Gene Expression

* Process of transcription and/or translation
of a gene is called gene expression.

» Every cell of an organism has the same
genetic material, but different genes are
expressed at different times.

* Patterns of gene expression in a cell is
indicative of its state.
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Hybridization

» If two complementary strands of DNA or
MRNA are brought together under the right
experimental conditions they will hybridize.
* A hybridizes to B =

- A is reverse complementary to B, or

- A is reverse complementary to a subsequence of
B.

» It is possible to experimentally verify
whether A hybridizes to B, by labeling A or B
with a radioactive or fluorescent tag,
followed by excitation by laser.

Bioinformatics (Lec 15) 3/1/05 2



Measuring gene expression

* Gene expression for a single gene can be
measured by extracting mRNA from the cell
and doing a simple hybridization experiment.

» Given a sample of cells, gene expression for
every gene can be measured using a single
microarray experiment.

Bioinformatics (Lec 15) 3/1/05 3



Microarray/DNA chip technology

* High-throughput method to study gene expression
of thousands of genes simultaneously.
* Many applications:
- Genetic disorders & Mutation/polymorphism detection
- Study of disease subtypes
- Drug discovery & toxicology studies
- Pathogen analysis

- Differing expressions over time, between tissues,
between drugs, across disease states

Bioinformatics (Lec 15) 3/1/05 4



Microarray Data
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Microarray/DNA chips (Simplified)
» Construct probes corresponding to reverse

complements of genes of interest.

* Microscopic quantities of probes placed on solid
surfaces at defined spots on the chip.

» Extract mRNA from sample cells and label them.

+ Apply labeled sample (MRNA extracted from cells)
to every spot, and allow hybridization.

* Wash off unhybridized material.

+ Use optical detector to measure amount of
fluorescence from each spot.

Bioinformatics (Lec 15) 3/1/05 7



Gene Chips
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Affymetrix DNA chip schematic

www.affymetrix.com
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What's on the slide?

Shining a laser light at GeneChip® array causes tagged DNA fragments that hybridized to glow
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DNA Chips & Images

Bioinformatics (Lec 15) 3/1/05
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Microarrays: competing technologies

+ Affymetrix & Synteni/Stanford
- Differ in:
- method to place DNA: Spotting vs.
photolithography
- Length of probe
- Complete sequence vs. series of fragments

Bioinformatics (Lec 15) 3/1/05 13



How to compare 2 cell samples with

Two-Color Microarrays?

* MRNA from sample 1 is extracted and labeled with
a red fluorescent dye.

* mRNA from sample 2 is extracted and labeled with
a green fluorescent dye.

* Mix the samples and apply it to every spot on the
microarray. Hybridize sample mixture to probes.

+ Use optical detector to measure the amount of
green and red fluorescence at each spot.

Bioinformatics (Lec 15) 3/1/05 14



2-color DNA
microarray
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Study effect of treatment over time

Sample —

: (
Treated Sample(1]) mmmp-c] —  Exptl
Treated Sample(12) —»V:V — Expt 2
Treated Sample(t3) =" — Expt 3
Treated Sample(tn) —>\/ — Expt n
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Sources of Variations & Errors

Variations in cells/individuals.

Variations in mRNA extraction, isolation, introduction of
dye, variation in dye incorporation, dye interference.

Variations in probe concentration, probe amounts, substrate
surface characteristics

Variations in hybridization conditions and kinetics

Variations in optical measurements, spot misalignments,
discretization effects, noise due to scanner lens and laser
irregularities

» Cross-hybridization of sequences with high sequence
identity.
+ Limit of factor 2 in precision of results.

Need to Normalize data
Bioinformatics (Lec 15) 3/1/05 17



Types of bias/variation

* Intensity & Range

- Variation changes with intensity. Larger variation
at lower end.

» Spatial
- Spot location changes expression

* Plate
- Printing plate changes expression

http://www.arabidopsis.org/info/2010_projects/comp_proj/AFGC/RevisedAF6C/Friday/index.htm

Bioinformatics (Lec 15) 3/1/05 18



Clustering
» Clustering is a general method to study
patterns in gene expressions.

» Several known methods:

- Hierarchical Clustering (Bottom-Up Approach)
- K-means Clustering (Top-Down Approach)

- Self-Organizing Maps (SOM)

Bioinformatics (Lec 15) 3/1/05 19



Hierarchical Clustering: Example
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A Dendrogram

//////




Hierarchical Clustering [Johnson, SC, 1967]

» Given n points in RY, compute the distance
between every pair of points

+ While (not done)

- Pick closest pair of points s; and s; and make
them part of the same cluster.

- Replace the pair by an average of the two s;;
Try the applet aft:
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Distance Metrics

* For clustering, define a distance function:
- Euclidean distance metrics

q 1/k
D«(X,Y) = {Z(xi —Yi)k} k=2: Euclidean Distance
=1

- Pearson correlation coefficient

1 & (X=X (YieY
,OXVZEZ [ j{ ] -1<p,21

OX Oy

Bioinformatics (Lec 15) 3/1/05 23



Bioinformatics (Lec 1¢

EXHIBIT 3.4 Joint Probability Model for the Ratings of Two People

@pxy=0 (®) pxy =1
Yy y
x 1 2 3 Total x 1 2 3 Total
3 1/9 1/9 1/9 1/3 3 1/18 1/18 4/18 173
1/9 1/9 1/9 1/3 2 1/18 4/18 1/18 173
1 1/9 1/9 19 173 1 4/18 1/18 1/18 173
Total 173 173 173 1 Total 173 173 173 1
(©) pxy = —3 (d) pxy = %
Yy y
x 1 2 3 Total X 1 2 3 Total
3 4/18 1/18 1/18 1/3 3 127 227 627 1/3
2 1/18 4/18 1/18 1/3 2 2127 5127 2127 173
1 1/18 1/18 4/18 13 1 6/27 2127 127 173
Total 1/3 173 13 1 Total 1/3 1/3 173 1
() pxy = -3 ) pxyr =%
Yy y
x 1 2 3 Total x 1 2 3 Total
3 6/27 2127 1127 1/3 3 1/36  2/36 9/36 1/3
2127 5127 227 173 2 2/36  8/36 2/36 173
1 1127 2127 6/27 173 1 9/36 2/36 1/36 173
Total 173 173 1/3 1 Total 1/3 173 173 1
(8 pxy = -3
y
x 1 2 3 Total
3 9/36 2/36 1/36 173
2 2/36 8/18 2/18 173
1 1/36  2/36 9/36 1/3
Total 1/3 1/3 173 1
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Clustering of gene expressions

* Represent each gene as a vector or a point in
d-space where d is the number of arrays or
experiments being analyzed.

Bioinformatics (Lec 15) 3/1/05 25
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Expression Profiles for
Fermentation Genes
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Observations

+ As glucose was depleted - Marked change
in the global pattern of gene expression

+ ~50% of difterentially expressed genes
have unknown function

+ Genes with similar expression profiles had
common promoters

+ Expression patterns observed match those
observed 1n other types of experiments
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K-Means Clustering: Example

Example from Andrew Moore’s tutorial on Clustering.

Bioinformatics (Lec 15) 3/1/05 30



Start

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)}

2. Randomly guess k
cluster Center
locations

oo ght © 2001, Andrew W Moo

¥emeare and Hierarthical Clistorng: S 7

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
duster Center
locations

3. Each datapoint finds
out which Center it's
closest to. (Thus
each Center "owns”
a set of datapoints)

Copryrgit € Z00L, A . Mocre

-meare wd Hierwches! Claterrg: Shos §
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)}
2. Randomly guess k

cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the

points it owns

oo ght © 2001, Andrew W Moo

¥-meare and Hierarchical Clistorng: S §

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)
2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns...

5. ..and jumps there

6. ..Repeat untl
terminated!

Copryrgit € Z00L, A . Mocre

E-mmans e e arhesl Custerrg: Shie 10
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K-means
Start

Advance apologies: in
Black and White this
example will deteriorate
Example generated by
Dan Pelleg’s superduper
fast K-means system:
Dan Pelleg and Andrew
Moore. Accelerating Exact
k-means Algorithms wilh
Geometric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999,
(KDD93) (available an

www autorib. o a/loap htrrl )

Coprght © 2001, Andrew W, Moo

-3 ard Hiorarchical Clustonng: Sida 11

{1 ¥ |

K-means
continues

Copwrght € 2001 Andrew W, Moore

E-moent ond Herathoal Clusterng: Side 12

Bioinformatics (Lec 15)

3/1/05

K-means
continues

Coprght © 2001, Andrew W, Moo

K3 and Hiorarchical Clustenng: Sida 13

K-means
continues

Copwrght € 2001 Andrew W, Moore

E-moens ond Herathcal Clusterng: Side 14
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K-means
continues

Coppright © 2001, Androw W, Moor

K-maans ard Hirarchical Custonng: Shas 18

K-means
continues

Srpyright © TO01, Andrew W, Moore

¥-trmarn ard b archiesl Clberg: Sie 18
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K-means
continues

Coppright © 2001, Androw W, Moor

K-means
continues

Srpyright © TO01, Andrew W, Moore

¥trmarn ard b archiesl Chberg: S 18
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K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5) on
2. Randomly guess k
cluster Center

Start | = |-

K-means
continues

Copprght © 2001, Androw W. Moo E-moans and Hisrarchical Csterng: Shae 7 Copprght © 2001, Androw W. Moo E-mbans and Herarchical Clustenng. Skis 10

K-means

1. Ask user how many
clusters they'd like.
(e.g. k=5) b

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to, (Thus
each Center "owns”
a set of datapoints)

K-means
terminates

i

End

Copyrght © 2001, Andrew Wi, Moore K-megre and Hersrchieal Cuserng: Soe § Copyrght © 2001, Andrew Wi, Moore E-mmeans ard Heramhiesl Clusterng: Skoe 20

4 10
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K-Means Clustering [McQueen '67]

Repeat

— Start with randomly chosen cluster centers

— Assign points to give greatest increase In score
— Recompute cluster centers

— Reassign points

until (no changes)

Try the applet at:

Bioinformatics (Lec 15) 3/1/05 35



Comparisons

* Hierarchical clustering
- Number of clusters not preset.
- Complete hierarchy of clusters
- Not very robust, not very efficient.

* K-Means
- Need definition of a mean. Categorical data?

- More efficient and often finds optimum
clustering.

Bioinformatics (Lec 15) 3/1/05 36



Functionally related
genes behave similarly
across experiments

Bioinformatics (Lec 15)

Log expression ratio

7a\pha elu cde spo he re co di
(a) Microamay experiment

Log expression ratio

-4 L L
alpha elu cde Spo he re co di
(b) Microarray experiment

Figure 1: Expression profiles of the cytoplasmic ribosomal proteins. Figure (a) shows the
expression profiles from the data in [Eisen et al., 1998] of 121 cytoplasmic ribosomal proteins, as
clagsified by MYGD [MYGD, 1999]. The logarithm of the expression ratio is plotted as a function
of DNA microarray experiment. Ticks along the X-axis represent the beginnings of experimental
series. They are, from left to right, cell division cycle after synchronization with «v factor arrest
(alpha), cell division cycle after synchromzation by centrifugal elutriation (elu), cell division cycle
measured using a temperature sensitive cdc? 5 mmutant (cde), sporulation (spo), heat shock (he),
reducing shock (re), cold shock (co), and diauxic shift (di). Sporulation is the generation of a yeast
spore by meiosis. Diauxic shift is the shift from anaerobic (fermentation) to aerobic (respiration)
metabolism. The medium starts rich in glucose, and yeast cells ferment, producing ethanol. When
the glucose is used up, they switch to ethanol as a source for carbon. Heat, cold, and reducing
shock are various ways to stress the yeast cell. Figure (b) shows the average, plus or minus one
standard deviation, of the data in Figure (a).
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Self-Organizing Maps [Kohonen]
» Kind of neural network.

» Clusters data and find complex relationships
between clusters.

* Helps reduce the dimensionality of the data.
* Map of 1 or 2 dimensions produced.

» Unsupervised Clustering

* Like K-Means, except for visualization

Bioinformatics (Lec 15) 3/1/05 38



SOM Architectures
- 2-D 6rid

+ 3-D 6rid

* Hexagonal Grid

Bioinformatics (Lec 15) 3/1/05
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SOM Algorithm

- Select SOM architecture, and initialize
weight vectors and other parameters.
» While (stopping condition not satisfied) do
for each input point x

- winning node q has weight vector closest to x.
- Update weight vector of g and its neighbors.
- Reduce neighborhood size and learning rate.

Bioinformatics (Lec 15) 3/1/05 40



SOM Algorithm Detalls

» Distance between x and weight vedtony
+ Winning node:d(x) = min|x—wi

* Weight update function (for neighbors):
ik +1) = wi(k) + z(k, X, i)[x(k) = wi(K)]
* Learning rate: 2
(k. x,) =no<k)exp[_“ ;Z“X’” J
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World Bank Statistics

- Data: World Bank statistics of countries in
1992.

» 39 indicators considered e.g., health,
nutrition, educational services, etc.

+ The complex joint effect of these factors
can can be visualized by organizing the
countries using the self-organizing map.

Bioinformatics (Lec 15) 3/1/05 42



World Poverty PCA
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World Poverty SOM
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World Poverty Map
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Viewing SOM Clusters on PCA axes

T o -
Y-axis (Component 2

Wariance = 12,7583
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SOM Example [Xiao-rui He]j
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Neural Networks

Synaptic
Weights W

Input X e—

o/

Bioinformatics (Lec 15)
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Learning NN

Weights W

Adaptive Algorithm

Desired Response

Bioinformatics (Lec 15) 3/1/05 51



Types of NNs

» Recurrent NN

- Feed-forward NN
* Layered

Other Issues

» Hidden layers possible
- Different activation functions possible

Bioinformatics (Lec 15) 3/1/05
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Application: Secondary Structure Prediction

‘

A Identical for all positions in the window
A Identical for all positions in the window

A Identical for all positions in the window
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Support Vector Machines

» Supervised Statistical Learning Method for:
- Classification
- Regression

+ Simplest Version:

- Training: Present series of labeled examples
(e.g., gene expressions of tumor vs. normal cells)

- Prediction: Predict labels of new examples.

Bioinformatics (Lec 15) 3/1/05 54



Learning Problems



SVM — Binary Classification

» Partition feature space with a surface.

» Surface is implied by a subset of the
training points (vectors) near it. These
vectors are referred to as Support Vectors.

» Efficient with high-dimensional data.
» Solid statistical theory
* Subsume several other methods.

Bioinformatics (Lec 15) 3/1/05 56



Learning Problems

» Binary Classification
» Multi-class classification
* Regression

Bioinformatics (Lec 15) 3/1/05
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Leamed threshold Optimized threshold
Class Method FP FN TP TN Cost | FP FN TP TN Cost
Tricatboxylic acid  Radial SVM 8 8 9 2442 241 4 7 10 2446 18
Dot-product-1 SVM | 11 9 B 2439 29 3 [ 11 2447 15
Dotproduct2 SYM | 5 10 7 2445 25| 4 6 11 2446 16 Leamed threshold Optimized threshold
Dotproduct:3 SVM | 4 12 5 2446 28| 4 6 11 2446 16 Class Method FP_FN TP TN Cost|FP FN TP TN Cost
Parzen 4 12 5 2446 28 0 12 5 2450 24 Proteasome Radial SVM 3 7 28 2429 171 4 5 30 2418 14
FLD 9 10 7 2441 29 7 g 9 2443 23 Dot-product-1 SVM | 14 11 24 2418 36 2 T 28 2430 16
4.5 7 17 0 2443 41 Dotproduct-2 SVM | 4 13 22 2428 301 4 6 290 2428 16
MOC1 3 16 1 2446 35 - _ _ _ _ Dot-product-3 SVM | 3 18 17 2429 391 2 7 28 2430 16
Respiration Radial SVM e 6 24 2428 21| 8§ 4 36 2419 16 Parzen 215 30 2411 31 3 9 26 2429 21
Dotproduct-1 SVM | 21 10 20 2416 41| 6 9 21 2431 24 FLD 7012023 2425 31127 28 2420 26
Dotproduct2 SVM | 7 14 16 2430 35| 7 6 24 2430 19 C4.5 1710 25 2415 37( - - - = =
Dotproduct-3 SVM | 3 15 15 2434 33| 7 6 24 2430 19 MOCI 10 17 18 2422 44
Parzen 210 20 2415 42 7 12 18 2430 31 Histone Radial SVM 0 2 9 2456 41 0 2 9 2456 4
FLD 0 10 20 2427 30| 14 4 26 2423 22 Dot-product-1 SVM 1] 4 T 2456 8 0 2 9 2456 4
4.5 12 17 13 2419 52 Dotproduct-2 SVM | 0 5 6 2456 10 0 2 9 2456 4
MOC1 1 2% 4 2425 64 = = = 25 = Dot-product-3 SVM | 0 8§ 3 2456 16 0 2 9 2456 4
Ribosome Radial SVM 9 4 117 2337 17| 6 1 120 2340 8 Parzen 2 3 8 4 311 3 8 MH 7T
Dotproduct-1 SVM | 13 6 115 2333 25|11 1 120 2335 13 FLD 0 3 8 4% 612 1 10 244 4
Dotproduct2 SVM | 7 10 111 2338 27| o 1 120 2337 11 C4.5 2 2 9 uM 6
Dotproduct3 SVM | 3 18 103 2343 39| 7 1 120 2339 9 MOC1 2 5 6 WM BRI - - - - -
Parzen 6 s 113 2340 e 5 g 113 2341 21 Helix-tum-helix  Radial SVM 1 16 0 2450 331 0 16 0 2451 32
FLD 15 5 116 2331 25| 8 3 118 2338 14 Dot-product-1 SVM | 20 16 0 2431 52| 0 16 0 2451 32
4.5 31 21 100 2315 73| - - - - - Dotproduct-2 SVM | 4 16 0 2447 | 0 16 0 2451 32
MOC1 2% 26 95 2320 78 Dot-product-3 SVM 1 16 0 2450 3| 0 16 0 2451 32
Parzen 14 16 0 2437 46 0 16 0 2451 32
FLD 14 16 0 2437 46 0 16 0 2451 32
Table 2: Comparison of error rates for various classification methods. Classes are as described c4.5 2 16 0 2449 34
in Table 1. The methods are the radial basis function SVM, the SVMs using the scaled dot produet MaocC] 6 16 0 2445 38| - - - = =

kernel raised to the first, second and third power, Parzen windows, Fisher's linear discriminant, and
the two decision tree learners, C4.5 and MOC1. The next five columns are the false positive, false
negative, true positive and true negative rates sumimed over three cross-validation splits, followed
by the cost, which 1s the number of false positives plus twice the number of false negatives. These
five columns are repeated twice, first using the threshold learned from the training set, and then
using the threshold that minimizes the cost on the test set. The threshold optimization is not
possible for the decision tree methods, sinee they do not produce ranked results,

Table 3: Comparison of error rates for various classification methods (continued). See caption
for Table 2.
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Class Kermnel Cost for cach split Total
Trcarboxylic acid  Radial 18 21 15 22 21 97
Dot-product-1 [ 15 22 18 23 22| 100
Dot-produet-2 | 16 22 17 22 22 99
Dot-produet-3 | 16 22 17 23 22| 100
Respiration Radial 16 18 23 20 16 93
Dot-product-1 | 24 24 29 27 23 127
Dot-product-2 | 19 19 26 24 23 111
Dot-product-3 | 19 19 26 22 21| 107
Ribosorme Radial ® 12 15 11 13 59
Dot-product-1 | 13 18 14 16 16 77
Dot-product-2 | 11 16 14 16 15 72
Dot-product-3 | 9 15 11 15 15 65
Proteasome Radial 14 10 9 11 11 55
Dot-product-1 | 16 12 12 17 19 76
Dot-produet-2 | 16 13 15 17 17 78
Dot-product-3 | 16 13 16 16 17 79
Histone Radial 4 4 4 4 4 20
Dot-product-1 | 4 4 4 4 4 20
Dot-product-2 | 4 4 4 4 4 20
Dot-product-3| 4 4 4 4 4 20

Table 4: Comparison of SVM performance using various kernels. For each of the MYGD
classifications, SVMs were trained using four different kemel functions on five different random
three-fold splits of the data, training on two-thirds and testing on the remaining third. The first
column contains the class, as described in Table 1. The second column contains the kernel function,
as described in Table 2. The next five columns contain the threshold-optimized cost (i.e., the
number of false positives plus twice the number of false negatives) for each of the five random
three-fold splits. The final column 1s the total cost across all five splits.

Bioinformatics (Lec 15)
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Family Gene Loens Ermror Description
TCA YPROOIW  CIT3 FN mtochondnal eitrate synthase
YOR14ZW  LSCL FN o subumit of suceinyl-CoA higase
YNROOIC CIT1 FN mitochondnal eitrate synthase
YLR174W  1DP2 FN wsocirate dehydrogenase
YILIZSW  KGDI FN ar-ketoglutarate dehydrogenase
YDRI4BC KGD2 FN component of a-ketoglutarate dehydrogenase
complex in mitochondra
YDLOs6W  1DP1 N mitochondnal form of 1socitrate dehydrogenase
YBLOISW  ACHI FP acetyl CoA hydrolase
Resp YPRI9IW QCRZ FN ubiquinol eytochrome-¢ reductase core proten 2
YPLZTIW  ATPLS FN ATP synthase epailon subumt
YPL26ZW  FUMI FP furmarase
YML120C NDIL FP mitochendnal NADH ubquinene 6 oxadoreductase
YELOSSW MDHI1 FP mutochondnal malate dehydrogenase
YDLOSTC COX9 N subumit VIla of eytochrome ¢ oxadase
Rabo YPLO3TC  EGDI FP /7 subumt of the nascent-polypeptde-assoaated
complex (NAC)
YLR406C RPL31B FN  rbosomal protein L31B (L34B) (YL28)
YLRO7SW RPLIO FP nbosomal proten L10
YALOO3W EFB1 FP translation elongation factor EF-17
Prot YHRO27C RPNI TN subunit of 265 proteasome (PA700 subunit)
YGR270W  YTA7 FN  member of CDC48/PAS1/SECIS family of ATPases
YGRO48W  UFD1 FP ubiquitin fusion degradation protein
YDROGSC DOA4 N ubiquitin 1sopeptdase
YDLO20C RPN4 FN wmvelved m ubiquitin degradation pathway
Hist YOLO12C  HTA3 N listone-related protein
YEKLO49C  CSE4 N required for proper kinetochore function

Table &: Consistently misclassified genes. The table hists all 25 genes that are consistently mms-
classified by SVMs trained using the MYGD classifications listed in Table 1. Two types of errors
are included: a false posiive (FP') oceurs when the SVM includes the gene in the given class but
the MY GD classificaton does not; a fulse negative (FN) oceurs when the SVM does not include
the gene in the given class bul the MYGD classification does.
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SVM | SVM
Dataset Features | FP | FN | FP FN

Ovarian(original) 97802 4.6 | 4.8 5 3

_ - Ovarian(modified) 97802 44 | 34 0 [1]
If;’t““i - anF Ff;t}“‘f L F: "{ﬁ’ 11"; AML/ALL train 7129 |06 | 28| O 0
dot-product 5 5
At roiiet 2 25 5 2 13 12 AML treatment 7129 48 | 35 3 2
dot-product 5 25 4 2 12 13 Colon 2000 38 | 3.7 3 3
dot-product 10 25 4 2 12 13
dot-product 0 0 4 2 12 13 .
dot-product 2 50 3 2 12 14 Table 5: Results for the perceptron on all data sets. The results are averaged over 5 shufflings of the data
dnt-Tiod et 20 I o2 2 I as this algorithm is sensitive to the order in which it receives the data points. The first column is the dataset
E{"mtpmﬁﬁg ;ﬂ f[::] i g ﬁ i; used and the second is number of features in the dataset. For the ovarian and colon datasets, the number
d(,t_gzdu& 2 100 5 3 11 19 of normal tissues misclassified (FP) and the number of tumor tissues misclassified (FN) is reported. For the
dot-product 5 100 5 3 11 12 AML/ALL training dataset, the number of AML samples misclassified (FP) and the number of ALL patients
dot-product 10 | 100 5 3 11 12 misclassified (FN) is reported. For the AML treatment dataset, the number of unsuccessfully treated patients
dotproduct () [ 200 1 & & 4l 2 misclassified (FP) and the number of successfully treated patients misclassified (FN) is reported. The last two
dot-product 2 500 4 3 11 13 .
dot-product 5 500 4 3 11 13 columns report the best score obtained by the SVM on that dataset.
dot-product 10 500 4 3 11 13
dot-product 0 L1000 T 3 11 10
dot-product 2 1000 5 3 1 12
dot-product 5 1000 5 3 11 12
dot-product 10 L1000 h 3 11 12
dot-product 0 97802 17 0 14 1]
dot-product 2 | 97802 | 9 2 12 &
dot-product 5 | 97802 | 7 3 11 10
dot-product 10 | 97802 | 5 3 11 12

Table 1: Error rates for ovarian cancer tissue experiments.
For each setting of the SVM consisting of a kernel and diagonal factor (DF), each tissue was classified. Column
2 is the number of features (clones) used. Reported are the number of normal tissues misclassified (FP), tumor
tissues misclassified (FN), tumor tissues classified correctly (TP), and normal tissues elassified correctly (TN).
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Figure 1: SVM classification margins for ovarian tissues. When classifying, the SWM caleulates a margin
which is the distanee of an example from the decigion boundary it has learmed. Tn this graph, the margin for
each tissue sample caleulated using (10) is shown. A positive value indicates a eorrect classification, and a
negative value indicates an incorrect classification. The most negative point eorresponds to tissue N039. The
second most negative point corresponds to tissue HWBC3.
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SVM — General Principles

* SVMs perform binary classification by
partitioning the feature space with a surface
implied by a subset of the training points
(vectors) near the separating surface. These
vectors are referred to as Support Vectors.

- Efficient with high-dimensional data.
» Solid statistical theory
» Subsume several other methods.
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SVM Example (Radial Basis Function)

e
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SVM Ingredients

- Support Vectors

* Mapping from Input Space to Feature Space
* Dot Product - Kernel function

+ Weights
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ClassiliCatiorn O £-D

(Separable) data
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Classification of
(Separable) 2-D data
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Classification of (Separable) 2-D

data

+] *
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Margin of a point
Margin of a point set
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Classification using the
Separator

Separator
wex +b =0

Bioinformatics (Lec 15) 3/1/05
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Perceptron Algorithm (Primal)

Rosenblatt, 1956

Given separable training set S and learning rate n>0
w, = 0; // Weight

b, =0; // Bias

k=0; R=max Il xll ~

repeat W =2 ayX;
for i=1to N

ITy; (WyeX; + by) < 0 then
Wysr = Wy + MYiX
b1 = by + My R?
k=k+1
Until no mistakes made within loop

Return k, and (w,, b,) where k = # of mistakes
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Performance for Separable Data

Theorem:
If margin m of S is positive, then
k < (2R/m)?
i.e., the algorithm will always converge,
and will converge quickly.

Bioinformatics (Lec 15) 3/1/05 69



Perceptron Algorithm (Dual)

Given a separable training set S
a=_0; bo = 0;
R = max x|l
repeat
for i=1toN

if y, (Za;y, XX + b) <0 then
a=a+1
b=Db+yR?

endif

Until no mistakes made within loop
Return (a, b)

Bioinformatics (Lec 15) 3/1/05
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Non-linear Separators
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Main idea: Map into feature space

§  Input space & Feature space

» L]
*
S
] Z b -
9

Fiqure 2, The wea of 5 machines: map the trarrg data
nonlnearky nite a higher-dimensional feature space via
&, and consinit a separting ypermlane with mamum
mergn them, This yiekls a nonlnear decsion boundary in
nput pace, By the use of a kemel unchon, it s possible
o it e separatey beyperplane without explicrihy

g myng et the map inko the feature pace.
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Non-linear Separators

X =F

Bioinformatics (Lec 15) 3/1/05

73



Bioinformatics (Lec 15)

Useful URLS

3/1/05

74



Perceptron Algorithm (Dual)

Given a separable training set S
a=_0; bo = 0;
R = max x|l
repeat
for i=1toN

ify, (Zayy, (X .x) + b) <0 then
a=a+1
b=Db+yR?
Until no mistakes made within loop

Return (a, b) k(X %) = D(x)* D(X))
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Different Kernel Functions

* Polynomial kernel
K(X,Y)=(X eY)"

- Radial Basis Kernel )
(x ) ]

K(X,Y)=exp ;
O

» Sigmoid Kernel
k(X,Y)=tanh(o(X eY)+6)
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SVM Ingredients

- Support Vectors
* Mapping from Input Space to Feature Space
* Dot Product - Kernel function
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Generalizations

* How to deal with more than 2 classes?
Idea: Associate weight and bias for each class.

* How to deal with non-linear separator?
Idea: Support Vector Machines.

ow to deal with linear regression?
ow to deal with non-separable data?
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Applications

+ Text Categorization & Information Filtering
- 12,902 Reuters Stories, 118 categories (91% !I)
- Image Recognition

- Face Detection, tumor anomalies, defective parts
in assembly line, etc.

* Gene Expression Analysis
* Protein Homology Detection
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Leamed threshold Optimized threshold
Class Method FP FN TP TN Cost | FP FN TP TN Cost
Tricatboxylic acid  Radial SVM 8 8 9 2442 241 4 7 10 2446 18
Dot-product-1 SVM | 11 9 B 2439 29 3 [ 11 2447 15
Dotproduct2 SYM | 5 10 7 2445 25| 4 6 11 2446 16 Leamed threshold Optimized threshold
Dotproduct:3 SVM | 4 12 5 2446 28| 4 6 11 2446 16 Class Method FP_FN TP TN Cost|FP FN TP TN Cost
Parzen 4 12 5 2446 28 0 12 5 2450 24 Proteasome Radial SVM 3 7 28 2429 171 4 5 30 2418 14
FLD 9 10 7 2441 29 7 g 9 2443 23 Dot-product-1 SVM | 14 11 24 2418 36 2 T 28 2430 16
4.5 7 17 0 2443 41 Dotproduct-2 SVM | 4 13 22 2428 301 4 6 290 2428 16
MOC1 3 16 1 2446 35 - _ _ _ _ Dot-product-3 SVM | 3 18 17 2429 391 2 7 28 2430 16
Respiration Radial SVM e 6 24 2428 21| 8§ 4 36 2419 16 Parzen 215 30 2411 31 3 9 26 2429 21
Dotproduct-1 SVM | 21 10 20 2416 41| 6 9 21 2431 24 FLD 7012023 2425 31127 28 2420 26
Dotproduct2 SVM | 7 14 16 2430 35| 7 6 24 2430 19 C4.5 1710 25 2415 37( - - - = =
Dotproduct-3 SVM | 3 15 15 2434 33| 7 6 24 2430 19 MOCI 10 17 18 2422 44
Parzen 210 20 2415 42 7 12 18 2430 31 Histone Radial SVM 0 2 9 2456 41 0 2 9 2456 4
FLD 0 10 20 2427 30| 14 4 26 2423 22 Dot-product-1 SVM 1] 4 T 2456 8 0 2 9 2456 4
4.5 12 17 13 2419 52 Dotproduct-2 SVM | 0 5 6 2456 10 0 2 9 2456 4
MOC1 1 2% 4 2425 64 = = = 25 = Dot-product-3 SVM | 0 8§ 3 2456 16 0 2 9 2456 4
Ribosome Radial SVM 9 4 117 2337 17| 6 1 120 2340 8 Parzen 2 3 8 4 311 3 8 MH 7T
Dotproduct-1 SVM | 13 6 115 2333 25|11 1 120 2335 13 FLD 0 3 8 4% 612 1 10 244 4
Dotproduct2 SVM | 7 10 111 2338 27| o 1 120 2337 11 C4.5 2 2 9 uM 6
Dotproduct3 SVM | 3 18 103 2343 39| 7 1 120 2339 9 MOC1 2 5 6 WM BRI - - - - -
Parzen 6 s 113 2340 e 5 g 113 2341 21 Helix-tum-helix  Radial SVM 1 16 0 2450 331 0 16 0 2451 32
FLD 15 5 116 2331 25| 8 3 118 2338 14 Dot-product-1 SVM | 20 16 0 2431 52| 0 16 0 2451 32
4.5 31 21 100 2315 73| - - - - - Dotproduct-2 SVM | 4 16 0 2447 | 0 16 0 2451 32
MOC1 2% 26 95 2320 78 Dot-product-3 SVM 1 16 0 2450 3| 0 16 0 2451 32
Parzen 14 16 0 2437 46 0 16 0 2451 32
FLD 14 16 0 2437 46 0 16 0 2451 32
Table 2: Comparison of error rates for various classification methods. Classes are as described c4.5 2 16 0 2449 34
in Table 1. The methods are the radial basis function SVM, the SVMs using the scaled dot produet MaocC] 6 16 0 2445 38| - - - = =

kernel raised to the first, second and third power, Parzen windows, Fisher's linear discriminant, and
the two decision tree learners, C4.5 and MOC1. The next five columns are the false positive, false
negative, true positive and true negative rates sumimed over three cross-validation splits, followed
by the cost, which 1s the number of false positives plus twice the number of false negatives. These
five columns are repeated twice, first using the threshold learned from the training set, and then
using the threshold that minimizes the cost on the test set. The threshold optimization is not
possible for the decision tree methods, sinee they do not produce ranked results,

Table 3: Comparison of error rates for various classification methods (continued). See caption
for Table 2.
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Class Kermnel Cost for cach split Total
Trcarboxylic acid  Radial 18 21 15 22 21 97
Dot-product-1 [ 15 22 18 23 22| 100
Dot-produet-2 | 16 22 17 22 22 99
Dot-produet-3 | 16 22 17 23 22| 100
Respiration Radial 16 18 23 20 16 93
Dot-product-1 | 24 24 29 27 23 127
Dot-product-2 | 19 19 26 24 23 111
Dot-product-3 | 19 19 26 22 21| 107
Ribosorme Radial ® 12 15 11 13 59
Dot-product-1 | 13 18 14 16 16 77
Dot-product-2 | 11 16 14 16 15 72
Dot-product-3 | 9 15 11 15 15 65
Proteasome Radial 14 10 9 11 11 55
Dot-product-1 | 16 12 12 17 19 76
Dot-produet-2 | 16 13 15 17 17 78
Dot-product-3 | 16 13 16 16 17 79
Histone Radial 4 4 4 4 4 20
Dot-product-1 | 4 4 4 4 4 20
Dot-product-2 | 4 4 4 4 4 20
Dot-product-3| 4 4 4 4 4 20

Table 4: Comparison of SVM performance using various kernels. For each of the MYGD
classifications, SVMs were trained using four different kemel functions on five different random
three-fold splits of the data, training on two-thirds and testing on the remaining third. The first
column contains the class, as described in Table 1. The second column contains the kernel function,
as described in Table 2. The next five columns contain the threshold-optimized cost (i.e., the
number of false positives plus twice the number of false negatives) for each of the five random
three-fold splits. The final column 1s the total cost across all five splits.
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Family Gene Loens Ermror Description
TCA YPROOIW  CIT3 FN mtochondnal eitrate synthase
YOR14ZW  LSCL FN o subumit of suceinyl-CoA higase
YNROOIC CIT1 FN mitochondnal eitrate synthase
YLR174W  1DP2 FN wsocirate dehydrogenase
YILIZSW  KGDI FN ar-ketoglutarate dehydrogenase
YDRI4BC KGD2 FN component of a-ketoglutarate dehydrogenase
complex in mitochondra
YDLOs6W  1DP1 N mitochondnal form of 1socitrate dehydrogenase
YBLOISW  ACHI FP acetyl CoA hydrolase
Resp YPRI9IW QCRZ FN ubiquinol eytochrome-¢ reductase core proten 2
YPLZTIW  ATPLS FN ATP synthase epailon subumt
YPL26ZW  FUMI FP furmarase
YML120C NDIL FP mitochendnal NADH ubquinene 6 oxadoreductase
YELOSSW MDHI1 FP mutochondnal malate dehydrogenase
YDLOSTC COX9 N subumit VIla of eytochrome ¢ oxadase
Rabo YPLO3TC  EGDI FP /7 subumt of the nascent-polypeptde-assoaated
complex (NAC)
YLR406C RPL31B FN  rbosomal protein L31B (L34B) (YL28)
YLRO7SW RPLIO FP nbosomal proten L10
YALOO3W EFB1 FP translation elongation factor EF-17
Prot YHRO27C RPNI TN subunit of 265 proteasome (PA700 subunit)
YGR270W  YTA7 FN  member of CDC48/PAS1/SECIS family of ATPases
YGRO48W  UFD1 FP ubiquitin fusion degradation protein
YDROGSC DOA4 N ubiquitin 1sopeptdase
YDLO20C RPN4 FN wmvelved m ubiquitin degradation pathway
Hist YOLO12C  HTA3 N listone-related protein
YEKLO49C  CSE4 N required for proper kinetochore function

Table &: Consistently misclassified genes. The table hists all 25 genes that are consistently mms-
classified by SVMs trained using the MYGD classifications listed in Table 1. Two types of errors
are included: a false posiive (FP') oceurs when the SVM includes the gene in the given class but
the MY GD classificaton does not; a fulse negative (FN) oceurs when the SVM does not include
the gene in the given class bul the MYGD classification does.
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SVM | SVM
Dataset Features | FP | FN | FP FN

Ovarian(original) 97802 4.6 | 4.8 5 3

_ - Ovarian(modified) 97802 44 | 34 0 [1]
If;’t““i - anF Ff;t}“‘f L F: "{ﬁ’ 11"; AML/ALL train 7129 |06 | 28| O 0
dot-product 5 5
At roiiet 2 25 5 2 13 12 AML treatment 7129 48 | 35 3 2
dot-product 5 25 4 2 12 13 Colon 2000 38 | 3.7 3 3
dot-product 10 25 4 2 12 13
dot-product 0 0 4 2 12 13 .
dot-product 2 50 3 2 12 14 Table 5: Results for the perceptron on all data sets. The results are averaged over 5 shufflings of the data
dnt-Tiod et 20 I o2 2 I as this algorithm is sensitive to the order in which it receives the data points. The first column is the dataset
E{"mtpmﬁﬁg ;ﬂ f[::] i g ﬁ i; used and the second is number of features in the dataset. For the ovarian and colon datasets, the number
d(,t_gzdu& 2 100 5 3 11 19 of normal tissues misclassified (FP) and the number of tumor tissues misclassified (FN) is reported. For the
dot-product 5 100 5 3 11 12 AML/ALL training dataset, the number of AML samples misclassified (FP) and the number of ALL patients
dot-product 10 | 100 5 3 11 12 misclassified (FN) is reported. For the AML treatment dataset, the number of unsuccessfully treated patients
dotproduct () [ 200 1 & & 4l 2 misclassified (FP) and the number of successfully treated patients misclassified (FN) is reported. The last two
dot-product 2 500 4 3 11 13 .
dot-product 5 500 4 3 11 13 columns report the best score obtained by the SVM on that dataset.
dot-product 10 500 4 3 11 13
dot-product 0 L1000 T 3 11 10
dot-product 2 1000 5 3 1 12
dot-product 5 1000 5 3 11 12
dot-product 10 L1000 h 3 11 12
dot-product 0 97802 17 0 14 1]
dot-product 2 | 97802 | 9 2 12 &
dot-product 5 | 97802 | 7 3 11 10
dot-product 10 | 97802 | 5 3 11 12

Table 1: Error rates for ovarian cancer tissue experiments.
For each setting of the SVM consisting of a kernel and diagonal factor (DF), each tissue was classified. Column
2 is the number of features (clones) used. Reported are the number of normal tissues misclassified (FP), tumor
tissues misclassified (FN), tumor tissues classified correctly (TP), and normal tissues elassified correctly (TN).
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Figure 1: SVM classification margins for ovarian tissues. When classifying, the SWM caleulates a margin
which is the distanee of an example from the decigion boundary it has learmed. Tn this graph, the margin for
each tissue sample caleulated using (10) is shown. A positive value indicates a eorrect classification, and a
negative value indicates an incorrect classification. The most negative point eorresponds to tissue N039. The
second most negative point corresponds to tissue HWBC3.

82



SVM Example (Radial Basis Function)

e
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Sources of Variations & Errors In

Microarray Data

Variations in cells/individuals.

Variations in mRNA extraction, isolation,
infroduction of dye, variation in dye incorporation,
dye interference.

Variations in probe concentration, probe amounts,
substrate surface characteristics

Variations in hybridization conditions and kinetics

Variations in optical measurements, spot
misalignments, discretization effects, noise due to
scanner lens and laser irregularities

* Cross-hybridization of sequences with high
sequence identity.

+ Limit of fact<Need to Normalize datasults.
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Significance Analysis of Microarrays (SAM)
[Tusher, Tibshirani, Chu, PNAS'01]

* Fold change is a typical measure to decide

genes of interest.

 However, variations in gene expression are
also gene dependent. If repeats are
available, then such variations can be
measured for each gene. This helps to give a

better analysis of significant genes of
interest.
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Genomics

» Study of all genes in a genome, or comparison of
whole genomes.

- Whole genome sequencing

- Whole genome annotation & Functional genomics

- Whole genome comparison

PipMaker: uses BLASTZ to compare very long sequences (>
2Mb);

* Mummer: used for comparing long microbial sequences (uses
Suffix trees!)

Bioinformatics (Lec 15) 3/1/05 86



Genomics (Cont’d)

- Gene Expression

* Microarray experiments & analysis
- Probe design (CODEHOP)
- Array image analysis (CrazyQuant)
- Identifying genes with significant changes (SAM)
- Clustering

Bioinformatics (Lec 15) 3/1/05
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Proteomics

» Study of all proteins in a genome, or
comparison of whole genomes.

- Whole genome annotation & Functional
proteomics

- Whole genome comparison
- Protein Expression: 2D Gel Electrophoresis

Bioinformatics (Lec 15) 3/1/05
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2D Gel Electrophoresis

Bioinformatics (Lec 15) 3/1/05
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Other Proteomics Tools

From ExPASy/SWISS-PROT:
AACompIdent identify proteins from aa composition

[Input: aa composition, isoelectric point, mol wt., etc. Output: proteins from DB]
AACompSim compares proteins aa composition with other proteins
MultIdent uses mol wt., mass fingerprints, etc. to identify proteins

PeptIdent compares experimentally determined mass fingerprints with
theoretically determined ones for all proteins

FindMod predicts post-translational modifications based on mass difference
between experimental and theoretical mass fingerprints.

PeptideMass theoretical mass fingerprint for a given protein.
GlycoMod predicts oligosaccharide modifications from mass difference
TGREASE calculates hydrophobicity of protein along its length
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Databases for Comparative Genomics

+ PEDANT useful resource for standard questions in
comparative genomics. For e.qg., Aow many known
proteins in XXX have known 3-d structures, how
many proteins from family YYY are in ZZZ, efc.

* COGs Clusters of orthologous groups of proteins.

* MBGD Microbial genome database searches for
homologs in all microbial genomes
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Gene Networks & Pathways

* Genes & Proteins act in concert and
therefore form a complex network of
dependencies.

Bioinformatics (Lec 15) 3/1/05
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Pathway Example from KEGG

beta-LACTAM RESTSTANCE
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ao3le WEoz
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Pseudomonas aeruginosa

METHIONINE METAEBQLISM

- cinyl -
L-homose doe

. e

O 2-0xobutanoate

CGlweine, serne and
threonine metabolism

[23131

o] Cwatathionine
[4z900] [ Ol o MO 42999 C-aretyl-
L-Cysteing L-homose rine
3-D-Ribosyl-
l42122| 4415 | L-homocysteine
L-Ferine O
', —Y
E a-ddenosvl-
Ir" ______ L-homocwsteine
1841

2115 |[21.1.10

I
sulfur
Homocvstine e tabalizm

211.13)[21.1.14

H-Forml- otk | I
L-methionine 35131

A inoacyl- - | I A
L-methionine 341312

0 2129 —0O 61.1.10—"™

H-Farm ylme thiongd - B N
BHA L-Methionvl-tREA

A0zl &ializ

a-ddenosvl-
b il
L-IMethioning 3.6.1.25 L-methionine
L-Methionine
| 15845 | ) 2 nwide
| 4-Methvlthio-
1432 -0 Z-oxobutanoate




STSs and ESTs

» Sequence-Tagged Site: short, unique
sequence
* Expressed Sequence Tag: short, unique
sequence from a coding region

- 1991: 609 ESTs [Adams et al.]

- June 2000: 4.6 million in dbEST

- Genome sequencing center at St. Louis produce
20,000 ESTs per week.
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What Are ESTs and How Are They

Made?

 Small pieces of DNA sequence (usually 200 - 500
nucleotides) of low quality.

o Extract mRNA from cells, tissues, or organs and
sequence either end. Reverse transcribe to get cDNA
(5 EST and 3'EST) and deposit in EST library.

« Used as "tags" or markers for that gene.

e Can be used to identify similar genes from other
organisms (Complications: variations among
organisms, variations in genome size, presence or
absence of introns).

« 5 ESTs tend to be more useful (cross-species
conservation), 3’ EST often in UTR.
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DNA Markers

* Uniquely identifiable DNA segments.
+ Short, <b00 nucleotides.

* Layout of these markers give a map of
genome.

* Markers may be polymorphic (variations
among individuals). Polymorphism gives rise
to alleles.

* Found by PCR assays.
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Polymorphisms

» Length polymorphisms
- Variable # of tandem repeats (VNTR)
- Microsatellites or short tandem repeats

- Restriction fragment length polymorphism (RFLP) caused
by changes in restriction sites.

» Single nucleotide polymorphism (SNP)
- Average once every ~100 bases in humans
- Usually biallelic

- dbSNP database of SNPs (over 100,000 SNPs)
- ESTs are a good source of SNPs
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SNPs

- SNPs often act as "disease markers"”, and
provide “"genetic predisposition”.

» SNPs may explain differences in drug
response of individuals.

* Association study: study SNP patterns in
diseased individuals and compare against
SNP patterns in normal individuals.

* Many diseases associated with SNP profile.
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