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Gene Expression
• Process of transcription and/or translation 

of a gene is called gene expression.
• Every cell of an organism has the same 

genetic material, but different genes are 
expressed at different times.

• Patterns of gene expression in a cell is 
indicative of its state. 
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Hybridization
• If two complementary strands of DNA or 

mRNA are brought together under the right 
experimental conditions they will hybridize.

• A hybridizes to B ⇒
– A is reverse complementary to B, or 
– A is reverse complementary to a subsequence of 

B.
• It is possible to experimentally verify 

whether A hybridizes to B, by labeling A or B
with a radioactive or fluorescent tag, 
followed by excitation by laser.
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Measuring gene expression
• Gene expression for a single gene can be 

measured by extracting mRNA from the cell 
and doing a simple hybridization experiment. 

• Given a sample of cells, gene expression for 
every gene can be measured using a single 
microarray experiment.
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Microarray/DNA chip technology
• High-throughput method to study gene expression 

of thousands of genes simultaneously.
• Many applications:

– Genetic disorders & Mutation/polymorphism detection
– Study of  disease subtypes
– Drug discovery & toxicology studies
– Pathogen analysis
– Differing expressions over time, between tissues, 

between drugs, across disease states
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Microarray Data
Gene Expression Level

Gene1

Gene2

Gene3

…
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Microarray/DNA chips (Simplified)
• Construct probes corresponding to reverse 

complements of genes of interest.
• Microscopic quantities of probes placed on solid 

surfaces at defined spots on the chip.
• Extract mRNA from sample cells and label them.
• Apply labeled sample (mRNA extracted from cells) 

to every spot, and allow hybridization.
• Wash off unhybridized material.
• Use optical detector to measure amount of 

fluorescence from each spot.
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Gene Chips
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Affymetrix DNA chip schematic

www.affymetrix.com
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What’s on the slide?
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DNA Chips & Images
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Microarrays: competing technologies
• Affymetrix & Synteni/Stanford
• Differ in: 

– method to place DNA: Spotting vs. 
photolithography

– Length of probe
– Complete sequence vs. series of fragments 
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How to compare 2 cell samples with 
Two-Color Microarrays?

• mRNA from sample 1 is extracted and labeled with 
a red fluorescent dye.

• mRNA from sample 2 is extracted and labeled with 
a green fluorescent dye.

• Mix the samples and apply it to every spot on the 
microarray. Hybridize sample mixture to probes. 

• Use optical detector to measure the amount of 
green and red fluorescence at each spot.
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http://www.arabidopsis.org/info/2010_projects/comp_proj/AFGC/RevisedAFGC/Friday/
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Sample          

Treated Sample(t1)                                Expt 1             
Treated Sample(t2)                                   Expt 2
Treated Sample(t3)                                       Expt 3
…
Treated Sample(tn)                                         Expt n

Study effect of treatment over time
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• Variations in cells/individuals.
• Variations in mRNA extraction, isolation, introduction of 

dye, variation in dye incorporation, dye interference.
• Variations in probe concentration, probe amounts, substrate 

surface characteristics
• Variations in hybridization conditions and kinetics
• Variations in optical measurements, spot misalignments, 

discretization effects, noise due to scanner lens and laser 
irregularities

• Cross-hybridization of sequences with high sequence 
identity.

• Limit of factor 2 in precision of results.

Sources of Variations & Errors

Need to Normalize data
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Types of bias/variation
• Intensity & Range

– Variation changes with intensity. Larger variation 
at lower end.

• Spatial 
– Spot location changes expression

• Plate
– Printing plate changes expression

http://www.arabidopsis.org/info/2010_projects/comp_proj/AFGC/RevisedAFGC/Friday/index.htm
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Clustering
• Clustering is a general method to study 

patterns in gene expressions. 
• Several known methods:

– Hierarchical Clustering (Bottom-Up Approach)
– K-means Clustering (Top-Down Approach)
– Self-Organizing Maps (SOM)
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Hierarchical Clustering: Example
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A Dendrogram
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Hierarchical Clustering [Johnson, SC, 1967]
• Given n points in Rd, compute the distance 

between every pair of points
• While (not done)

– Pick closest pair of points si and sj and make 
them part of the same cluster.

– Replace the pair by an average of the two sij

Try the applet at:
http://www.cs.mcgill.ca/~papou/#applet
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Distance Metrics
• For clustering, define a distance function:

– Euclidean distance metrics

– Pearson correlation coefficient

k=2: Euclidean Distance
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Clustering of gene expressions
• Represent each gene as a vector or a point in 

d-space where d is the number of arrays or 
experiments being analyzed.
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From Eisen MB, et al, PNAS 1998 95(25):14863-8 

Clustering Random vs. Biological 
Data
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K-Means Clustering: Example

Example from Andrew Moore’s tutorial on Clustering.
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Start
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Start

End



3/1/05 35Bioinformatics (Lec 15)

K-Means Clustering [McQueen ’67]
Repeat
– Start with randomly chosen cluster centers
– Assign points to give greatest increase in score
– Recompute cluster centers
– Reassign points
until (no changes)

Try the applet at: http://www.cs.mcgill.ca/~bonnef/project.html
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Comparisons
• Hierarchical clustering

– Number of clusters not preset.
– Complete hierarchy of clusters
– Not very robust, not very efficient.

• K-Means
– Need definition of a mean. Categorical data?
– More efficient and often finds optimum 

clustering.
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Functionally related 
genes behave similarly 
across experiments
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Self-Organizing Maps [Kohonen]
• Kind of neural network.
• Clusters data and find complex relationships 

between clusters.
• Helps reduce the dimensionality of the data.
• Map of 1 or 2 dimensions produced.
• Unsupervised Clustering
• Like K-Means, except for visualization
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SOM Architectures
• 2-D Grid
• 3-D Grid
• Hexagonal Grid



3/1/05 40Bioinformatics (Lec 15)

SOM Algorithm
• Select SOM architecture, and initialize 

weight vectors and other parameters.
• While (stopping condition not satisfied) do

for each input point x
– winning node q has weight vector closest to x.
– Update weight vector of q and its neighbors.
– Reduce neighborhood size and learning rate.
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SOM Algorithm Details

• Distance between x and weight vector:
• Winning node:  
• Weight update function (for neighbors): 

• Learning rate:
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World Bank Statistics
• Data: World Bank statistics of countries in 

1992. 
• 39 indicators considered e.g., health, 

nutrition, educational services, etc. 
• The complex joint effect of these factors 

can can be visualized by organizing the 
countries using the self-organizing map. 
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World Poverty PCA
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World Poverty SOM
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World Poverty Map
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Viewing SOM Clusters on PCA axes
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Neural Networks

ΣInput X

Synaptic
Weights W

ƒ(•)

Bias θ

Output y



3/1/05 51Bioinformatics (Lec 15)

Learning NN
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Types of NNs
• Recurrent NN
• Feed-forward NN
• Layered

Other issues
• Hidden layers possible
• Different activation functions possible
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Application: Secondary Structure Prediction
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Support Vector Machines
• Supervised Statistical Learning Method for:

– Classification
– Regression

• Simplest Version:
– Training: Present series of labeled examples 

(e.g., gene expressions of tumor vs. normal cells)
– Prediction: Predict labels of new examples.
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Learning Problems
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SVM – Binary Classification
• Partition feature space with a surface.
• Surface is implied by a subset of the 

training points (vectors) near it. These 
vectors are referred to as Support Vectors. 

• Efficient with high-dimensional data. 
• Solid statistical theory
• Subsume several other methods.
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Learning Problems
• Binary Classification
• Multi-class classification
• Regression
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SVM – General Principles
• SVMs perform binary classification by 

partitioning the feature space with a surface 
implied by a subset of the training points 
(vectors) near the separating surface. These 
vectors are referred to as Support Vectors. 

• Efficient with high-dimensional data. 
• Solid statistical theory
• Subsume several other methods.
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SVM Example (Radial Basis Function)
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SVM Ingredients
• Support Vectors
• Mapping from Input Space to Feature Space
• Dot Product – Kernel function
• Weights
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Classification of 2-D 
(Separable) data
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Classification of
(Separable) 2-D data
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Classification of (Separable) 2-D 
data

•Margin of a point
•Margin of a point set

+1

-1
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xi

Separator
w•x + b = 0

w•xi + b > 0

w•xj + b < 0

xj

Classification using the 
Separator
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Perceptron Algorithm (Primal)

Given separable training set S and learning rate η>0 
w0 = 0; // Weight
b0 = 0;  // Bias
k = 0; R = max 7xi7
repeat

for i = 1 to N 
if yi (wk•xi + bk) ≤ 0 then

wk+1 = wk + ηyixi
bk+1 = bk + ηyiR2

k = k + 1
Until no  mistakes made within loop
Return k, and  (wk, bk) where k = # of mistakes

Rosenblatt, 1956

w = Σ aiyixi
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Theorem: 
If margin m of S is positive, then 

i.e., the algorithm will always converge, 
and will converge quickly.

Performance for Separable Data

k ≤ (2R/m)2
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Perceptron Algorithm (Dual)
Given a separable training set S 
a = 0; b0 = 0; 
R = max 7xi7
repeat

for i = 1 to N 
if yi (Σaj yj  xi•xj + b) ≤ 0 then

ai = ai + 1
b = b + yiR2

endif
Until no  mistakes made within loop
Return (a, b)
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Non-linear Separators
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Main idea: Map into feature space
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Non-linear Separators

X F
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Useful URLs
• http://www.support-vector.net
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Perceptron Algorithm (Dual)
Given a separable training set S 
a = 0; b0 = 0; 
R = max 7xi7
repeat

for i = 1 to N 
if yi (Σaj yj  k(xi ,xj) + b) ≤ 0 then

ai = ai + 1
b = b + yiR2

Until no  mistakes made within loop
Return (a, b)

k(xi ,xj) = Φ(xi)• Φ(xj)
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Different Kernel Functions
• Polynomial kernel

• Radial Basis Kernel

• Sigmoid Kernel
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SVM Ingredients
• Support Vectors
• Mapping from Input Space to Feature Space
• Dot Product – Kernel function
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Generalizations
• How to deal with more than 2 classes?

Idea: Associate weight and bias for each class.
• How to deal with non-linear separator?

Idea: Support Vector Machines.
• How to deal with linear regression?
• How to deal with non-separable data?
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Applications
• Text Categorization & Information Filtering

– 12,902 Reuters Stories, 118 categories (91% !!)
• Image Recognition

– Face Detection, tumor anomalies, defective parts 
in assembly line, etc. 

• Gene Expression Analysis
• Protein Homology Detection
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SVM Example (Radial Basis Function)
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Sources of Variations & Errors in 
Microarray Data

• Variations in cells/individuals.
• Variations in mRNA extraction, isolation, 

introduction of dye, variation in dye incorporation, 
dye interference.

• Variations in probe concentration, probe amounts, 
substrate surface characteristics

• Variations in hybridization conditions and kinetics
• Variations in optical measurements, spot 

misalignments, discretization effects, noise due to 
scanner lens and laser irregularities

• Cross-hybridization of sequences with high 
sequence identity.

• Limit of factor 2 in precision of results.Need to Normalize data
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Significance Analysis of Microarrays (SAM) 
[Tusher, Tibshirani, Chu, PNAS’01]

• Fold change is a typical measure to decide 
genes of interest.

• However, variations in gene expression are 
also gene dependent. If repeats are 
available, then such variations can be 
measured for each gene. This helps to give a 
better analysis of significant genes of 
interest. 
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Genomics
• Study of all genes in a genome, or comparison of 

whole genomes.
– Whole genome sequencing
– Whole genome annotation & Functional genomics
– Whole genome comparison 

• PipMaker: uses BLASTZ to compare very long sequences     (> 
2Mb); http://www.cse.psu.edu/pipmaker/

• Mummer: used for comparing long microbial sequences (uses 
Suffix trees!)
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Genomics (Cont’d)
– Gene Expression

• Microarray experiments & analysis
– Probe design (CODEHOP)
– Array image analysis (CrazyQuant)
– Identifying genes with significant changes (SAM)
– Clustering 
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Proteomics
• Study of all proteins in a genome, or 

comparison of whole genomes.
– Whole genome annotation & Functional 

proteomics
– Whole genome comparison
– Protein Expression: 2D Gel Electrophoresis
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2D Gel Electrophoresis



3/1/05 90Bioinformatics (Lec 15)

Other Proteomics Tools
From ExPASy/SWISS-PROT:
• AACompIdent identify proteins from aa composition
[Input: aa composition, isoelectric point, mol wt., etc. Output: proteins from DB]
• AACompSim compares proteins aa composition with other proteins
• MultIdent uses mol wt., mass fingerprints, etc. to identify proteins
• PeptIdent compares experimentally determined mass fingerprints with 

theoretically determined ones for all proteins
• FindMod predicts post-translational modifications based on mass difference 

between experimental and theoretical mass fingerprints.
• PeptideMass theoretical mass fingerprint for a given protein.
• GlycoMod predicts oligosaccharide modifications from mass difference
• TGREASE calculates hydrophobicity of protein along its length
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Databases for Comparative Genomics
• PEDANT useful resource for standard questions in 

comparative genomics. For e.g., how many known 
proteins in XXX have known 3-d structures, how 
many proteins from family YYY are in ZZZ, etc.

• COGs Clusters of orthologous groups of proteins.
• MBGD Microbial genome database searches for 

homologs in all microbial genomes



3/1/05 92Bioinformatics (Lec 15)

Gene Networks & Pathways
• Genes & Proteins act in concert and 

therefore form a complex network of 
dependencies. 
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Pathway Example from KEGG

Staphylococcus aureus



3/1/05 94Bioinformatics (Lec 15)

Pseudomonas aeruginosa
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STSs and ESTs
• Sequence-Tagged Site: short, unique 

sequence
• Expressed Sequence Tag: short, unique 

sequence from a coding region
– 1991: 609 ESTs [Adams et al.] 
– June 2000: 4.6 million in dbEST
– Genome sequencing center at St. Louis produce 

20,000 ESTs per week.
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What Are ESTs and How Are They 
Made?

• Small pieces of DNA sequence (usually 200 - 500 
nucleotides) of low quality.

• Extract mRNA from cells, tissues, or organs and 
sequence either end. Reverse transcribe to get cDNA
(5’ EST and 3’EST) and deposit in EST library. 

• Used as "tags" or markers for that gene. 
• Can be used to identify similar genes from other 

organisms (Complications: variations among 
organisms, variations in genome size, presence or 
absence of introns).

• 5’ ESTs tend to be more useful (cross-species 
conservation), 3’ EST often in UTR.
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DNA Markers
• Uniquely identifiable DNA segments.
• Short, <500 nucleotides.
• Layout of these markers give a map of 

genome.
• Markers may be polymorphic (variations 

among individuals). Polymorphism gives rise 
to alleles.

• Found by PCR assays.
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Polymorphisms
• Length polymorphisms

– Variable # of tandem repeats (VNTR)
– Microsatellites or short tandem repeats
– Restriction fragment length polymorphism (RFLP) caused 

by changes in restriction sites.
• Single nucleotide polymorphism (SNP)

– Average once every ~100 bases in humans
– Usually biallelic
– dbSNP database of SNPs (over 100,000 SNPs)
– ESTs are a good source of SNPs
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SNPs
• SNPs often act as “disease markers”, and 

provide “genetic predisposition”.
• SNPs may explain differences in drug 

response of individuals.
• Association study: study SNP patterns in 

diseased individuals and compare against 
SNP patterns in normal individuals.

• Many diseases associated with SNP profile.
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