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Identification of
homology in protein
structure classification
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Structural biology and structural genomics are expected to
produce many three-dimensional protein structures in the
near future. Each new structure raises questions about its
function and evolution. Correct functional and evolutionary
classification of a new structure is difficult for distantly relat-
ed proteins and error-prone using simple statistical scores
based on sequence or structure similarity. Here we present an
accurate numerical method for the identification of evolu-
tionary relationships (homology). The method is based on
the principle that natural selection maintains structural and
functional continuity within a diverging protein family. The
problem of different rates of structural divergence between
different families is solved by first using structural similari-
ties to produce a global map of folds in protein space and then
further subdividing fold neighborhoods into superfamilies
based on functional similarities. In a validation test against a
classification by human experts (SCOP), 77% of homologous
pairs were identified with 92% reliability. The method is fully
automated, allowing fast, self-consistent and complete classi-
fication of large numbers of protein structures. In particular,
the discrimination between analogy and homology of close
structural neighbors will lead to functional predictions while
avoiding overprediction.

The organization of protein structure data in terms of evolu-
tionary relationships is a field where subjective classification has
prevailed and is considered by some to be impossible/inappro-
priate to address using numerical methods. A key difficulty is
that the boundary between apparent homologs and analogs
(convergent folds) corresponds to a very broad range of values in
sequence, structural and functional similarity in different pro-
tein families. Finding attributes that would allow classification
with both high coverage and a low error rate seems difficult1–5.
Here we address homolog/analog discrimination using an
underlying evolutionary model based on the concept of a protein
space and natural selection6. The history of a superfamily starts
from a common ancestor, and evolution occurs by gradual diffu-
sion from this point source. The descendants of the common
ancestor remain in the (structural) neighborhood of each other
and inherit a similar spectrum of functional properties from the
common ancestor. Thus, superfamilies can be delineated as con-
tinuous neighborhoods in the map of protein space (Fig. 1).

We have derived a representation of protein space by structure
comparison. For computational convenience, we used hierarchi-
cal clustering (average linkage of DALI7–9 Z-scores) to derive a
fold dendrogram from structural similarities and limited the
search for candidate superfamilies to branches of this tree. The
weighted sum of intramolecular distance difference matrices
from DALI captures the strong conservation of functionally con-
strained motifs — for example, in the surroundings of an active
site — but simultaneously allows for structural deviations
between more distant parts of the molecules7. We demonstrate,
by comparison to SCOP10, that DALI apparently successfully
integrates over important aspects of the process of divergent

structural evolution, preserving evolutionary neighbor relation-
ships in protein space. In the resulting map of protein space,
fold/superfamily boundaries are identified based on functional
and sequence similarity clues of evolutionary relationships
(such as shared sequence neighbors, conserved sites and func-
tional annotations). A neural network is trained to sum up these
heterogeneous inputs into a single number. This allows us to
score any candidate superfamily in terms of functional similari-
ties within the set and to select a ‘best’ partition of all proteins
into homologous superfamilies in the light of available evidence.

Validating the map of fold space
Our key assumption is that members of a superfamily occupy
monophyletic branches in the DALI fold dendrogram. To vali-
date this assumption, the topology (that is, branching order) of
the DALI fold dendrogram9 was compared to the SCOP classifi-
cation of Alexey Murzin10. SCOP classifies protein domains into
a hierarchy of similarity levels (from the most general to the
most specific): class, fold, superfamily, family and protein. The
clustering score of Przytycka et al.11 measures the extent to which
members of a SCOP superfamily are grouped together in anoth-
er hierarchical classification (here, the DALI fold dendrogram).
For a given pair of structures belonging to the same SCOP
superfamily, one first finds the smallest branch of the DALI fold
dendrogram that contains both structures. One then examines
the SCOP classification of all structures at the leaves of this
branch. The clustering score is defined as the fraction of struc-
tures belonging to the same SCOP superfamily as the initial pair.
The average clustering score of SCOP superfamilies in the DALI
dendrogram was 0.76 evaluated on a set of 2,141 representative
domains in SCOP classes 1–4. Strict monophyly (a clustering
score of 1) was observed for 190 out of 330 (58%) of SCOP
superfamilies, excluding singletons (Table 1). A clustering score
<1 means that a SCOP superfamily is split (polyphyletic) in the
DALI dendrogram. For example, SCOP superfamily 3.32.1,
‘P-loop containing nucleotide triphosphate hydrolases’, is divid-
ed on the fourth SCOP level based on β-sheet topologies,
although topology is usually differentiated at the second SCOP
level (the fourth level groups proteins with clear sequence simi-
larity). In the fold dendrogram, most members of SCOP super-
family 3.32.1 occupy three separate monophyletic branches,
leading to a clustering score of 0.32. The average clustering score
was below 0.5 for 96 out of 140 polyphyletic SCOP superfami-
lies, suggesting that the decision to merge structures into super-
families in SCOP was based on evidence other than structural
similarity extending over an entire globular domain fold.

Pairwise classification accuracy
The boundaries of superfamilies in the fold dendrogram are
identified based on functional similarity (Fig. 1b). A neural net-
work was trained against the fold-to-superfamily transition in
SCOP, using different functional attributes (Table 2) as input.
The output of the neural network ranges from zero (analogous
pairs) to one (homologous pairs) and is defined as our measure
of functional similarity, φ. Although many homologous pairs are
more functionally similar than most analogous pairs, the distri-
butions of functional similarity (φ) values of homologs and
analogs are broad and overlapping. For example, there is a
strong (φ = 1.00) but false similarity between an α/β-hydrolase
(cutinase 1cex, SCOP 3.17.8) and 2-hydroxyisocaproate dehy-
drogenase (1dxy, SCOP 3.17.11) due to a structurally equivalent
pair of conserved His residues in the pentapeptide PH(I/L)AY,
which is part of the catalytic triad and the NAD-binding site,
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respectively. On the other hand, there is no significant function-
al similarity (φ = 0.07) between two fibronectin-like domains
(SCOP 2.1.2) from interleukin-4 receptor (1iarB) and human
fibronectin (1fnhA). In both cases, assessing the pairwise func-
tional similarities in the context of the fold dendrogram leads to
superfamily classification in agreement with SCOP. Overall, the
global partitioning strategy yields a classification accuracy that is
close to the upper limit determined by the monophyly of SCOP
superfamilies in our fold dendrogram. Global partitioning leads

to the identification of 77% of homologous pairs from SCOP
with 92% reliability (Fig. 2). For comparison, a Markov transi-
tion model2 of structural evolution was reported to recognize
48% of pairs from the same SCOP superfamily with 80% relia-
bility (in a similar but not identical test set).

Calibrating the superfamily threshold parameter �
We applied our automatic method to classify all structures in the
Protein Data Bank (PDB) using a neural network trained on

c

d

a

b

Table 1 Mapping between automatically (DALI) and manually (SCOP) defined superfamilies

Query set Q Total number of Reference sets R Q ⊆ R1 Q ⊄ R
query sets Q

DALI singleton superfamily 738 SCOP superfamilies 738 (336) –
DALI multimember superfamily 324 SCOP superfamilies 299 (108) 252

All DALI superfamilies 1,062 SCOP superfamilies 1,037 (444) 252

SCOP singleton superfamily 370 DALI superfamilies 370 (336) –
SCOP monophyletic multimember superfamily 190 DALI superfamilies 132 (108) 583

SCOP polyphyletic superfamily 140 DALI superfamilies 11 (0) 1293

All SCOP superfamilies 700 DALI superfamilies 513 (444) 1873

1The number in parentheses is the number of cases where Q = R.
2Overunification under automatic classification using θ = 0.33.
3Oversplitting under automatic classification using θ = 0.33.

Fig. 1 Partitioning protein space into homologous families. a, All-
against-all structure alignment by DALI reveals a hierarchical organiza-
tion of fold space. The method is sensitive enough to recognize
similarities of general folding pattern — for example, the β-sandwich
topology of superoxide dismutase and immunoglobulin domains — and
selective enough to give higher scores to pairs of structures with more
closely superimposable Cα traces — for example, any two globins score
higher than any globin–phycocyanin pair. Structure similarity alone
yields an operational definition of ‘folds’. The thick circles denoting folds
(left) are defined using a uniform radius for clusters of structural neigh-
bors. The vertical bar (right) denotes cutting the fold dendrogram at a
uniform value of structural similarity. However, the level of structural
similarity, or degree of structural divergence, varies between different
families, and we need other criteria to delineate superfamilies. 
b, Divergent evolution from a common ancestor retains not only the fold
but also many functional features. This means that homologs remain in a
structural neighborhood and can be delineated by similar functional
attributes (marked here by similar color) in the map of fold space.
Functional convergence (from independent evolutionary origins) would
appear as blotches of similar color in disconnected regions of the map of
fold space and in disjoint branches of the fold dendrogram. Partitioning
the fold dendrogram in terms of functional similarities yields family-spe-
cific thresholds in terms of structural similarity (nodes that partition the
fold dendrogram into functionally conserved superfamilies are circled on
the right). This combination of structural and functional similarity mea-
sures results in an automatically generated hierarchical classification
m_n at the fold (m) and superfamily (n) levels. c, The principles are illus-
trated on a branch of the fold dendrogram consisting of aminopeptidas-
es (1xjo and 1amp), carboxypeptidase (1aye), purine nucleoside
phosphorylases (1b8oA, 1cb0A and 1ecpA), pyrrolidone carboxyl pepti-
dase (1a2zA), peptidyl–tRNA hydrolase (2pth) and hydrogenase maturat-
ing endopeptidase (1cfzA). The functional similarity between all pairs of
structures is evaluated using a neural network with output φ in the range
0 (analogous)–1 (homologous) — for example, φ(1cb0A, 1b8oA) = 0.91,
φ(1amp, 1aye) = 0.74, φ(1cfzA, 2pth) = 0.59, φ(1xjo, 1amp) = 0.30 and
φ(1a2zA, 2pth) = 0.13. Here, line thickness indicates the magnitude of
the term φ(i,j) − θ (Eq. 1; see Methods) with color-coding for positive (red)
or negative (blue) values. The threshold parameter θ was arbitrarily set
to 0.30 in this numerical example. d, The protein set is partitioned into
superfamilies in the context of the fold dendrogram. Node scores s(C)
are computed for each node (Eq. 1), with θ = 0.30. For example, each
structure is homologous to itself; therefore, leaf nodes get a score 
s(leaf) = 1.00 – θ = 0.70, whereas s(1cfzA, 2pth) = (1.00 + 1.00 + (2 × 0.59))
/ 4 – θ = 1.98. The optimal partition (circled nodes) maximizes the sum of
node scores over selected nodes (underlined scores). This optimal parti-
tion is stable for threshold values 0.09 < θ < 0.53.
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SCOP 1.53. The θ threshold defines the level of functional simi-
larity that constitutes ‘compelling evidence’ for merging struc-
tural neighbors into a superfamily (Eq. 1; see Methods).
Partitions derived at different values of θ produce a hierarchical
classification, where a functionally diverse superfamily splits
into subfamilies at higher values of θ — for example, retroviral
proteases versus classical aspartic proteases. In common practice,
however, there is one particular value of θ which will be of most
interest: the threshold value that most closely mirrors the super-
family/fold boundary defined in SCOP. A broad range of θ val-
ues yields very similar partitions. The sum of overunification
and oversplitting errors is 215 at θ = 0.30, 212 at θ = 0.33
(Table 1), 216 at θ = 0.40, 219 at θ = 0.60 and 247 at θ = 0.90.
Oversplitting means that the automatic classification fails to
group all members of a SCOP superfamily in one DALI super-
family. Overunification means that a DALI superfamily contains
members from two or more SCOP superfamilies.

The reliability of homology detection is very high: excluding
singletons, all members of 299 out of 324 DALI superfamilies
(92%) are members of one SCOP superfamily (Table 1).
Borderline functional similarities can lead to overunification
(example in Table 2). Unaware that 1cfzA is a metallopeptidase
while 2pth has been shown to be metal-independent12, our auto-
matic classifier unifies these two enzymes into one superfamily
but SCOP does not. In general, DALI defines superfamilies more
conservatively than SCOP. Remarkably, however, a majority 
(444 / 700 = 63%) of SCOP superfamilies are recovered exactly —
that is, an identical set of domains is grouped into one superfami-
ly under our automated classification as in SCOP. Almost one-
third of the monophyletic SCOP superfamilies suffer from
oversplitting under the automatic classification (Table 1).
Typically only one or a few members of a large SCOP superfamily
remain unmerged at the outer fringe of a branch in the DALI fold
dendrogram. Inspection indicates that the lack of evidence
(undefined functional features) is a limiting factor. New informa-
tion may support further mergers of superfamilies in the future.
Adding more functional attributes to the feature vectors will also
be technically straightforward. In particular, data from functional
genomics provide new ways of quantifying functional similarity
— for example, in terms of the similarity of transcriptional pro-
files of two genes in a large number of experimental conditions.

Classifying proteins of unknown function
Functional annotation from literature is unlikely to be available
for most proteins targeted in structural genomics. We simulated

the classification of hypothetical proteins using only the first five
features in Table 2 for a test protein. Each simulation perturbed
the neural network inputs of all pairs involving the test protein,
and the automatic procedure for superfamily classification was
repeated. Classification of the PDB using θ = 0.33 and the full
feature description yielded 456 superfamilies with at least two
members and comprising 1,900 representative domains. The
sparser feature vectors affected the result of unification in only
105 out of 1,900 simulations (6%). For example, restriction

Fig. 2 Jack-knife evaluation of the prediction accuracy of the neural net-
work. Neural networks were trained to weigh the relative contributions
of the heterogeneous inputs (Table 2) in order to discriminate between
related and unrelated pairs of structures as defined by the SCOP
fold/superfamily classification. The training set consisted of 11,907 unre-
lated pairs (same SCOP fold but different superfamily) and 3,635 related
pairs (same SCOP superfamily) from a representative set of single-
domain PDB structures. N = 15,542 training runs were made, each using
(N – 1) examples for training and testing the example left out. The pre-
diction accuracy is summarized by coverage and reliability. The tested
examples are rank-ordered according to the neural network output,
with the strongest predictions at the top. Let us consider the P (positive)
highest scoring examples. In this set, reliability is defined as TP / P, where
TP (true positive) is the number of positive examples that are correctly
identified as related. Coverage is defined as TP / T, where T (true) is the
number of related pairs in the whole test set. P varies from 1 to N along
each curve. A perfect classifier would rank all true pairs above the first
false pair, driving the curve to the top-right corner of the graph. Ranking
by (1) sequence identity alone; (2) structure similarity alone; (3) keyword
similarity alone; and (4) neural network output. The dots on curve (5)
correspond to optimal partitions obtained at different values of θ in
Eq. 1 (see Methods) — that is, using the context in the fold dendrogram
as a noise filter on neural network predictions. Filtering based on the
DALI fold dendrogram was superior to clustering based on neural net-
work outputs (data not shown).

Table 2 Feature vector for the (2pth, 1cfzA) pair

Feature Evidence Value
Z-score DALI structural alignment 10.2
Sequence identity DALI structural alignment 14%
Sequence family overlap No common BLAST sequence neighbors ‘no’
Identical conserved residues No ligand information for 2pth ‘unknown’

in contact to ligand
Functional preference 2pth G7 & G23 and 1cfzA G7 & G19 are structurally equivalent, 0.75

conserved and in spatial proximity1

Keyword similarity 2pth: 1 / 13 ‘sporulation’, 12 / 13 ‘hydrolase’; 1cfzA: 0.93
12 / 12 ‘protease’and 12 / 12 ‘hydrolase’

Common E.C. numbers 2pth: E.C.3.1.1.29, 1cfzA: E.C.3.4.–.– 1
Overlap of annotated sites 2pth G100D is a temperature-sensitive mutation and structurally  ‘yes’

equivalent to 1cfzA G72; both residues are conserved

12pth N10 / 1cfzA N10 are also conserved, yielding a functional preference of 0.38 but only the highest scoring cluster is used.
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endonucleases are typical of a superfamily that in the automatic
classification is held together by common keywords. All other
features are weak (such as low average Z-score of 4.7, low
sequence identities, small and nonoverlapping sequence fami-
lies, and no ligands in the crystal structures) so that simulations
on four out of six members in the endonuclease family resulted
in a family break-up. However, the simulations suggest that
manual functional annotation requiring human expertise (key-
words, enzyme classification numbers and site annotation) is
usually redundant with functional attributes extracted automat-
ically from sequence and structure conservation. Moreover, the
strategy of averaging over candidate superfamilies, defined by
the fold dendrogram, confers general robustness to the evolu-
tionary classifier with respect to a lack of functional information
for one or a few proteins in a selected set. This is true as long as
evidence for homology in neighboring pairs is strong.

Automated classification uses a limited set of generic function-
al attributes to determine superfamily membership. Once super-
family membership is established, detailed functional predictions
can be based on judicious carry-over of the complete functional
description from experimentally characterized members within a
superfamily. Of a digest of 15 recently solved structural genomics
targets, four were without structural neighbors (Table 3). Three
structures had structural neighbors but insufficient functional
similarity for grouping them into a superfamily. Biochemical
experiments to test for functional similarity to the closest struc-
tural neighbors of Methanobacterium thermoautotrophicum pro-
teins Mth538 and Mth175 were inconclusive13, indicating that
classification into a new family is probably a correct decision.
Eight structures joined existing and emerging superfamilies,
leading to experimentally testable hypotheses about biochemical
function. In particular, we predict an NADP binding site in the

‘FMN- and nickel binding protein’ Mth152 (ref. 13) based on its
remote homology to ferric reductase from Archaeoglobus fulgidus
and the presence of a putative His marker for FMN:NADP oxi-
doreductases (His 126 in ferric reductase14/His 144 in Mth152).
Also, a sulphate ion in Mth152 is bound in a structurally equiva-
lent position to the diphosphates of NADP in the crystal struc-
ture of ferric reductase.

Conclusion
We have proposed a numerical taxonomy leading to robust
automatic evolutionary classification of protein structures. The
topology of protein space is probed using structural similarity.
Searching for clusters of structural neighbors where the mem-
bers consistently share many functional attributes leads to an
optimal partitioning of protein space. This clustering corre-
sponds well to the analog/homolog boundaries drawn by biolo-
gists, with applications in the generation of functional
hypotheses in nonhypothesis-driven structural genomics
efforts.

Methods
Data sets. All data sets, feature tables, neural network training
and test sets, and results are available electronically from
http://www.ebi.ac.uk/dali/domain/3.1beta/

Feature vectors. The input to the neural network is a feature vec-
tor (Table 2). The features are derived from structural conservation,
sequence conservation and sequence annotation, exploiting
sequence alignments and structure superimposition to transfer
position-specific information from sequence-homologs to the
query structures. ‘Keyword similarity’ is the dot product of vectors
representing the frequency of occurrence of SWISSPROT keywords
in sequence homologs of either query structure. Noninformative
keywords such as ‘3D-structure’ are excluded. ‘Functional prefer-

Table 3 Classification of recently solved structural genomics targets

Protein PDB Authors’ functional classification Evolutionary classification1 (this work)

Mth1615 1eijA DNA-binding, putative transcription factor2 New fold
Mth1184 1gh9A Putative metal-binding protein2 New fold
Hi1434 1dbuA Putative nucleotide or oligonucleotide New fold

binding domain
E. coli YrdC 1hruA Putative dsRNA binding protein New fold
Mth538 1eiwA Unknown2 New family
Mth1175 1eo1A Unknown2 New family
Clostridium CipC 1ehxA Scaffolding protein and the first prokaryotic New family

member of the I set of the immunoglobulin superfamily3

B. subtilis maf 1ex2A Nucleotide binding, putative NTPase Same superfamily as with Mj0226 
pyrophosphatase (1b87A)

Mth152 1ejeA FMN- and nickel-binding protein2 Same superfamily as ferric reductase (1i0rA)
Mj0541 1f9aA NMN adenylyltransferase Same superfamily as two nucleotidylyl 

transferases (1b6tA, 1cozA)
Mouse doppel 1i17A Paralog of the cellular prion protein but with a distinct Same superfamily as prion proteins 

physiological role and distinct pathology (1b10A, 1qlzA)
Yeast Ure2 1g6wa Prion protein, lacks GST activity4 Same superfamily as 6 glutathione 

S-transferases (GSTs)
Mj0882 1dusA Unpublished Same superfamily as 16 methyltransferases
E. coli CyaY 1ew4A Belongs to the frataxin family which is linked to the Same superfamily as frataxin (1dlxA)

neurodegenerative disease Friedreich ataxia
Mth649 1i81A Belongs to the SnRNP Sm protein family; 37% Same superfamily as small nuclear 

sequence identity to 1d3bA ribonucleo-proteins (SnRNPs)

1Superfamilies defined at θ = 0.33. Folds defined by cutting the fold dendrogram at Z = 2.
2Ref. 13.
3Ref. 19.
4Ref. 20.
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pairs and a penalty for including ‘dissimilar’ pairs in a cluster. More
formally, the optimal partitioning of the fold dendrogram results in
a set of superfamily-ancestor nodes (C), over which the sum of node
scores s(C) is maximal:

s(C) = Σi∈ C Σj∈ C (φ(i,j) – θ) = Nc
2 (<φ>C – θ) (1)

The node score s(C) is summed over all pairs of leaves (structures
i,j) under a superfamily ancestor node C. φ(i,j) is the output from the
neural network for a protein pair (i,j), <φ>C = (ΣΣ φ(i,j)) / Nc

2 is the
cluster average, Nc is the number of members in the cluster and θ is
the threshold parameter. A branch of the fold dendrogram has a
high score if the members have a high average neural network pre-
diction for being homologous.

The merging of two branches of the fold dendrogram is favored
if their average connection strength is above θ. Algebraically, if a
cluster C consists of two subsets (branches) A and B, then s(C) = 
s(A) + s(B) + 2s(AB), where s(AB) denotes the sum over pairs where
one structure belongs to subset A and the other belongs to subset
B. A condition for merging A and B is s(C) > s(A) + s(B), which clearly
holds only if s(AB) > 0. A straightforward tree traversal algorithm
yields the optimal partition, where no subdivision or merger
increases the sum of node scores s over the selected set of nodes.
Fig. 1c,d gives a worked example of the partitioning procedure.
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ence’ is defined per amino acid type and is summed over all residues
in a three-dimenional cluster of conserved residues. Feature compu-
tation is described at depth in ref. 4.

Data normalization. The DALI Z-score, functional preference
and keyword similarity are open scales of similarity and were lin-
early rescaled to zero mean and a standard deviation of one. The
problem of missing values in specific components of the input vec-
tors is severe in our case. For example, the similarity of enzyme
classification codes is a strong feature but is defined only for 20%
of the pair examples in the training set. There are various heuris-
tics in the literature for dealing with missing data in classification
problems. Here the missing values for the enzyme classification
codes were filled with the mean value for all known pairs.
Similarly, ligand information is unavailable or incomplete for
many structures in the PDB. The feature ‘identical conserved
residues in contact to a ligand’ was, therefore, encoded as ‘yes’,
‘no’ or ‘unknown’.

Neural networks. Layered feed-forward neural networks15–17 were
optimized by a back-propagation algorithm18. Networks of widely
different architectures were tested using one layer of hidden units,
where the number of hidden units was initially set to 2 × (number of
input units) + 1 and reduced until an optimum was reached. The
final architecture had nine input units, 10 units in the hidden layer
and one output unit leading to a total of (9 × 10) + (10 × 1) = 100
adjustable weights. All weights in the neural network were ran-
domly initialized to a value from the interval [–1, 1] prior to net-
work training. The early stopping technique was used to prevent
overfitting of the free parameters of the network15. During train-
ing, the error function (difference between desired and obtained
outputs) of the training set falls continuously until it converges on
some value. An independent validation set consists of examples not
in the training set. The error function of the validation set is usually
higher than that of the training set; it falls initially but then rises
again as overfitting sets in. Training of the neural network is
stopped at the minimum.

Optimal partitioning of protein space. Our goal is to partition
the fold dendrogram so that the observed functional similarities
(strong neural network predictions) concentrated as much as possi-
ble within the selected clusters (branches, superfamilies). The objec-
tive function should balance the size of the clusters against their
‘quality’ as a homologous set. This is achieved with a sum-of-pairs
formulation similar to that used to delineate the common structural
core in distance matrix alignment by DALI7. The neural network out-
puts are thresholded so that there is a gain from including ‘similar’
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