
A Dendrogram
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Hierarchical Clustering [Johnson, SC, 1967]
• Given n points in Rd, compute the distance 

between every pair of points
• While (not done)

– Pick closest pair of points si and sj and make 
them part of the same cluster.

– Replace the pair by an average of the two sij

Try the applet at:
http://www.cs.mcgill.ca/~papou/#applet

3/15/05 2Bioinformatics (Lec 17)

http://www.cs.mcgill.ca/~papou/#applet


Distance Metrics
• For clustering, define a distance function:

– Euclidean distance metrics

– Pearson correlation coefficient

k=2: Euclidean Distance
kd

i

k
iik YXYXD

/1

1
)(),( ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= ∑

= y

i

x

i
d

i
xy

YYXX
d σσ

ρ
1

1
-1 ≤ ρxy ≥ 1

3/15/05 3Bioinformatics (Lec 17)



Start

End

3/15/05 4Bioinformatics (Lec 17)



K-Means Clustering [McQueen ’67]
Repeat
– Start with randomly chosen cluster centers
– Assign points to give greatest increase in score
– Recompute cluster centers
– Reassign points
until (no changes)

Try the applet at: http://www.cs.mcgill.ca/~bonnef/project.html
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Self-Organizing Maps [Kohonen]
• Kind of neural network.
• Clusters data and find complex relationships 

between clusters.
• Helps reduce the dimensionality of the data.
• Map of 1 or 2 dimensions produced.
• Unsupervised Clustering
• Like K-Means, except for visualization
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SOM Algorithm
• Select SOM architecture, and initialize 

weight vectors and other parameters.
• While (stopping condition not satisfied) do

for each input point x
– winning node q has weight vector closest to x.
– Update weight vector of q and its neighbors.
– Reduce neighborhood size and learning rate.
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SOM Algorithm Details

• Distance between x and weight vector:
• Winning node:  
• Weight update function (for neighbors): 

• Learning rate:
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World Poverty SOM
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World Poverty Map



Neural Networks
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Learning NN
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Types of NNs
• Recurrent NN
• Feed-forward NN
• Layered

Other issues
• Hidden layers possible
• Different activation functions possible
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Application: Secondary Structure Prediction
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Support Vector Machines
• Supervised Statistical Learning Method for:

– Classification
– Regression

• Simplest Version:
– Training: Present series of labeled examples 

(e.g., gene expressions of tumor vs. normal cells)
– Prediction: Predict labels of new examples.
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Learning Problems
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SVM – Binary Classification
• Partition feature space with a surface.
• Surface is implied by a subset of the 

training points (vectors) near it. These 
vectors are referred to as Support Vectors. 

• Efficient with high-dimensional data. 
• Solid statistical theory
• Subsume several other methods.
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Learning Problems
• Binary Classification
• Multi-class classification
• Regression
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SVM – General Principles
• SVMs perform binary classification by 

partitioning the feature space with a surface 
implied by a subset of the training points 
(vectors) near the separating surface. These 
vectors are referred to as Support Vectors. 

• Efficient with high-dimensional data. 
• Solid statistical theory
• Subsume several other methods.
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SVM Example (Radial Basis Function)
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SVM Ingredients
• Support Vectors
• Mapping from Input Space to Feature Space
• Dot Product – Kernel function
• Weights
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Classification of 2-D (Separable) data

3/15/05 25Bioinformatics (Lec 17)



3/15/05 26Bioinformatics (Lec 17)

Classification of
(Separable) 2-D data
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Classification of (Separable) 2-D 
data

+1

-1

•Margin of a point
•Margin of a point set
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Classification using the 
Separator

x

Separator
w•x + b = 0

w•xi + b > 0

w•xj + b < 0

x
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Perceptron Algorithm (Primal)

Given separable training set S and learning rate η>0 
w0 = 0; // Weight
b0 = 0;  // Bias
k = 0; R = max 7xi7
repeat

for i = 1 to N 
if yi (wk•xi + bk) ≤ 0 then

wk+1 = wk + ηyixi
bk+1 = bk + ηyiR2

k = k + 1
Until no  mistakes made within loop
Return k, and  (wk, bk) where k = # of mistakes

Rosenblatt, 1956

w = Σ aiyixi



Theorem: 
If margin m of S is positive, then 

i.e., the algorithm will always converge, 
and will converge quickly.

Performance for Separable Data

k ≤ (2R/m)2
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Perceptron Algorithm (Dual)
Given a separable training set S 
a = 0; b0 = 0; 
R = max 7xi7
repeat

for i = 1 to N 
if yi (Σaj yj  xi•xj + b) ≤ 0 then

ai = ai + 1
b = b + yiR2

endif
Until no  mistakes made within loop
Return (a, b)
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Non-linear Separators
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Main idea: Map into feature space
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Non-linear Separators

X F
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Useful URLs
• http://www.support-vector.net

3/15/05 35Bioinformatics (Lec 17)

http://www.support-vector.net/


Perceptron Algorithm (Dual)
Given a separable training set S 
a = 0; b0 = 0; 
R = max 7xi7
repeat

for i = 1 to N 
if yi (Σaj yj  k(xi ,xj) + b) ≤ 0 then

ai = ai + 1
b = b + yiR2

Until no  mistakes made within loop
Return (a, b)

k(xi ,xj) = Φ(xi)• Φ(xj)
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Different Kernel Functions
• Polynomial kernel

• Radial Basis Kernel

• Sigmoid Kernel
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SVM Ingredients
• Support Vectors
• Mapping from Input Space to Feature Space
• Dot Product – Kernel function
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Generalizations
• How to deal with more than 2 classes?

Idea: Associate weight and bias for each class.
• How to deal with non-linear separator?

Idea: Support Vector Machines.
• How to deal with linear regression?
• How to deal with non-separable data?
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Applications
• Text Categorization & Information Filtering

– 12,902 Reuters Stories, 118 categories (91% !!)
• Image Recognition

– Face Detection, tumor anomalies, defective parts 
in assembly line, etc. 

• Gene Expression Analysis
• Protein Homology Detection
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SVM Example (Radial Basis Function)
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