to violations of assumptions
— Not very robust (if some sequences very divergent).

— SLOW! Computationally intensive. Optimum usually
cannot be found, since the search space is too large.

— Fast heuristics exist.
— Simulations show that it’s better than MP and ME.

10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9
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Phylogenetic Software

e PHYLIP, WEBPHYLIP, PhyloBLAST
(large set of programs, command-line)

 PAUP (point-&-click) (MP-based)

e PUZZLE, TREE-PUZZLE, PAML,
MOLPHY (ML-based)

« MrBAYES (Bayesian Methods)
« MACCLADE (MP?)
 LAMARC

10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9
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Recipes to minimize errors in
phylogenetic analysis

Use large amounts of data. Randomize order, if needed.

Exclude unreliable data (for e.g., when alignment is not
known for sure)

Exclude fast-evolving sequences or sites (3™ codon
positions), or only use it for close relationships.

Most methods will incorrectly group sequences with
similar base composition (Additive methods are robust in
the presence of such sequences)

Check validity of “independence” assumptions (e.g.
changes on either side of a hairpin structure)

Use all methods to look at data.
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Alignments

 Inputs for phylogenetic analysis usually Is a
multiple sequence alignment.

e Programs such as CLUSTALW, produce
good alignments, but not good trees.

 Aligning according to secondary or tertiary
trees are better for phylogenetic analysis.

e \Which alignment method Is better for which
phylogenetic analysis method? OPEN!
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Other Heuristics

* Branch Swapping to modify existing trees
e Quartet Puzzling: rapid tree searching
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