A Dendrogram

///////




Hierarchical Clustering [Johnson, SC, 1967]

» Given n points in RY, compute the distance
between every pair of points

+ While (not done)

- Pick closest pair of points s; and s; and make
them part of the same cluster.

- Replace the pair by an average of the two s;;
Try the applet aft:

Bioinformatics (Lec 17) 3/15/05 2


http://www.cs.mcgill.ca/~papou/#applet

Distance Metrics

* For clustering, define a distance function:
- Euclidean distance metrics

q 1/k
D«(X,Y) = {Z(xi —Yi)k} k=2: Euclidean Distance
=1

- Pearson correlation coefficient

1 & (X=X (YieY
,OXVZEZ [ )( ] -1<p,21

OXx Oy
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“F

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5) on
2. Randomly guess k
cluster Center

Start | = |-

K-means
continues

Copprght © 2001, Androw W. Moo E-moans and Hisrarchical Csterng: Shae 7 Copprght © 2001, Androw W. Moo E-mbans and Herarchical Clustenng. Skis 10

K-means

1. Ask user how many
clusters they'd like.
(e.g. k=5) b

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to, (Thus
each Center "owns”
a set of datapoints)

K-means
terminates

i

End

Copyrght © 2001, Andrew Wi, Moore K-megre and Hersrchieal Cuserng: Soe § Copyrght © 2001, Andrew Wi, Moore E-mmeans ard Heramhiesl Clusterng: Skoe 20

4 10
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K-Means Clustering [McQueen '67]

Repeat

— Start with randomly chosen cluster centers

— Assign points to give greatest increase In score
— Recompute cluster centers

— Reassign points

until (no changes)

Try the applet at:

Bioinformatics (Lec 17) 3/15/05 5


http://www.cs.mcgill.ca/~bonnef/project.html

Self-Organizing Maps [Kohonen]
» Kind of neural network.

» Clusters data and find complex relationships
between clusters.

* Helps reduce the dimensionality of the data.
* Map of 1 or 2 dimensions produced.

» Unsupervised Clustering

* Like K-Means, except for visualization

Bioinformatics (Lec 17) 3/15/05 6



SOM Algorithm

+ Select SOM architecture, and initialize
weight vectors and other parameters.
» While (stopping condition not satisfied) do
for each input point x

- winning node q has weight vector closest to x.
- Update weight vector of g and its neighbors.
- Reduce neighborhood size and learning rate.

Bioinformatics (Lec 17) 3/15/05 7



SOM Algorithm Detalls

» Distance between x and weight vedtony
+ Winning node:d(x) = min|x—wi|

* Weight update function (for neighbors):
wi(k +1) = wi(k) + z(k, X, i)[x(k) = wi(K)]
* Learning rate: 2
(k. x,) =no<k)exp[_“ ;Z“X’” J

Bioinformatics (Lec 17) 3/15/05 8



World Poverty SOM

Bioinformatics (Lec 17) 3/15/05 9



World Poverty Map

Bioinformatics (Lec 17) 3/15/05



Neural Networks

Synaptic
Weights W

Input X e—

o/

Bioinformatics (Lec 17)

|

Bias 0
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Learning NN

Weights W

Adaptive Algorithm

Desired Response

Bioinformatics (Lec 17) 3/15/05 12



Types of NNs

» Recurrent NN

- Feed-forward NN
* Layered

Other Issues

» Hidden layers possible
- Different activation functions possible

Bioinformatics (Lec 17) 3/15/05
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Application: Secondary Structure Prediction

‘

A Identical for all positions in the window

A Identical for all positions in the window
Bioinformatics (Lec 17)

A Identical for all positions in the window

3/15/05
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Support Vector Machines

» Supervised Statistical Learning Method for:
- Classification
- Regression

+ Simplest Version:

- Training: Present series of labeled examples
(e.g., gene expressions of tumor vs. normal cells)

- Prediction: Predict labels of new examples.

Bioinformatics (Lec 17) 3/15/05 15



Learning Problems



SVM — Binary Classification

» Partition feature space with a surface.

» Surface is implied by a subset of the
training points (vectors) near it. These
vectors are referred to as Support Vectors.

» Efficient with high-dimensional data.
» Solid statistical theory
» Subsume several other methods.

Bioinformatics (Lec 17) 3/15/05 17



Learning Problems

» Binary Classification
» Multi-class classification
* Regression

Bioinformatics (Lec 17) 3/15/05
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Leamed threshold Optimized threshold
Class Method FP FN TP TN Cost | FP FN TP TN Cost
Tricatboxylic acid  Radial SVM 8 8 9 2442 241 4 7 10 2446 18
Dot-product-1 SVM | 11 9 B 2439 29 3 [ 11 2447 15
Dotproduct2 SYM | 5 10 7 2445 25| 4 6 11 2446 16 Leamed threshold Optimized threshold
Dotproduct:3 SVM | 4 12 5 2446 28| 4 6 11 2446 16 Class Method FP_FN TP TN Cost|FP FN TP TN Cost
Parzen 4 12 5 2446 28 0 12 5 2450 24 Proteasome Radial SVM 3 7 28 2429 171 4 5 30 2418 14
FLD 9 10 7 2441 29 7 g 9 2443 23 Dot-product-1 SVM | 14 11 24 2418 36 2 T 28 2430 16
4.5 7 17 0 2443 41 Dotproduct-2 SVM | 4 13 22 2428 301 4 6 290 2428 16
MOC1 3 16 1 2446 35 - _ _ _ _ Dot-product-3 SVM | 3 18 17 2429 391 2 7 28 2430 16
Respiration Radial SVM e 6 24 2428 21| 8§ 4 36 2419 16 Parzen 215 30 2411 31 3 9 26 2429 21
Dotproduct-1 SVM | 21 10 20 2416 41| 6 9 21 2431 24 FLD 7012023 2425 31127 28 2420 26
Dotproduct2 SVM | 7 14 16 2430 35| 7 6 24 2430 19 C4.5 1710 25 2415 37( - - - = =
Dotproduct-3 SVM | 3 15 15 2434 33| 7 6 24 2430 19 MOCI 10 17 18 2422 44
Parzen 210 20 2415 42 7 12 18 2430 31 Histone Radial SVM 0 2 9 2456 41 0 2 9 2456 4
FLD 0 10 20 2427 30| 14 4 26 2423 22 Dot-product-1 SVM 1] 4 T 2456 8 0 2 9 2456 4
4.5 12 17 13 2419 52 Dotproduct-2 SVM | 0 5 6 2456 10 0 2 9 2456 4
MOC1 1 2% 4 2425 64 = = = 25 = Dot-product-3 SVM | 0 8§ 3 2456 16 0 2 9 2456 4
Ribosome Radial SVM 9 4 117 2337 17| 6 1 120 2340 8 Parzen 2 3 8 4 311 3 8 MH 7T
Dotproduct-1 SVM | 13 6 115 2333 25|11 1 120 2335 13 FLD 0 3 8 4% 612 1 10 244 4
Dotproduct2 SVM | 7 10 111 2338 27| o 1 120 2337 11 C4.5 2 2 9 uM 6
Dotproduct3 SVM | 3 18 103 2343 39| 7 1 120 2339 9 MOC1 2 5 6 WM BRI - - - - -
Parzen 6 s 113 2340 e 5 g 113 2341 21 Helix-tum-helix  Radial SVM 1 16 0 2450 331 0 16 0 2451 32
FLD 15 5 116 2331 25| 8 3 118 2338 14 Dot-product-1 SVM | 20 16 0 2431 52| 0 16 0 2451 32
4.5 31 21 100 2315 73| - - - - - Dotproduct-2 SVM | 4 16 0 2447 | 0 16 0 2451 32
MOC1 2% 26 95 2320 78 Dot-product-3 SVM 1 16 0 2450 3| 0 16 0 2451 32
Parzen 14 16 0 2437 46 0 16 0 2451 32
FLD 14 16 0 2437 46 0 16 0 2451 32
Table 2: Comparison of error rates for various classification methods. Classes are as described c4.5 2 16 0 2449 34
in Table 1. The methods are the radial basis function SVM, the SVMs using the scaled dot produet MaocC] 6 16 0 2445 38| - - - = =

kernel raised to the first, second and third power, Parzen windows, Fisher's linear discriminant, and
the two decision tree learners, C4.5 and MOC1. The next five columns are the false positive, false
negative, true positive and true negative rates sumimed over three cross-validation splits, followed
by the cost, which 1s the number of false positives plus twice the number of false negatives. These
five columns are repeated twice, first using the threshold learned from the training set, and then
using the threshold that minimizes the cost on the test set. The threshold optimization is not
possible for the decision tree methods, sinee they do not produce ranked results,

Table 3: Comparison of error rates for various classification methods (continued). See caption
for Table 2.
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Class Kermnel Cost for cach split Total
Trcarboxylic acid  Radial 18 21 15 22 21 97
Dot-product-1 [ 15 22 18 23 22| 100
Dot-produet-2 | 16 22 17 22 22 99
Dot-produet-3 | 16 22 17 23 22| 100
Respiration Radial 16 18 23 20 16 93
Dot-product-1 | 24 24 29 27 23 127
Dot-product-2 | 19 19 26 24 23 111
Dot-product-3 | 19 19 26 22 21| 107
Ribosorme Radial ® 12 15 11 13 59
Dot-product-1 | 13 18 14 16 16 77
Dot-product-2 | 11 16 14 16 15 72
Dot-product-3 | 9 15 11 15 15 65
Proteasome Radial 14 10 9 11 11 55
Dot-product-1 | 16 12 12 17 19 76
Dot-produet-2 | 16 13 15 17 17 78
Dot-product-3 | 16 13 16 16 17 79
Histone Radial 4 4 4 4 4 20
Dot-product-1 | 4 4 4 4 4 20
Dot-product-2 | 4 4 4 4 4 20
Dot-product-3| 4 4 4 4 4 20

Table 4: Comparison of SVM performance using various kernels. For each of the MYGD
classifications, SVMs were trained using four different kemel functions on five different random
three-fold splits of the data, training on two-thirds and testing on the remaining third. The first
column contains the class, as described in Table 1. The second column contains the kernel function,
as described in Table 2. The next five columns contain the threshold-optimized cost (i.e., the
number of false positives plus twice the number of false negatives) for each of the five random
three-fold splits. The final column 1s the total cost across all five splits.

Bioinformatics (Lec 17)

Family Gene Loens Ermror Description
TCA YPROOIW  CIT3 FN mtochondnal eitrate synthase
YOR14ZW  LSCL FN o subumit of suceinyl-CoA higase
YNROOIC CIT1 FN mitochondnal eitrate synthase
YLR174W  1DP2 FN wsocirate dehydrogenase
YILIZSW  KGDI FN ar-ketoglutarate dehydrogenase
YDRI4BC KGD2 FN component of a-ketoglutarate dehydrogenase
complex in mitochondra
YDLOs6W  1DP1 N mitochondnal form of 1socitrate dehydrogenase
YBLOISW  ACHI FP acetyl CoA hydrolase
Resp YPRI9IW QCRZ FN ubiquinol eytochrome-¢ reductase core proten 2
YPLZTIW  ATPLS FN ATP synthase epailon subumt
YPL26ZW  FUMI FP furmarase
YML120C NDIL FP mitochendnal NADH ubquinene 6 oxadoreductase
YELOSSW MDHI1 FP mutochondnal malate dehydrogenase
YDLOSTC COX9 N subumit VIla of eytochrome ¢ oxadase
Rabo YPLO3TC  EGDI FP /7 subumt of the nascent-polypeptde-assoaated
complex (NAC)
YLR406C RPL31B FN  rbosomal protein L31B (L34B) (YL28)
YLRO7SW RPLIO FP nbosomal proten L10
YALOO3W EFB1 FP translation elongation factor EF-17
Prot YHRO27C RPNI TN subunit of 265 proteasome (PA700 subunit)
YGR270W  YTA7 FN  member of CDC48/PAS1/SECIS family of ATPases
YGRO48W  UFD1 FP ubiquitin fusion degradation protein
YDROGSC DOA4 N ubiquitin 1sopeptdase
YDLO20C RPN4 FN wmvelved m ubiquitin degradation pathway
Hist YOLO12C  HTA3 N listone-related protein
YEKLO49C  CSE4 N required for proper kinetochore function

Table &: Consistently misclassified genes. The table hists all 25 genes that are consistently mms-
classified by SVMs trained using the MYGD classifications listed in Table 1. Two types of errors
are included: a false posiive (FP') oceurs when the SVM includes the gene in the given class but
the MY GD classificaton does not; a fulse negative (FN) oceurs when the SVM does not include
the gene in the given class bul the MYGD classification does.

3/15/05
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SVM | SVM
Dataset Features | FP | FN | FP FN

Ovarian(original) 97802 4.6 | 4.8 5 3

_ - Ovarian(modified) 97802 44 | 34 0 [1]
If;’t““i - anF Ff;t}“‘f L F: "{ﬁ’ 11"; AML/ALL train 7129 |06 | 28| O 0
dot-product 5 5
At roiiet 2 25 5 2 13 12 AML treatment 7129 48 | 35 3 2
dot-product 5 25 4 2 12 13 Colon 2000 38 | 3.7 3 3
dot-product 10 25 4 2 12 13
dot-product 0 0 4 2 12 13 .
dot-product 2 50 3 2 12 14 Table 5: Results for the perceptron on all data sets. The results are averaged over 5 shufflings of the data
dnt-Tiod et 20 I o2 2 I as this algorithm is sensitive to the order in which it receives the data points. The first column is the dataset
E{"mtpmﬁﬁg ;ﬂ f[::] i g ﬁ i; used and the second is number of features in the dataset. For the ovarian and colon datasets, the number
d(,t_gzdu& 2 100 5 3 11 19 of normal tissues misclassified (FP) and the number of tumor tissues misclassified (FN) is reported. For the
dot-product 5 100 5 3 11 12 AML/ALL training dataset, the number of AML samples misclassified (FP) and the number of ALL patients
dot-product 10 | 100 5 3 11 12 misclassified (FN) is reported. For the AML treatment dataset, the number of unsuccessfully treated patients
dotproduct () [ 200 1 & & 4l 2 misclassified (FP) and the number of successfully treated patients misclassified (FN) is reported. The last two
dot-product 2 500 4 3 11 13 .
dot-product 5 500 4 3 11 13 columns report the best score obtained by the SVM on that dataset.
dot-product 10 500 4 3 11 13
dot-product 0 L1000 T 3 11 10
dot-product 2 1000 5 3 1 12
dot-product 5 1000 5 3 11 12
dot-product 10 L1000 h 3 11 12
dot-product 0 97802 17 0 14 1]
dot-product 2 | 97802 | 9 2 12 &
dot-product 5 | 97802 | 7 3 11 10
dot-product 10 | 97802 | 5 3 11 12

Table 1: Error rates for ovarian cancer tissue experiments.
For each setting of the SVM consisting of a kernel and diagonal factor (DF), each tissue was classified. Column
2 is the number of features (clones) used. Reported are the number of normal tissues misclassified (FP), tumor
tissues misclassified (FN), tumor tissues classified correctly (TP), and normal tissues elassified correctly (TN).

08

Size of Margin

05 F

i
H

i
It

Figure 1: SVM classification margins for ovarian tissues. When classifying, the SWM caleulates a margin
which is the distanee of an example from the decigion boundary it has learmed. Tn this graph, the margin for
each tissue sample caleulated using (10) is shown. A positive value indicates a eorrect classification, and a
negative value indicates an incorrect classification. The most negative point eorresponds to tissue N039. The
second most negative point corresponds to tissue HWBC3.
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SVM — General Principles

* SVMs perform binary classification by
partitioning the feature space with a surface
implied by a subset of the training points
(vectors) near the separating surface. These
vectors are referred to as Support Vectors.

» Efficient with high-dimensional data.
» Solid statistical theory
» Subsume several other methods.

Bioinformatics (Lec 17) 3/15/05 22



SVM Example (Radial Basis Function)

e

Bioinformatics (Lec 17)
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SVM Ingredients

- Support Vectors

* Mapping from Input Space to Feature Space
* Dot Product - Kernel function

»+ Weights

Bioinformatics (Lec 17) 3/15/05 24



Classification of 2-D (Separable) data

Bioinformatics (Lec 17) 3/15/05 25




Classification of
(Separable) 2-D data

Bioinformatics (Lec 17) 3/15/05




Classification of (Separable) 2-D

data

+] *

Bioinformatics (Lec 17)

*Margin of a point
Margin of a point set
3/15/05
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Classification using the
Separator

Separator
wex +b=0

Bioinformatics (Lec 17) 3/15/05
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Perceptron Algorithm (Primal)

Rosenblatt, 1956

Given separable training set S and learning rate n>0
w, = 0; // Weight

b, =0; // Bias

k=0; R=max llxl ~

repeat W = 2 a8y,
for iI=1toN

ITy; (WyeX; + by) < 0 then
Wy = Wy T MYX
b1 = by + My;R?
k=k+1
Until no mistakes made within loop

Return k, and (w,, b,) where k = # of mistakes
Bioinformatics (Lec 17) 3/15/05 29



Performance for Separable Data

Theorem:
If margin m of S is positive, then
k < (2R/m)?
i.e., the algorithm will always converge,
and will converge quickly.

Bioinformatics (Lec 17) 3/15/05 30



Perceptron Algorithm (Dual)

Given a separable training set S
a=_0; bo = 0;
R = max |l x|
repeat
for i=1toN

if y, (Za;y, XX + b) <0then
a=a+1
b=Db+yR?

endif

Until no mistakes made within loop
Return (a, b)

Bioinformatics (Lec 17) 3/15/05
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Non-linear Separators

Bioinformatics (Lec 17) 3/15/05
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Main idea: Map into feature space

§  Input space & Feature space

» L]
*
S
] Z b -
9

Fiqure 2, The wea of 5 machines: map the trarrg data
nonlnearky nite a higher-dimensional feature space via
&, and consinit a separting ypermlane with mamum
mergn them, This yiekls a nonlnear decsion boundary in
nput pace, By the use of a kemel unchon, it s possible
o it e separatey beyperplane without explicrihy

g myng et the map inko the feature pace.
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Non-linear Separators

X =F

Bioinformatics (Lec 17) 3/15/05
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Useful URLS
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http://www.support-vector.net/

Perceptron Algorithm (Dual)

Given a separable training set S
a=_0; bo = 0;
R = max |l x|
repeat
for i=1toN

ify, (Zayy, (X .x) + b) <0 then
a=a+1
b=Db+yR?
Until no mistakes made within loop

Return (a, b) K(X; X)) = D(x)* D(x;)

Bioinformatics (Lec 17) 3/15/05 36



Different Kernel Functions

* Polynomial kernel
K(X,Y)=(X eY)"

- Radial Basis Kernel )
(x ) ]

K(X,Y)=exp ;
O

» Sigmoid Kernel
k(X,Y)=tanh(o(X oY) +0)

Bioinformatics (Lec 17) 3/15/05 37



SVM Ingredients

- Support Vectors
* Mapping from Input Space to Feature Space
* Dot Product - Kernel function

Bioinformatics (Lec 17) 3/15/05 38



Generalizations

* How to deal with more than 2 classes?
Idea: Associate weight and bias for each class.

* How to deal with non-linear separator?
Idea: Support Vector Machines.

ow to deal with linear regression?
ow to deal with non-separable data?

Bioinformatics (Lec 17) 3/15/05 39



Applications

+ Text Categorization & Information Filtering
- 12,902 Reuters Stories, 118 categories (91% !I)
- Image Recognition

- Face Detection, tumor anomalies, defective parts
in assembly line, etc.

* Gene Expression Analysis
* Protein Homology Detection

Bioinformatics (Lec 17) 3/15/05 40



Leamed threshold Optimized threshold
Class Method FP FN TP TN Cost | FP FN TP TN Cost
Tricatboxylic acid  Radial SVM 8 8 9 2442 241 4 7 10 2446 18
Dot-product-1 SVM | 11 9 B 2439 29 3 [ 11 2447 15
Dotproduct2 SYM | 5 10 7 2445 25| 4 6 11 2446 16 Leamed threshold Optimized threshold
Dotproduct:3 SVM | 4 12 5 2446 28| 4 6 11 2446 16 Class Method FP_FN TP TN Cost|FP FN TP TN Cost
Parzen 4 12 5 2446 28 0 12 5 2450 24 Proteasome Radial SVM 3 7 28 2429 171 4 5 30 2418 14
FLD 9 10 7 2441 29 7 g 9 2443 23 Dot-product-1 SVM | 14 11 24 2418 36 2 T 28 2430 16
4.5 7 17 0 2443 41 Dotproduct-2 SVM | 4 13 22 2428 301 4 6 290 2428 16
MOC1 3 16 1 2446 35 - _ _ _ _ Dot-product-3 SVM | 3 18 17 2429 391 2 7 28 2430 16
Respiration Radial SVM e 6 24 2428 21| 8§ 4 36 2419 16 Parzen 215 30 2411 31 3 9 26 2429 21
Dotproduct-1 SVM | 21 10 20 2416 41| 6 9 21 2431 24 FLD 7012023 2425 31127 28 2420 26
Dotproduct2 SVM | 7 14 16 2430 35| 7 6 24 2430 19 C4.5 1710 25 2415 37( - - - = =
Dotproduct-3 SVM | 3 15 15 2434 33| 7 6 24 2430 19 MOCI 10 17 18 2422 44
Parzen 210 20 2415 42 7 12 18 2430 31 Histone Radial SVM 0 2 9 2456 41 0 2 9 2456 4
FLD 0 10 20 2427 30| 14 4 26 2423 22 Dot-product-1 SVM 1] 4 T 2456 8 0 2 9 2456 4
4.5 12 17 13 2419 52 Dotproduct-2 SVM | 0 5 6 2456 10 0 2 9 2456 4
MOC1 1 2% 4 2425 64 = = = 25 = Dot-product-3 SVM | 0 8§ 3 2456 16 0 2 9 2456 4
Ribosome Radial SVM 9 4 117 2337 17| 6 1 120 2340 8 Parzen 2 3 8 4 311 3 8 MH 7T
Dotproduct-1 SVM | 13 6 115 2333 25|11 1 120 2335 13 FLD 0 3 8 4% 612 1 10 244 4
Dotproduct2 SVM | 7 10 111 2338 27| o 1 120 2337 11 C4.5 2 2 9 uM 6
Dotproduct3 SVM | 3 18 103 2343 39| 7 1 120 2339 9 MOC1 2 5 6 WM BRI - - - - -
Parzen 6 s 113 2340 e 5 g 113 2341 21 Helix-tum-helix  Radial SVM 1 16 0 2450 331 0 16 0 2451 32
FLD 15 5 116 2331 25| 8 3 118 2338 14 Dot-product-1 SVM | 20 16 0 2431 52| 0 16 0 2451 32
4.5 31 21 100 2315 73| - - - - - Dotproduct-2 SVM | 4 16 0 2447 | 0 16 0 2451 32
MOC1 2% 26 95 2320 78 Dot-product-3 SVM 1 16 0 2450 3| 0 16 0 2451 32
Parzen 14 16 0 2437 46 0 16 0 2451 32
FLD 14 16 0 2437 46 0 16 0 2451 32
Table 2: Comparison of error rates for various classification methods. Classes are as described c4.5 2 16 0 2449 34
in Table 1. The methods are the radial basis function SVM, the SVMs using the scaled dot produet MaocC] 6 16 0 2445 38| - - - = =

kernel raised to the first, second and third power, Parzen windows, Fisher's linear discriminant, and
the two decision tree learners, C4.5 and MOC1. The next five columns are the false positive, false
negative, true positive and true negative rates sumimed over three cross-validation splits, followed
by the cost, which 1s the number of false positives plus twice the number of false negatives. These
five columns are repeated twice, first using the threshold learned from the training set, and then
using the threshold that minimizes the cost on the test set. The threshold optimization is not
possible for the decision tree methods, sinee they do not produce ranked results,

Table 3: Comparison of error rates for various classification methods (continued). See caption
for Table 2.
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Class Kermnel Cost for cach split Total
Trcarboxylic acid  Radial 18 21 15 22 21 97
Dot-product-1 [ 15 22 18 23 22| 100
Dot-produet-2 | 16 22 17 22 22 99
Dot-produet-3 | 16 22 17 23 22| 100
Respiration Radial 16 18 23 20 16 93
Dot-product-1 | 24 24 29 27 23 127
Dot-product-2 | 19 19 26 24 23 111
Dot-product-3 | 19 19 26 22 21| 107
Ribosorme Radial ® 12 15 11 13 59
Dot-product-1 | 13 18 14 16 16 77
Dot-product-2 | 11 16 14 16 15 72
Dot-product-3 | 9 15 11 15 15 65
Proteasome Radial 14 10 9 11 11 55
Dot-product-1 | 16 12 12 17 19 76
Dot-produet-2 | 16 13 15 17 17 78
Dot-product-3 | 16 13 16 16 17 79
Histone Radial 4 4 4 4 4 20
Dot-product-1 | 4 4 4 4 4 20
Dot-product-2 | 4 4 4 4 4 20
Dot-product-3| 4 4 4 4 4 20

Table 4: Comparison of SVM performance using various kernels. For each of the MYGD
classifications, SVMs were trained using four different kemel functions on five different random
three-fold splits of the data, training on two-thirds and testing on the remaining third. The first
column contains the class, as described in Table 1. The second column contains the kernel function,
as described in Table 2. The next five columns contain the threshold-optimized cost (i.e., the
number of false positives plus twice the number of false negatives) for each of the five random
three-fold splits. The final column 1s the total cost across all five splits.
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Family Gene Loens Ermror Description
TCA YPROOIW  CIT3 FN mtochondnal eitrate synthase
YOR14ZW  LSCL FN o subumit of suceinyl-CoA higase
YNROOIC CIT1 FN mitochondnal eitrate synthase
YLR174W  1DP2 FN wsocirate dehydrogenase
YILIZSW  KGDI FN ar-ketoglutarate dehydrogenase
YDRI4BC KGD2 FN component of a-ketoglutarate dehydrogenase
complex in mitochondra
YDLOs6W  1DP1 N mitochondnal form of 1socitrate dehydrogenase
YBLOISW  ACHI FP acetyl CoA hydrolase
Resp YPRI9IW QCRZ FN ubiquinol eytochrome-¢ reductase core proten 2
YPLZTIW  ATPLS FN ATP synthase epailon subumt
YPL26ZW  FUMI FP furmarase
YML120C NDIL FP mitochendnal NADH ubquinene 6 oxadoreductase
YELOSSW MDHI1 FP mutochondnal malate dehydrogenase
YDLOSTC COX9 N subumit VIla of eytochrome ¢ oxadase
Rabo YPLO3TC  EGDI FP /7 subumt of the nascent-polypeptde-assoaated
complex (NAC)
YLR406C RPL31B FN  rbosomal protein L31B (L34B) (YL28)
YLRO7SW RPLIO FP nbosomal proten L10
YALOO3W EFB1 FP translation elongation factor EF-17
Prot YHRO27C RPNI TN subunit of 265 proteasome (PA700 subunit)
YGR270W  YTA7 FN  member of CDC48/PAS1/SECIS family of ATPases
YGRO48W  UFD1 FP ubiquitin fusion degradation protein
YDROGSC DOA4 N ubiquitin 1sopeptdase
YDLO20C RPN4 FN wmvelved m ubiquitin degradation pathway
Hist YOLO12C  HTA3 N listone-related protein
YEKLO49C  CSE4 N required for proper kinetochore function

Table &: Consistently misclassified genes. The table hists all 25 genes that are consistently mms-
classified by SVMs trained using the MYGD classifications listed in Table 1. Two types of errors
are included: a false posiive (FP') oceurs when the SVM includes the gene in the given class but
the MY GD classificaton does not; a fulse negative (FN) oceurs when the SVM does not include
the gene in the given class bul the MYGD classification does.
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SVM | SVM
Dataset Features | FP | FN | FP FN

Ovarian(original) 97802 4.6 | 4.8 5 3

_ - Ovarian(modified) 97802 44 | 34 0 [1]
If;’t““i - anF Ff;t}“‘f L F: "{ﬁ’ 11"; AML/ALL train 7129 |06 | 28| O 0
dot-product 5 5
At roiiet 2 25 5 2 13 12 AML treatment 7129 48 | 35 3 2
dot-product 5 25 4 2 12 13 Colon 2000 38 | 3.7 3 3
dot-product 10 25 4 2 12 13
dot-product 0 0 4 2 12 13 .
dot-product 2 50 3 2 12 14 Table 5: Results for the perceptron on all data sets. The results are averaged over 5 shufflings of the data
dnt-Tiod et 20 I o2 2 I as this algorithm is sensitive to the order in which it receives the data points. The first column is the dataset
E{"mtpmﬁﬁg ;ﬂ f[::] i g ﬁ i; used and the second is number of features in the dataset. For the ovarian and colon datasets, the number
d(,t_gzdu& 2 100 5 3 11 19 of normal tissues misclassified (FP) and the number of tumor tissues misclassified (FN) is reported. For the
dot-product 5 100 5 3 11 12 AML/ALL training dataset, the number of AML samples misclassified (FP) and the number of ALL patients
dot-product 10 | 100 5 3 11 12 misclassified (FN) is reported. For the AML treatment dataset, the number of unsuccessfully treated patients
dotproduct () [ 200 1 & & 4l 2 misclassified (FP) and the number of successfully treated patients misclassified (FN) is reported. The last two
dot-product 2 500 4 3 11 13 .
dot-product 5 500 4 3 11 13 columns report the best score obtained by the SVM on that dataset.
dot-product 10 500 4 3 11 13
dot-product 0 L1000 T 3 11 10
dot-product 2 1000 5 3 1 12
dot-product 5 1000 5 3 11 12
dot-product 10 L1000 h 3 11 12
dot-product 0 97802 17 0 14 1]
dot-product 2 | 97802 | 9 2 12 &
dot-product 5 | 97802 | 7 3 11 10
dot-product 10 | 97802 | 5 3 11 12

Table 1: Error rates for ovarian cancer tissue experiments.
For each setting of the SVM consisting of a kernel and diagonal factor (DF), each tissue was classified. Column
2 is the number of features (clones) used. Reported are the number of normal tissues misclassified (FP), tumor
tissues misclassified (FN), tumor tissues classified correctly (TP), and normal tissues elassified correctly (TN).
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Figure 1: SVM classification margins for ovarian tissues. When classifying, the SWM caleulates a margin
which is the distanee of an example from the decigion boundary it has learmed. Tn this graph, the margin for
each tissue sample caleulated using (10) is shown. A positive value indicates a eorrect classification, and a
negative value indicates an incorrect classification. The most negative point eorresponds to tissue N039. The
second most negative point corresponds to tissue HWBC3.
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